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Abstract. In the past decade, we had developed a series of splitting contraction algorithms for separable convex op-
timization problems, at the root of the alternating direction method of multipliers. Convergence of these algorithms
was studied under specific model-tailored conditions, while these conditions can be conceptually abstracted as two
generic conditions when these algorithms are all unified as a prediction-correction framework. In this paper, in turn,
we showcase a constructive way for specifying the generic convergence-guaranteeing conditions, via which new
splitting contraction algorithms can be generated automatically. It becomes possible to design more application-
tailored splitting contraction algorithms by specifying the prediction-correction framework, while proving their
convergence is a routine.
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1. INTRODUCTION

To understand the convergence rate of the well-known alternating direction method of multi-
pliers (ADMM) proposed in [9], we had initiated an analytic technique in [19] and further used
it to conduct convergence analysis for a series of ADMM-based splitting contraction algorithms
for separable convex programming problems in our previous works such as [15, 16, 17, 18, 21].
As summarized in [12] (see also [13, 22]), the key of this analytic technique is to represent
the ADMM or its variants in [15, 16, 17, 18, 21] by a prediction-correction framework in the
context of the variational inequality reformulation of the convex programming model under
discussion, and then to analyze the contraction property of the iterative scheme to derive the
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convergence. In particular, various specific conditions for ensuring convergence of the algo-
rithms in [15, 16, 17, 18, 21] can be conceptually abstracted as two generic conditions. Since
the ADMM is an application of the Douglas-Rachford splitting method in [5, 23] and conver-
gence of the mentioned algorithms can be proved by the contraction property, we call them
“splitting contraction algorithms” uniformly. Our previous result in [3] showing the divergence
of the direct extension of the ADMM to multiple block separable convex programming prob-
lems was also based on this analytical technique.

In this paper, we revisit the unified framework in [12] (see also [13, 18, 22]), including the
prediction-correction representation of various splitting contraction algorithms and the generic
convergence-guaranteeing conditions, and showcase how to constructively specify the generic
convergence-guaranteeing conditions. Through the procedure, new splitting contraction algo-
rithms can be automatically generated via specifying the prediction-correction framework. The
constructive way provides flexibility to designing various application-tailored splitting contrac-
tion algorithms for given specific separable convex optimization models, while proving their
convergence is a routine.

To understand the convergence rate of the well-known alternating direction method of multi-
pliers (ADMM) proposed in [9], we had initiated an analytic technique in [19] and further used
it to conduct convergence analysis for a series of ADMM-based splitting contraction algorithms
for separable convex programming problems in our previous works such as [15, 16, 17, 18, 21].
As summarized in [12] (see also [13, 22]), the key of this analytic technique is to represent
the ADMM or its variants in [15, 16, 17, 18, 21] by a prediction-correction framework in the
context of the variational inequality reformulation of the convex programming model under
discussion, and then to analyze the contraction property of the iterative scheme to derive the
convergence. In particular, various specific conditions for ensuring convergence of the algo-
rithms in [15, 16, 17, 18, 21] can be conceptually abstracted as two generic conditions. Since
the ADMM is an application of the Douglas-Rachford splitting method in [5, 23] and conver-
gence of the mentioned algorithms can be proved by the contraction property, we call them
“splitting contraction algorithms” uniformly. Our previous result in [3] showing the divergence
of the direct extension of the ADMM to multiple block separable convex programming prob-
lems was also based on this analytical technique.

In this paper, we revisit the unified framework in [12] (see also [13, 18, 22]), including the
prediction-correction representation of various splitting contraction algorithms and the generic
convergence-guaranteeing conditions, and showcase how to constructively specify the generic
convergence-guaranteeing conditions. Through the procedure, new splitting contraction algo-
rithms can be automatically generated via specifying the prediction-correction framework. The
constructive way provides flexibility to designing various application-tailored splitting contrac-
tion algorithms for given specific separable convex optimization models, while proving their
convergence is a routine.

2. UNIFIED FRAMEWORK

We consider the canonical convex minimization problem with linear constraints

min{θ(u) |A u = b, u ∈U } (2.1)
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where θ : ℜn→ℜ is a closed, proper, and convex but not necessarily smooth function, U ⊆ℜn

is a closed convex set, A ∈ℜm×n, and b ∈ℜm. For further analysis, we recall the prediction-
correction representation of splitting contraction algorithms in the existing literatures [15, 16,
17, 18, 22] in the context of variational inequalities, and the generic convergence-guaranteeing
conditions.

2.1. Variational inequality reformulation. The Lagrangian function of (2.1) is

L(u,λ ) = θ(u)−λ
T (A u−b) (2.2)

with λ ∈ℜm the Lagrange multiplier. A pair of (u∗,λ ∗) ∈U ×ℜm is called a saddle point of
L(u,λ ) if

Lλ∈ℜm(u∗,λ )≤ L(u∗,λ ∗)≤ Lu∈U (u,λ ∗).

As analyzed in, e.g. [13, 15, 16, 17, 19, 21, 22], (u∗,λ ∗) can be characterized as a solution point
of the following variational inequality (VI):

w∗ ∈Ω, θ(u)−θ(u∗)+(w−w∗)T F(w∗)≥ 0, ∀w ∈Ω. (2.3)

where

w =

(
u
λ

)
, F(w) =

(
−A T λ

A u−b

)
and Ω = U ×ℜ

m. (2.4)

We denote by Ω∗ the set of solution points of the VI (2.3)-(2.4).

2.2. Prediction-correction framework and convergence conditions. In the context of the
VI (2.3)-(2.4), the splitting contraction algorithms proposed in [15, 16, 17, 18, 22] can all be
uniformly represented by a prediction-correction framework, and their specific convergence-
guaranteeing conditions can be conceptually abstracted as two generic conditions. Below, note
that v = w, or v could be a subvector of w, and V ∗ is denoted as the set of all v∗ whose corre-
sponding w∗ ∈Ω∗. Dimensionality of the matrices Q and M is conformed with that of v.

Prediction-correction framework for the VI (2.3)-(2.4)
[Prediction Step.] With given vk, find a vector w̃k ∈Ω such that

θ(u)−θ(ũk)+(w− w̃k)T F(w̃k)≥ (v− ṽk)T Q(vk− ṽk), ∀w ∈Ω, (2.5)

where the matrix Q is not necessarily symmetric but QT +Q is assumed to be positive defi-
nite.
[Correction Step.] Find a nonsingular matrix M and update v by

vk+1 = vk−M(vk− ṽk). (2.6)

Convergence conditions
For the matrices Q and M used in (2.5) and (2.6), respectively, there exists a matrix H � 0
such that

HM = Q, (2.7a)
and

G := QT +Q−MT HM � 0. (2.7b)

Remark 2.1. Note that the matrices Q and M take specific forms for the splitting contraction
algorithms in [15, 16, 17, 18, 22] when different separable cases of the model (2.1) are studied.
With the specifically given Q and M, it is easy to verify whether or not the conditions (2.7) are
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satisfied. How to construct the matrices H and M with a given Q to ensure the convergence
conditions (2.7), however, has not yet been discussed in the literature. This reverse procedure
leads to the specification of a concrete splitting contraction algorithm for the model (2.1) via
the prediction-correction framework (2.5)-(2.6). A trivial case is when Q is known to be even
symmetric and positive definite. Then, we can simple take M = αI with α ∈ (0,2) and then
H = 1

α
Q, which certainly ensures the conditions (2.7). This case is indeed an application of the

classic proximal point algorithm in [24], as studied in [2, 11, 14, 20]. We would emphasize that
the corresponding matrix Q is generally asymmetric when many algorithms including those in
[15, 16, 17, 18, 22] are represented by the prediction-correction framework (2.5)-(2.6). Hence,
we focus on the nontrivial case where Q is asymmetric to discuss how to constructively specify
the prediction-correction framework (2.5)-(2.6) and the convergence conditions (2.7).

2.3. Convergence. Convergence of the prediction-correction framework (2.5)-(2.6) under the
conditions (2.7) has been shown in our previous works such as [12, 13, 18]. The main contrac-
tion property ensuring the convergence is summarized in the following theorem; we include the
proof for completeness.

Theorem 2.2. Let {vk} be the sequence generated by the prediction-correction framework
(2.5)-(2.6) under the conditions (2.7). Then, it holds that

‖vk+1− v∗‖2
H ≤ ‖vk− v∗‖2

H−‖vk− ṽk‖2
G, ∀v∗ ∈ V ∗. (2.8)

Proof. Using Q = HM (see (2.7a)), the prediction step can be written as

w̃k ∈Ω, θ(u)−θ(ũk)+(w− w̃k)T F(w̃k)≥ (v− ṽk)T HM(vk− ṽk), ∀w ∈Ω.

Then, it follows from (2.6) that

w̃k ∈Ω, θ(u)−θ(ũk)+(w− w̃k)TF(w̃k)≥ (v− ṽk)TH(vk− vk+1), ∀w ∈Ω.

Setting w = w∗ in the above inequality, we get

(vk− vk+1)TH(ṽk− v∗)≥ θ(ũk)−θ(u∗)+(w̃k−w∗)TF(w̃k), ∀w∗ ∈Ω
∗.

Note that (w̃k−w∗)TF(w̃k) = (w̃k−w∗)TF(w∗) and the optimality of w∗. Thus, we have

(vk− vk+1)T H(ṽk− v∗)≥ 0, ∀v∗ ∈ V ∗. (2.9)

Setting a = vk, b = vk+1,c = ṽk and d = v∗ in the identity

2(a−b)T H(c−d) =
{
‖a−d‖2

H−‖b−d‖2
H
}
−
{
‖a− c‖2

H−‖b− c‖2
H
}
,

we know from (2.9) that

‖vk− v∗‖2
H−‖vk+1− v∗‖2

H ≥ ‖vk− ṽk‖2
H−‖vk+1− ṽk‖2

H . (2.10)

For the right-hand side of the last inequality, we have

‖vk− ṽk‖2
H−‖vk+1− ṽk‖2

H

= ‖vk− ṽk‖2
H−‖(vk− ṽk)− (vk− vk+1)‖2

H
(2.6)
= ‖vk− ṽk‖2

H−‖(vk− ṽk)−M(vk− ṽk)‖2
H

= 2(vk− ṽk)T HM(vk− ṽk)− (vk− ṽk)T MT HM(vk− ṽk)

= (vk− ṽk)T (QT +Q−MT HM)(vk− ṽk)

(2.7b)
= ‖vk− ṽk‖2

G. (2.11)
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Substituting (2.11) in (2.10), the assertion (2.8) is proved. �

2.4. Naming of matrices. Because of clear reasons, we call Q and M the prediction matrix
and correction matrix, respectively. Moreover, the inequality (2.8) compares the proximity of
two consecutive iterates to v∗ in the H-norm, and measures their difference (or progress) by the
term ‖vk− ṽk‖2

G. Hence, we call H and G the norm matrix and profit matrix, respectively.

2.5. Example. To see how the prediction-correction framework (2.5)-(2.6) and the conver-
gence conditions (2.7) are related to our previous works such as [3, 15, 16, 17, 18, 19, 21, 22],
we take the strictly contractive Peaceman-Rachford splitting method (PRSM) proposed in [15]
as an illustrative example.

2.5.1. SC-PRSM. We consider a two-block separable convex programming model

min{θ1(x)+θ2(y) | Ax+By = b, x ∈X ,y ∈ Y }, (2.12)

where θi : ℜni → ℜ (i = 1,2) are closed, proper, and convex but not necessarily smooth func-
tions; X ⊆ℜn1 and Y ⊆ℜn2 are closed convex sets; A ∈ℜm×n1 and B ∈ℜm×n2; b ∈ℜm; and
n = n1 +n2. This is a separable case of (2.1) with

u =

(
x
y

)
, θ(u) = θ1(x)+θ2(y), A = (A,B) and U = X ×Y .

Thus, the VI (2.3)-(2.4) can be specified as the following:

w∗ ∈Ω, θ(u)−θ(u∗)+(w−w∗)T F(w∗)≥ 0, ∀w ∈Ω. (2.13a)

where

w =

 x
y
λ

 , F(w) =

 −AT λ

−BT λ

Ax+By−b

 and Ω = X ×Y ×ℜ
m. (2.13b)

Let the augmented Lagrangian function of (2.12) be

L [2]
β

(x,y,λ ) = θ1(x)+θ2(y)−λ
T (Ax+By−b)+

β

2
‖Ax+By−b‖2, (2.14)

with λ ∈ℜm the Lagrange multiplier and β > 0 the penalty parameter. The well-known alter-
nating direction method of multipliers (ADMM) proposed by Glowinski and Marrocco in [9]
for solving (2.12) is 

xk+1 ∈ argmin{L [2]
β

(x,yk,λ k) |x ∈X },
yk+1 ∈ argmin{L [2]

β
(xk+1,y,λ k) |y ∈ Y },

λ k+1 = λ k−β (Axk+1 +Byk+1−b).

(2.15)

As shown in [7], the ADMM (2.15) is an application of the Douglas-Rachford splitting method
in [5, 23] to the dual of (2.12). In [15], we proposed the following strictly contractive PRSM
(SC-PRSM):
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(SC-PRSM)



xk+1 ∈ argmin{L [2]
β

(x,yk,λ k) |x ∈X }, (2.16a)

λ
k+ 1

2 = λ
k−µβ (Axk+1 +Byk−b), (2.16b)

yk+1 ∈ argmin{L [2]
β

(xk+1,y,λ k+ 1
2 ) |y ∈ Y }, (2.16c)

λ
k+1 = λ

k+ 1
2 −µβ (Axk+1 +Byk+1−b), (2.16d)

where µ ∈ (0,1). It has been shown that if µ = 1 in (2.16), then the resulting scheme (which
can be regarded as a symmetric version of the ADMM (2.15)) is an application of the PRSM
in [25] to the dual of (2.12) while its convergence is not guaranteed as shown in [4]. For the
SC-PRSM (2.16) with µ ∈ (0,1), it was shown in [15] that its sequence of iterations is strictly
contractive with respect to the solution set and hence its convergence is guaranteed.

2.5.2. Prediction-correction representation. The follow lemma is useful and its proof can be
found in, e.g. [1].

Lemma 2.3. Let X ⊂ ℜn be a closed convex set, θ(x) and f (x) be convex functions and
f (x) is differentiable on an open set which contains X . Assume that the solution set of the
minimization problem min{θ(x)+ f (x) |x ∈X } is nonempty. Then,

x∗ ∈ argmin{θ(x)+ f (x) |x ∈X } (2.17a)

if and only if
x∗ ∈X , θ(x)−θ(x∗)+(x− x∗)T

∇ f (x∗)≥ 0, ∀x ∈X . (2.17b)

Let us define w̃k as

w̃k =

 x̃k

ỹk

λ̃ k

=

 xk+1

yk+1

λ k−β (Axk+1 +Byk−b)

 , (2.18)

where (xk+1,yk+1) is generated by (2.16). Now, we show that the SC-PRSM (2.16) with w̃k

defined in (2.18) can be represented by the prediction-correction framework (2.5)-(2.6) .

Theorem 2.4. The SC-PRSM (2.16) corresponds to the prediction-correction framework (2.5)-
(2.6) with

Q =

(
βBT B −µBT

−B 1
β

Im

)
and M =

(
I 0

−µβB 2µIm

)
. (2.19)

Proof. It follows from (2.18) that λ̃ k = λ k−β (Axk+1+Byk−b). Also, the optimality condition
of the x-subproblem (2.16a) is

θ1(x)−θ1(x̃k)+(x− x̃k)T (−AT
λ̃

k)≥ 0, ∀ x ∈X . (2.20)

Notice that the objective function of the y-subproblem (2.16c) is

L
[2]

β
(x̃k,y,λ k+ 1

2 ) = θ1(x̃k)+θ2(y)− (λ k+ 1
2 )T (Ax̃k +By−b)+ β

2 ‖Ax̃k +By−b‖2.

Ignoring some constant term in the y-subproblem, we obtain

ỹk = argmin{θ2(y)− (λ k+ 1
2 )T By+ β

2 ‖Ax̃k +By−b‖2 |y ∈ Y }.
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Consequently, according to Lemma 2.3, we have

ỹk ∈ Y , θ2(y)−θ2(ỹk)+(y− ỹk)T{−BT
λ

k+ 1
2 +βBT (Ax̃k +Bỹk−b)

}
≥ 0, ∀y ∈ Y .

Using λ̃ k = λ k−β (Axk+1 +Byk−b), we get

λ
k+ 1

2 = λ
k−µ(λ k− λ̃

k) = λ̃
k +(1−µ)(λ k− λ̃

k),

and
β (Ax̃k +Byk−b) = (λ̃ k−λ

k).

Finally, the optimality condition of the y-subproblem can be written as ỹk ∈ Y , and

θ2(y)−θ2(ỹk)+(y− ỹk)T{−BT
λ̃

k +βBT B(ỹk− yk)−µBT (λ̃ k−λ
k)
}
≥ 0, ∀y ∈ Y . (2.21)

According to the definition of w̃k in (2.18), and λ̃ k = λ k−β (Axk+1 +Byk−b), we have

(Ax̃k +Bỹk−b)−B(ỹk− yk)+(1/β )(λ̃ k−λ
k) = 0. (2.22)

Combining (2.20), (2.21) and (2.22), and using the notation of (2.13), we obtain

w̃k ∈Ω, θ(u)−θ(ũk)+(w− w̃k)T F(w̃k)≥ (v− ṽk)T Q(vk− ṽk), ∀w ∈Ω, (2.23)

which corresponds to the prediction step (2.5) with Q defined in (2.19).
Moreover, note that λ k+1 in (2.16d) can be represented as

λ
k+1 = [λ k−µ(λ k− λ̃

k)]−µ
[
−βB(yk− ỹk)+β (Axk+1 +Byk−b)

]
= λ

k−
[
−µβB(yk− ỹk)+2µ(λ k− λ̃

k)
]
. (2.24)

Thus, together with yk+1 = ỹk, we have(
yk+1

λ k+1

)
=

(
yk

λ k

)
−
(

I 0
−µβB 2µIm

)(
yk− ỹk

λ k− λ̃ k

)
.

This can be rewritten as the compact form

vk+1 = vk−M(vk− ṽk), (2.25)

which corresponds to the correction step (2.6) with M defined in (2.19). �
Hence, we can represent the SC-PRSM (2.16) as the prediction-correction framework (2.5)-

(2.6) with the corresponding matrices Q and M defined in (2.19).

2.5.3. Convergence conditions. To verify that the matrices Q and M defined in (2.19) satisfy
the conditions (2.7) and hence ensure the convergence of the SC-PRSM (2.16), we see that

M−1 =

(
I 0

1
2βB 1

2µ
Im

)
.

Hence, if we define

H = QM−1 =

(
βBT B −µBT

−B 1
β

Im

)(
I 0

1
2βB 1

2µ
Im

)
=

1
2

(
(2−µ)βBT B −BT

−B 1
µβ

Im

)
,

then H is positive definite for any µ ∈ (0,1) when B is full column rank, and the condition
(2.7a) is satisfied.
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To check the condition (2.7b), i.e., the positiveness of G := QT +Q−MT HM, we have

MT HM = MT Q =

(
I −µβBT

0 2µIm

)(
βBT B −µBT

−B 1
β

Im

)
=

(
(1+µ)βBT B −2µBT

−2µB 2µ

β
Im

)
.

Using (2.19) and the above equation, we have

G = QT +Q−MT HM = (1−µ)

(
βBT B −BT

−B 2
β

Im

)
,

which implies that G is positive definite for any µ ∈ (0,1) when B is full column rank. Hence,
the convergence conditions (2.7) are satisfied for the strictly contractive PRSM (2.16).

3. CONSTRUCTION OF NEW SPLITTING CONTRACTION ALGORITHMS

As shown before, the prediction-correction framework (2.5)-(2.6), along with the generic
convergence-guaranteeing conditions (2.7), represents a unified and abstract roadmap to con-
vergence analysis for various splitting contraction algorithms in [15, 16, 17, 18, 22]. In this
section, in turn, we focus on how to specify the prediction-correction framework (2.5)-(2.6)
and the conditions (2.7). More specifically, with a given Q, we construct H and M to satisfy
the conditions (2.7), and each pair of H and M can automatically generate a specific splitting
contraction algorithm with provable convergence through the prediction-correction framework
(2.5)-(2.6). The constructive way is a principle of designing new application-tailored splitting
contraction algorithms when concrete applications of the canonical convex programming model
(2.1) are considered.

To design a new algorithm, it is rare to start from scratch; it is more often to start from a given
coarse scheme that might be imperfect in theoretical or numerical aspects. Our discussion starts
from the scenario where the matrix Q is already determined by, e.g., a given coarse iterative
scheme such as (4.5), (5.4), or (5.9), which will be delineated in the next two sections. With a
given Q, our recept essentially only requires determining the norm matrix H and the correction
matrix M for the prediction-correction framework (2.5)-(2.6), while only the correction matrix
M needs to be specified to implement the resulting splitting contraction algorithm. Certainly,
we prefer to construct such M that can alleviate the resulting implementation/computation. We
further assume that the given matrix Q satisfies

QT +Q� 0.

Below, we give two specific principles of constructing the matrices H and M which can ensure
the conditions (2.7).

3.1. Construction from the condition (2.7a). Note that the condition (2.7a) can be rewritten
as

H = QM−1. (3.1)

Since the norm matrix H is required to be symmetric and positive definite, the condition (3.1)
implies that H should be representable in form of

H = QD−1QT , (3.2)
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in which the matrix D is a undetermined positive definite matrix. Indeed, by comparing (3.1)
with (3.2), we know that M−1 = D−1QT and thus

M = Q−T D. (3.3)

Hence, although the matrix D in (3.2) is still unknown, choosing M as (3.3) can ensure the
condition (2.7a).

Now, we investigate the restriction on D to ensure the condition (2.7b) with the matrix M
given as (3.3). Notice that

MT HM =
(
DQ−1)(QD−1QT)(Q−T D

)
= D. (3.4)

With (3.4), then the condition (2.7b) is reduced to

G := QT +Q−MT HM = QT +Q−D� 0. (3.5)

Hence, to ensure the condition (2.7b), the only restriction on the positive definite matrix D in
(3.2) is

0≺ D≺ QT +Q, (3.6)
In other words, whenever Q is given and it satisfies QT +Q � 0, then both H and M can be
constructed via the following steps:{

HM = Q,
MT HM = D.

⇐⇒
{

HM = Q,
QT M = D.

⇐⇒
{

H = QD−1QT ,
M = Q−T D.

. (3.7)

Through this construction, both the conditions (2.6) and (2.7b) are guaranteed to be satisfied.
Note that once the matrix D is chosen according to (3.6), the matrices H, M and G are all
uniquely determined. Then, with the specified matrix M in (3.3), the correction step (2.6) and
thus the prediction-correction framework (2.5)-(2.6) is also specified as a concrete contraction
splitting algorithm for the VI(2.3)-(2.4).

3.2. Construction from the condition (2.7b). Alternatively, we can start from the condition
(2.7b) to construct the norm matrix H and the correction matrix M. Again, with a given Q
satisfying QT +Q� 0, we can choose the profit matrix G such that

0≺ G≺ QT +Q. (3.8)

Denote
∆ = QT +Q−G, (3.9)

which is positive definite. According to (2.7b), we know that the matrices H and M should
satisfy

MT HM = ∆.

Recall the condition (2.7a): HM = Q. Thus, with a chosen G satisfying (3.8), H and M can be
constructed vis the following steps:{

MT HM = ∆,
HM = Q.

⇔
{

QT M = ∆,
HM = Q.

⇔
{

M = Q−T ∆,
H = Q∆−1QT .

(3.10)

Then, with the constructed matrix M in (3.10), the correction step (2.6) and thus the prediction-
correction framework (2.5)-(2.6) can also be specified as a concrete splitting contraction algo-
rithm for the VI(2.3)-(2.4). Again, with a given G satisfying (3.8), the matrices H and M are
both uniquely determined.
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3.3. Choices of matrices. It is interesting to observe that the proposed two construction strate-
gies can be related via the relationship

D� 0, G� 0, and D+G = QT +Q. (3.11)

Hence, once D is chosen for the construction strategy in Section 3.1, the corresponding G given
by (3.11) can be used for the construction strategy in Section 3.2, and vice versa.

Our discussions above show that, with a given prediction matrix Q satisfying QT +Q � 0,
once D (Resp., G) is chosen according to (3.6) (Resp., (3.8)), the matrices H and M can be
determined as analyzed and thus a concrete contraction splitting algorithm can be specified
for the convex programming problem (2.1) via the prediction-correction framework (2.5)-(2.6).
Technically, there are infinitely many such choices subject to (3.11). For example, we can
choose

D = α[QT +Q] and G = (1−α)[QT +Q], α ∈ (0,1).

We will elaborate on the choice D = G = 1
2 [Q

T +Q] in Section 4.3.3.

3.4. Implementation of the correction step (2.6). Note that the correction step (2.6) can be
rewritten as

QT (vk+1− vk) = QT M(vk− ṽk).

To implement the correction step (2.6) with the constructed two choices for M, i.e., M = Q−T D
in (3.3) and M = Q−T ∆ in (3.10), we need to solve one of the following systems of equations:

QT (vk+1− vk) = D(ṽk− vk), (3.12)

and
QT (vk+1− vk) = ∆(ṽk− vk). (3.13)

Hence, although D and G (thus ∆) can be chosen arbitrarily with the only constraint (3.6) or
(3.8), it is preferred to choose some model-tailored ones that can favor solving the systems of
equations (3.12) or (3.13) more efficiently. Irrational choices that make the correction step (2.6)
complicated should be generally avoided. Some examples will be discussed in the next sections
when specific cases of the canonical convex programming model (2.1) are considered.

4. APPLICATION TO THREE-BLOCK SEPARABLE CONVEX OPTIMIZATION

In this section, we apply the strategies proposed in Sections 3.1, 3.2 and 3.3 to a separa-
ble convex optimization problem, and showcase how to construct the norm matrix H and the
correction matrix M when the matrix Q is given.

4.1. Model. We consider the three-block separable convex optimization model with linear con-
straints

min{θ1(x)+θ2(y)+θ3(z) |Ax+By+Cz = b, x ∈X ,y ∈ Y ,z ∈Z }, (4.1)

where θi : ℜni → ℜ (i = 1,2,3) are closed, proper, and convex but not necessarily smooth
functions; X ⊆ ℜn1 , Y ⊆ ℜn2 and Z ⊆ ℜn3 are closed convex sets; A ∈ ℜm×n1 , B ∈ ℜm×n2

and C ∈ ℜm×n3; b ∈ ℜm; and n1 + n2 + n3 = n. Clearly, it is a special case of the canonical
convex programming problem (2.1), and the VI (2.3)-(2.4) can be specified as the following:

w∗ ∈Ω, θ(u)−θ(u∗)+(w−w∗)T F(w∗)≥ 0, ∀w ∈Ω, (4.2)
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where

w =


x
y
z
λ

 , u =

 x
y
z

 , F(w) =


−AT λ

−BT λ

−CT λ

Ax+By+Cz−b

 , (4.3a)

with
θ(u) = θ1(x)+θ2(y)+θ3(z), Ω = X ×Y ×Z ×ℜ

m. (4.3b)

Let the augmented Lagrangian function of the model (4.1) be

L
[3]

β
(x,y,z,λ ) = θ1(x)+θ2(y)+θ3(z)−λ

T (Ax+By+Cz−b)+
β

2
‖Ax+By+Cz−b‖2 (4.4)

with λ ∈ℜm the Lagrange multiplier and β > 0 the penalty parameter. With the success of the
ADMM (see, e.g., [6, 8, 10]), it is natural to consider directly extending the ADMM (2.15) and
splitting the augmented Lagrangian function L

[3]
β

(x,y,z,λ ) in (4.4) three times by the Gauss-
Seidel manner. That is, consider the scheme

xk+1 ∈ argmin
{
L

[3]
β

(x,yk,zk,λ k) | x ∈X
}
,

yk+1 ∈ argmin
{
L

[3]
β

(xk+1,y,zk,λ k) | y ∈ Y
}
,

zk+1 ∈ argmin
{
L

[3]
β

(xk+1,yk+1,z,λ k) | z ∈Z
}
,

λ k+1 = λ k−
(
Axk+1 +Byk+1 +Czk+1−b

)
.

(4.5)

However, the splitting scheme (4.5) is coarse in sense of that its convergence is not guaranteed
as shown in [3]. Thus, to render convergence, either the scheme (4.5) should be appropriately
adjusted or stronger conditions on functions/coefficient matrices/penalty parameters should be
additionally assumed. To develop algorithms at the root of the ADMM (2.15), we can consider
correcting the output of (4.5) by certain correction steps as what we did in [16, 17, 18, 22].
Below we show how to apply the construction strategies in Section 3 to generate splitting con-
traction algorithms by taking advantage of the coarse splitting scheme (4.5).

4.2. Discerning the prediction matrix Q. Our construction starts from the coarse splitting
scheme (4.5) which can be rewritten as the prediction step (2.5) and hence the corresponding
prediction matrix Q can be discerned. For this purpose, we first consider the subproblems
related to the primal variables in (4.5), and rewrite them as ũk = (x̃k, ỹk, z̃k) ∈X ×Y ×Z .
Namely, we have 

x̃k ∈ argmin
{
L

[3]
β

(x,yk,zk,λ k) | x ∈X
}
,

ỹk ∈ argmin
{
L

[3]
β

(x̃k,y,zk,λ k) | y ∈ Y
}
,

z̃k ∈ argmin
{
L

[3]
β

(x̃k, ỹk,z,λ k) | z ∈Z
}
.

(4.6)

Ignoring some constant terms, we can rewrite the formula above as
x̃k ∈ argmin

{
θ1(x)− xT AT λ k + β

2 ‖Ax+Byk +Czk−b‖2 | x ∈X
}
,

ỹk ∈ argmin
{

θ2(y)− yT BT λ k + β

2 ‖Ax̃k +By+Czk−b‖2 | y ∈ Y
}
,

z̃k ∈ argmin
{

θ3(z)− zTCT λ k + β

2 ‖Ax̃k +Bỹk +Cz−b‖2 | z ∈Z
}
.

(4.7)
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Then, according to Lemma 2.3, we have ũk ∈U and

θ1(x)−θ1(x̃k)+(x− x̃k)T{−AT λ k

+βAT(Ax̃k +Byk +Czk−b
)}
≥ 0, ∀x ∈X ,

θ2(y)−θ2(ỹk)+(y− ỹk)T{−BT λ k

+βBT(Ax̃k +Bỹk +Czk−b
)}
≥ 0, ∀y ∈ Y ,

θ3(z)−θ3(z̃k)+(z− z̃k)T{−CT λ k

+βCT(Ax̃k +Bỹk +Cz̃k−b
)}
≥ 0, ∀z ∈Z .

(4.8)

Defining

λ̃
k = λ

k−β
(
Ax̃k +Byk +Czk−b

)
, (4.9)

and using the VI form (4.3), we have w̃k ∈Ω and

θ1(x)−θ1(x̃k)+(x− x̃k)T{−AT λ̃ k}≥ 0, ∀x ∈X ,

θ2(y)−θ2(ỹk)+(y− ỹk)T{−BT λ̃ k +βBTB(ỹk− yk)
}
≥ 0, ∀y ∈ Y ,

θ3(z)−θ3(z̃k)+(z− z̃k)T

{
−CT λ̃ k +βCTB(ỹk− yk)

βCTC(z̃k− zk)

}
≥ 0, ∀z ∈Z ,

(λ − λ̃ k)T

{
(Ax̃k +Bỹk +Cz̃k−b)

−B(ỹk− yk)−C(z̃k− zk)+
1
β
(λ̃ k−λ k)

}
≥ 0, ∀λ ∈ Λ.

(4.10)

The sum of the underline parts of (4.10) is exactly F(w̃k), where F(·) is defined in (4.3). Thus,
we have

w̃k ∈Ω, θ(u)−θ(ũk)+(w− w̃k)T F(w̃k)≥ (v− ṽk)T Q(vk− ṽk), ∀w ∈Ω, (4.11)

where the prediction matrix is

Q =


βBT B 0 0
βCT B βCTC 0

−B −C
1
β

Im

 . (4.12)

Moreover, for the prediction matrix Q in (4.12) which is determined by the coarse splitting
scheme (4.5), we have

QT +Q =

 2βBTB βBTC −BT

βCTB 2βCTC −CT

−B −C 2
β

Im

 , (4.13)

which is positive definite whenever B and C are full column rank.

4.3. Constructing the correction matrix M. With the prediction matrix Q given in (4.12),
the prediction-correction framework (2.5)-(2.6) can be specified as a concrete algorithm for the
model (4.1) once the correction step (2.6) is specified. Now, we showcase how to specify the
correction step (2.6) by the construction strategies discussed in Sections 3.1, 3.2 and 3.3. Note
that v = (y,z,λ ) below.
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4.3.1. Construction 1. Based on (4.12) and (4.13), and following the strategy in Section 3.1,
we can choose

D =


νβBTB 0 0

0 νβCTC 0

0 0
1
β

Im

 (4.14)

with 0 < ν < 1, which is positive definite whenever B and C are both full column rank. Recall
the correction matrix M in (3.3). Then, a concrete splitting contraction algorithm for (4.1) can
be generated as below.

Algorithm 1 for the model (4.1)
[Prediction Step.] Obtain (x̃k, ỹk, z̃k) via the direct extension of the ADMM (4.6) and

define λ̃ k by (4.9).
[Correction Step.] QT (vk+1− vk) = D(ṽk− vk).

For the correction step QT (vk+1− vk) = D(ṽk− vk), we know that

QT =

 βBTB βBTC −BT

0 βCTC −CT

0 0 1
β

Im

=

 βBT 0 0
0 βCT 0
0 0 1

β
Im


 B C − 1

β
Im

0 C − 1
β

Im

0 0 Im

,

and

D =

 νβBTB 0 0
0 νβCTC 0
0 0 1

β
Im

=

 βBT 0 0
0 βCT 0
0 0 1

β
Im

 νB 0 0
0 νC 0
0 0 Im

.

That is, QT and D have a common matrix in their factorization forms above. Hence, to im-
plement the correction step (2.6), i.e., QT (vk+1− vk) = D(ṽk− vk), essentially we only need to
consider the even easier equation B C − 1

β
Im

0 C − 1
β

Im

0 0 Im


 yk+1− yk

zk+1− zk

λ k+1−λ k

=

 νB 0 0
0 νC 0
0 0 Im

 ỹk− yk

z̃k− zk

λ̃ k−λ k

 . (4.16)

Moreover, iterations of the specified Algorithm 1 can be executed in terms of (Byk,Czk,λ k)
because it is sufficient to keep Byk and Czk, rather than yk and zk, to execute the (k + 1)-th
iteration. The variables yk and zk need to be solved once only at the last iteration. Hence,
with the choice of D in (4.14), implementing the resulting correction step (2.6) essentially only
requires solving the equation (4.16) in terms of (Byk,Czk,λ k) , which is extremely easy.

4.3.2. Construction 2. Based on (4.12) and (4.13), and following the strategy in Section 3.2,
we can choose

G =

 νβBTB 0 0
0 νβCTC 0
0 0 1

β
Im

 , (4.17)

with ν ∈ (0,1), which can be guaranteed to be positive definite whenever B and C are full
column rank. Note that the matrix G in (4.17) is precisely the matrix D defined in (4.14).
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Furthermore, we have

∆ = QT +Q−G =

 (2−ν)βBTB βBTC −BT

βCT B (2−ν)βCTC −CT

−B −C 1
β

Im

 .

Recall the correction matrix M in (3.10). Then, another contraction splitting algorithm for (4.1)
can be generated as below.

Algorithm 2 for the model (4.1)
[Prediction Step.] Obtain (x̃k, ỹk, z̃k) via the direct extension of the ADMM (4.6) and

define λ̃ k by (4.9).
[Correction Step.] QT (vk+1− vk) = ∆(ṽk− vk).

For the correction step QT (vk+1− vk) = ∆(ṽk− vk), we know that

QT =

 βBTB βBTC −BT

0 βCTC −CT

0 0 1
β

Im

=

 βBT 0 0
0 βCT 0
0 0 1

β
Im


 B C − 1

β
Im

0 C − 1
β

Im

0 0 Im

,

and

∆ =

 (2−ν)βBTB βBTC −BT

βCT B (2−ν)βCTC −CT

−B −C 1
β

Im


=

 βBT 0 0
0 βCT 0
0 0 1

β
Im


 (2−ν)B C − 1

β
Im

B (2−ν)C − 1
β

Im

−βB −βC Im

.

That is, QT and ∆ have a common matrix in their factorization forms above. Hence, to im-
plement the correction step (2.6), i.e., QT (vk+1− vk) = ∆(ṽk− vk), essentially we only need to
consider the even easier equation B C − 1

β
Im

0 C − 1
β

Im

0 0 Im


 yk+1− yk

zk+1− zk

λ k+1−λ k

=

 (2−ν)B C − 1
β

Im

B (2−ν)C − 1
β

Im

−βB −βC Im


 ỹk− yk

z̃k− zk

λ̃ k−λ k

 .

(4.19)
Similar as (4.16), with the choice of G in (4.17), implementing the resulting correction step
(2.6) essentially only requires solving the equation (4.19) in terms of (Byk,Czk,λ k), which is
extremely easy.

4.3.3. Construction 3. Recall the relationship between the matrices D and G in (3.11), and
QT +Q given in (4.13). Essentially, the proposed construction strategies in Sections 3.1 and 3.2
take the same matrix  νβBTB 0 0

0 νβCTC 0
0 0 1

β
Im
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as D and G, respectively, and then the other one is determined by (3.11). As mentioned in
Section 3.3, any other choice of D and G subject to the relationship (3.11) is also eligible. Let
us consider the following specific one:

D = G =
1
2
[
QT +Q

]
=

 βBTB 1
2βBTC −1

2BT

1
2βCTB βCTC −1

2CT

−1
2B 1

2 −C
β

Im

 , (4.20)

which are both positive definite whenever B and C are full column rank. Recall the correction
matrix M in (3.10). Then, one more contraction splitting algorithm for (4.1) can be generated
as below.
Algorithm 3 for the model (4.1)
[Prediction Step.] Obtain (x̃k, ỹk, z̃k) via the direct extension of the ADMM (4.6) and

define λ̃ k by (4.9).
[Correction Step.] QT (vk+1− vk) = 1

2 [Q
T +Q](ṽk− vk).

For the correction step QT (vk+1− vk) = 1
2 [Q

T +Q](ṽk− vk), we know that

QT =

 βBTB βBTC −BT

0 βCTC −CT

0 0 1
β

Im

=

 βBT 0 0
0 βCT 0
0 0 1

β
Im


 B C − 1

β
Im

0 C − 1
β

Im

0 0 Im

,

and

1
2
[QT +Q] =

 βBTB 1
2βBTC −1

2BT

1
2βCTB βCTC −1

2CT

−1
2B 1

2 −C 1
β

Im

=

 βBT 0 0
0 βCT 0
0 0 1

β
Im


 B 1

2C − 1
2β

Im
1
2B C − 1

2β
Im

−1
2βB −1

2βC Im

 .

That is, QT and 1
2 [Q

T +Q] have a common matrix in their factorization forms above. Hence,
to implement the correction step (2.6), i.e., QT (vk+1−vk) = 1

2 [Q
T +Q](ṽk−vk), essentially we

only need to consider the even easier equation B C − 1
β

Im

0 C − 1
β

Im

0 0 Im


 yk+1− yk

zk+1− zk

λ k+1−λ k

=

 B 1
2C − 1

2β
Im

1
2B C − 1

2β
Im

−1
2βB −1

2βC Im


 ỹk− yk

z̃k− zk

λ̃ k−λ k

 . (4.22)

Similar as (4.16) and (4.19), implementing the resulting correction step (2.6) essentially only
requires solving the equation (4.22) in terms of (Byk,Czk,λ k), which is extremely easy.

4.3.4. Summary. We have discussed three concrete strategies for constructing ADMM-based
splitting contraction algorithms for the model (4.1), with the same prediction step determined
by the coarse splitting scheme (4.6) with (4.9). These three strategies differ in how to choose
the matrices D and G subject to (3.11); accordingly specifications of the correction step (2.6)
are different. It is easy to verify that Algorithm 1 corresponds to the algorithm proposed in
[16]. Certainly, any other choice of D and G in accordance with (3.11) leads to another splitting
contraction algorithm for the model (4.1) whose prediction step remains unchanged as that in
Algorithms 1-3, while there are infinitely many such choices.
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5. APPLICATION TO MULTIPLE BLOCK SEPARABLE CONVEX OPTIMIZATION

In this section, we extend the analysis in Section 4 to more general and complicated convex
programming problems. We recall a recent work of ours [18], and will show that more new
algorithms with similar advantages as those in [18] can be presented by following the proposed
constructions strategies in Section 3.

5.1. Model. We consider the generic multiple block convex programming problem with both
linear equality and inequality constraints:

min
{ p

∑
i=1

θi(xi)
∣∣ p

∑
i=1

Aixi = b (or≥ b), xi ∈Xi

}
, (5.1)

where θi : ℜni → ℜ (i = 1, . . . , p) are closed, proper, and convex but not necessarily smooth
functions; Xi ⊆ ℜni (i = 1, . . . , p) are closed convex sets; Ai ∈ ℜm×ni (i = 1, . . . , p) are given
matrices; b ∈ℜm; ∑

p
i=1 ni = n; and p≥ 3. Note that the more general model (5.1) differs from

the special three-block separable convex programming problem (4.1) in that p≥ 3 and that both
linear equality and inequalities are considered.

Let the Lagrangian function of (5.1) be

L(x1, . . . ,xp,λ ) =
p

∑
i=1

θi(xi)−λ
T
( p

∑
i=1

Aixi−b
)
, (5.2)

with λ the Lagrange multiplier. We know that λ ∈ℜm or λ ∈ℜm
+ if ∑

p
i=1 Aixi = b or ∑

p
i=1 Aixi≥

b is considered in the model (5.1), respectively. The optimality condition of (5.1) can be written
as the VI (2.3)-(2.4) with the following specifications:

w∗ ∈Ω, θ(x)−θ(x∗)+(w−w∗)T F(w∗)≥ 0, ∀w ∈Ω, (5.3a)

where

w =


x1
...

xp

λ

 , x =

 x1
...

xp

 , θ(x) =
p

∑
i=1

θi(xi), F(w) =


−AT

1 λ

...
−AT

p λ

∑
p
i=1 Aixi−b

 , (5.3b)

and

Ω =
p

∏
i=1

Xi×Λ with Λ =

{
ℜm, if ∑

p
i=1 Aixi = b,

ℜm
+, if ∑

p
i=1 Aixi ≥ b.

5.2. Discerning the prediction matrix Q. To design an algorithm for (5.1), it is natural to con-
sider extending the ADMM (2.15) and splitting the augmented Lagrangian function L(x1, . . . ,xp,λ )
in (5.2) to obtain easier subproblems. In [18], two different ways were suggested and the result-
ing subproblems were used as prediction steps for the prediction-correction framework (2.5)-
(2.6) . We recall these results; accordingly the prediction matrix Q becomes clear.
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5.2.1. Primal-dual order. We first consider splitting the augmented Lagrangian function L(x1, . . . ,xp,λ )
in the primal-dual order, and thus obtain the following scheme similar as (4.5):

x̃k
1 ∈ argmin

{
θ1(x1)− xT

1 AT
1 λ k + β

2 ‖A1(x1− xk
1)‖2 | x1 ∈X1

}
;

x̃k
2 ∈ argmin

{
θ2(x2)− xT

2 AT
2 λ k + β

2 ‖A1(x̃k
1− xk

1)+A2(x2− xk
2)‖2 | x2 ∈X2

}
;

...
x̃k

i ∈ argmin
{

θi(xi)− xT
i AT

i λ k + β

2 ‖∑
i−1
j=1 A j(x̃k

j− xk
j)+Ai(xi− xk

i )‖2 | xi ∈Xi
}

;
...

x̃k
p ∈ argmin

{
θp(xp)− xT

p AT
p λ k + β

2 ‖∑
p−1
j=1 A j(x̃k

j− xk
j)+Ap(xp− xk

p)‖2 | xp ∈Xp
}

;

λ̃ k = argmax
{
−λ T(

∑
p
j=1 A jx̃k

j−b
)
− 1

2β
‖λ −λ k‖2 | λ ∈ Λ

}
.

(5.4)
Note that linear inequalities are considered in the model (5.1). Hence, updating the Lagrange
multiplier λ in (5.4) involves the constraint Λ. For the same reason in [3], the coarse splitting
scheme (5.4) has no guaranteed convergence, but it can be used as a starting point to design
a splitting contraction algorithm with provable convergence. As analyzed in [18], the coarse
splitting scheme (5.4) can be rewritten as

w̃k ∈Ω, θ(x)−θ(x̃k)+(w− w̃k)T F(w̃k)≥ (w− w̃k)T QPD(w
k− w̃k), ∀w ∈Ω, (5.5a)

where

QPD =



βAT
1 A1 0 · · · 0 AT

1

βAT
2 A1 βAT

2 A2
. . . ... AT

2

... . . . 0
...

βAT
p A1 βAT

p A2 · · · βAT
p Ap AT

p

0 0 · · · 0 1
β

Im


, (5.5b)

which is in form of the prediction step (2.5) with the prediction matrix QPD . It is easy to see that
the matrix QT

PD
+QPD is positive definite if all Ai’s are full column rank.

To simplify the notation, let us further denote

P =



√
βA1 0 · · · · · · 0

0
√

βA2
. . . ...

... . . . . . . . . . ...

... . . .
√

βAp 0
0 · · · · · · 0 1√

β
Im


, ξ = Pw =



√
βA1x1√
βA2x2

...√
βApxp
1√
β

λ


; (5.6)

and also

Ξ =
{

ξ | ξ = Pw, w ∈Ω
}

and Ξ
∗ =

{
ξ
∗ | ξ ∗ = Pw∗, w∗ ∈Ω

∗}.
Then, with P and ξ in (5.6), we can rewrite the VI (5.5a)-(5.5b) as

θ(x)−θ(x̃k)+(w− w̃k)T F(w̃k)≥ (ξ − ξ̃
k)T QPD(ξ

k− ξ̃
k), ∀w ∈Ω, (5.7)
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where

QPD = PT QPDP with QPD =



Im 0 · · · 0 Im

Im Im
. . . ... Im

... . . . 0
...

Im Im · · · Im Im

0 0 · · · 0 Im


. (5.8)

5.2.2. Dual-primal order. In (5.4), the primal variables are solved first, followed by the dual
variable. We can alternatively update the dual variable first. That is, we can consider the
following scheme which updates the variables in the dual-primal order:



λ̃ k = argmax
{
−λ T(

∑
p
j=1 A jxk

j−b
)
− 1

2β
‖λ −λ k‖2 | λ ∈ Λ

}
;

x̃k
1 ∈ argmin

{
θ1(x1)− xT

1 AT
1 λ̃ k + β

2 ‖A1(x1− xk
1)‖2 | x1 ∈X1

}
;

x̃k
2 ∈ argmin

{
θ2(x2)− xT

2 AT
2 λ̃ k + β

2 ‖A1(x̃k
1− xk

1)+A2(x2− xk
2)‖2 | x2 ∈X2

}
;

...
x̃k

i ∈ argmin
{

θi(xi)− xT
i AT

i λ̃ k + β

2 ‖∑
i−1
j=1 A j(x̃k

j− xk
j)+Ai(xi− xk

i )‖2 | xi ∈Xi
}

;
...

x̃k
p ∈ argmin

{
θp(xp)− xT

p AT
p λ̃ k + β

2 ‖∑
p−1
j=1 A j(x̃k

j− xk
j)+Ap(xp− xk

p)‖2 | xp ∈Xp
}
.
(5.9)

Similarly as (5.4), the coarse splitting scheme (5.9) has no guaranteed convergence, but it can
be used as a starting point to design a splitting contraction algorithm with provable convergece.
As analyzed in [18], the scheme (5.9) can be rewritten as

w̃k ∈Ω, θ(x)−θ(x̃k)+(w− w̃k)T F(w̃k)≥ (w− w̃k)T QDP(w
k− w̃k), ∀ w ∈Ω, (5.10a)

where

QDP =



βAT
1 A1 0 · · · 0 0

βAT
2 A1 βAT

2 A2
. . . ... 0

... . . . 0
...

βAT
p A1 βAT

p A2 · · · βAT
p Ap 0

−A1 −A2 · · · −Ap
1
β

Im


. (5.10b)

It is easy to see that the matrix QT
DP
+QDP is positive definite if all Ai’s are full column rank.

Also, using P and ξ in (5.6), we can rewrite the VI (5.10a)-(5.10b) as

w̃k ∈Ω, θ(x)−θ(x̃k)+(w− w̃k)T F(w̃k)≥ (ξ − ξ̃
k)T QDP(ξ

k− ξ̃
k), ∀w ∈Ω. (5.11)
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where

QDP = PT QDPP with QDP =



Im 0 · · · 0 0

Im Im
. . . ... 0

... . . . 0
...

Im Im · · · Im 0
−Im −Im · · · −Im Im


. (5.12)

5.3. Representation of the prediction-correction framework (2.5)-(2.6) and convergence
conditions (2.7). To show splitting contraction algorithms for the model (5.1) more clearly, we
can rewrite the prediction-correction framework (2.5)-(2.6) and convergence conditions (2.7) in
the context of the VI (5.3a)-(5.3b) with the notation P and ξ in (5.6).

Prediction-correction framework for the VI (5.3a)-(5.3b)
[Prediction Step.] With given ξ k = Pwk, find w̃k ∈Ω such that

w̃k ∈Ω, θ(x)−θ(x̃k)+(w− w̃k)T F(w̃k)≥ (ξ − ξ̃
k)T Q(ξ k− ξ̃

k), ∀w ∈Ω, (5.13a)

where the matrix Q ∈ℜ(p+1)m×(p+1)m is not necessarily symmetric but the matrix QT +Q
is assumed to be positive definite.
[Correction Step.] Find a nonsingular matrix M and update ξ by

ξ
k+1 = ξ

k−M (ξ k− ξ̃
k). (5.13b)

Convergence conditions
For the matrices Q and M used in (5.13a) and (5.13b), respectively, there exists a matrix
H � 0 such that

H M = Q, (5.14a)
and

G := QT +Q−M T H M � 0. (5.14b)

Obviously, the VIs (5.7) and (5.11) are specific cases of (5.13a), whose corresponding pre-
diction matrices are QPD in (5.8) and QDP in (5.12), respectively.

5.4. Specifications of splitting contraction algorithms. Now, we focus on specifying the cor-
rection matrix M in (5.13b) with QPD in (5.8) and QDP in (5.12). We will show that the algo-
rithms in [18] can be recovered, while more new algorithms can be designed easily by our
proposed construction strategies. With QPD and QDP , their associated correction matrices are
denoted by MPD and MDP , and GPD and GDP , respectively.

5.4.1. Some matrices. To further simplify the notation to be used, we define the following p× p
block matrices:

L =


Im 0 · · · 0

Im Im
. . . ...

... . . . 0
Im Im · · · Im

 and I =


Im 0 · · · 0

0 Im
. . . ...

... . . . . . . 0
0 · · · 0 Im

 . (5.15)
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We also define the 1× p block matrix

E =
(

Im Im · · · Im
)
. (5.16)

It is cleat that

L T +L = I +E T E . (5.17)

Furthermore, the matrix QPD in (5.8) has the form

QPD =

(
L E T

0 Im

)
and thus QT

PD
+QPD =

(
I +E T E E T

E 2Im

)
.

Similarly, the matrix QDP in (5.12) has the form

QDP =

(
L 0
−E Im

)
and thus QT

DP
+QDP =

(
I +E T E −E T

−E 2Im

)
.

To further analyze the correction steps associated with the correction matrices MPD and MDP ,
let us take a closer look at the matrices Q−T

PD
and Q−T

DP
. Indeed, we have

Q−T
PD

=

(
L T 0
E Im

)−1

=

(
L −T 0
−E L −T Im

)
. (5.18)

and

Q−T
DP

=

(
L T −E T

0 Im

)−1

=

(
L −T L −T E T

0 Im

)
. (5.19)

Recall the respective definitions L and E in (5.15) and (5.16). We have

L −T =


Im −Im 0 0

0 Im
. . . 0

... . . . . . . −Im

0 · · · 0 Im

 (5.20)

and

E L −T =
(

Im 0 · · · 0
)

and L −T E T =


0
...
0
Im

 . (5.21)

Hence, the matrices Q−T
PD

in (5.18) and Q−T
DP

in (5.19) are both very simple in structure; their
entries only consist of blocks of Im, −Im and 0.
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5.4.2. MPD for the primal-dual prediction (5.4). With (5.4) as the prediction step, the predic-
tion matrix QPD is given in (5.8). To construct the corresponding correction matrix MPD , for
example, we can choose

DPD =

(
νI 0

0 Im

)
, (5.22)

with any ν ∈ (0,1). Recall (3.11). Thus, (5.22) also means

GPD := (QT
PD
+QPD)−DPD =

(
(1−ν)I +E T E E T

E Im

)
.

It is clear that both the matrices DPD and GPD are positive definite. According to (3.3), (5.18)
and (5.22), the correction matrix MPD can be constructed as

MPD = Q−T
PD

DPD =

(
L −T 0
−E L −T Im

)(
νI 0

0 Im

)
=

(
νL −T 0

−νE L −T Im

)
. (5.23)

This coincides with the correction step in Section 7 of [18]. Recall (5.20) and (5.21). We know
that the correction step (5.13b) with the correction matrix MPD defined in (5.23) is extremely
easy to be implemented. Hence, the implementation of the specified splitting contraction algo-
rithm mainly needs to solve the splitting xi-subproblems in (5.4).

5.4.3. MDP for the dual-primal prediction (5.9). With (5.9) as the prediction step, the predic-
tion matrix QDP is given in (5.12). To construct the correction matrix MDP , for example, we
can choose

DDP =

(
νI +E T E −E T

−E Im

)
(5.24)

with ν ∈ (0,1). Recall (3.11). Thus, (5.24) also means

GDP := (QT
DP
+QDP)−DDP =

(
νE 0
0 Im

)
.

It is clear that both the matrices DDP and GDP are positive definite. According to (3.3), (5.19)
and (5.24), the correction matrix MDP can be constructed by

MDP = Q−T
DP

DDP =

(
L −T L −T E T

0 Im

)(
νI +E T E −E T

−E Im

)
=

(
νL −T 0

−E Im

)
.

(5.25)
This coincides with the correction step in Section 8 of [18]. Recall (5.20) and (5.21). We
know that the correction step (5.13b) with the correction matrix MDP defined in (5.25) is also
extremely easy to be implemented. Hence, the implementation of the specified splitting con-
traction algorithm mainly needs to solve the splitting xi-subproblems in (5.9).
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5.4.4. More choices. To specify the prediction-correction framework (5.13) and ensure the con-
vergence conditions (5.14) with a given Q satisfying QT +Q � 0, like (3.11), the matrices D
and G can be chosen with the only restriction

D � 0, G � 0, and D +G = QT +Q. (5.26)

Hence, there are infinitely many ways to construct H and M with the given prediction matrix
QPD in (5.8) or QDP in (5.12). For instance, we can choose GPD and GDP , instead of DPD and DDP ,
as the matrices defined in (5.22) and (5.24), respectively; or we can choose

D = α
[
QT +Q

]
and G = (1−α)

[
QT +Q

]
, α ∈ (0,1).

All these choices lead to new splitting contraction algorithms for the model (5.1) with provable
convergence that are not covered in [18].

Finally, we would emphasize that, as shown in (5.18)-(5.21), Q−T
PD

and Q−T
DP

are both very
simple in structure, and they do not cause too much additional computation for constructing
the correction matrix via MPD = Q−T

PD
DPD (see (5.23)) or MDP = Q−T

DP
DDP (see (5.25)). This

advantage makes it practical and adaptable to choose more application-tailored DPD and DDP for
specific applications of the model (5.1).

6. CONCLUSIONS

We revisited a unified framework for algorithmic design and convergence analysis that can
capture a series of our previous works of desiging/analyzing splitting contraction algorithms for
separable convex programming problems, and provided some construction strategies to specify
this unified framework. By the proposed strategies, once a matrix (e.g., D or G as mentioned) is
chosen, a splitting contraction algorithm with provable convergence can be automatically gen-
erated. There are many specification strategies, and the flexibility of choosing such a matrix en-
ables us to design model-tailored/application-tailored splitting contraction algorithms with easy
subproblems conveniently. We illustrated how to apply this construction principle to gener-
ate easily implementable ADMM-based algorithms for separable convex programming models
with linear constraints. The same methodology can be applied to improve some other algorithms
with theoretical or numerical disadvantages for other optimization problems.
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