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SHAPE CALCULUS FOR FITTED AND UNFITTED DISCRETIZATIONS:
DOMAIN TRANSFORMATIONS VS. BOUNDARY-FACE DILATIONS
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Abstract. Shape calculus concerns the calculation of directional derivatives of some quantity of interest, typically
expressed as an integral. This article introduces a type of shape calculus based on localized dilation of boundary
faces through perturbations of a level-set function. The calculus is tailored for shape optimization problems where
a partial differential equation is numerically solved using a fictitious-domain method. That is, the boundary of a
domain is allowed to cut arbitrarily through a computational mesh, which is held fixed throughout the computations.
Directional derivatives of a volume or surface integral using the new shape calculus yield purely boundary-supported
expressions, and the involved integrands are only required to be element-wise smooth. However, due to this low
regularity, only one-sided differentiability can be guaranteed in general. The dilation concept introduced here
differs from the standard approach to shape calculus, which is based on domain transformations. The use of
domain transformations is closely linked the the use of traditional body-fitted discretization approaches, where the
computational mesh is deformed to conform to the changing domain shape. The directional derivatives coming
out of a shape calculus using deforming meshes under domain transformations are different then the ones from
the boundary-dilation approach using fixed meshes; the former are not purely boundary supported but contain
information also from the interior.
Keywords. Shape optimization; Shape calculus; Sensitivity analysis; Finite element methods; Fictitious domain
methods; CutFEM; XFEM
2020 Mathematics Subject Classification. 49M41, 65K10, 65N85.

1. Introduction

Gradient-based shape optimization is a powerful tool for engineering design, as it enables
algorithmic exploration of larger design spaces than is possible by manual parameter studies.
Gradient-based techniques are particularly effective for cases when there is only a small number
of quantities of interest but a very large number of design variables, since by employing the
adjoint-variable technique, the calculation time will essentially be independent of the number of
design variables for any fixed discretization level.
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When considering gradient-based shape optimization for a particular problem, a central part is
the shape calculus (or the shape sensitivity analysis), the calculation of directional derivatives
of the quantities of interest — objective functions and constraints — with respect to the design
variables. These directional derivatives are then used to define the gradients needed by the
optimization algorithm. Conceptually, shape calculus relies on a calculus of variation with respect
to boundary modifications, and methods on how to carry out such calculations are very well
established by now; standard references are the extensive monographs by Delfour & Zolésio [9]
and Sokolowski & Zolésio [20].
As his graduate student in the early 1990s, Roland Glowinski taught me how to carry out

sensitivity analysis for various control problem associated with partial differential equations. He
pointed out the need for accuracy in such calculations. In particular, he strongly promoted the idea
of carrying out the calculations from scratch in the fully discrete case, so that the final expression
will be the exact directional derivative, up to round-off, of the discrete objective function; the
argument is that otherwise it will be impossible to guarantee convergence of the iterations in
optimization algorithms of descent type. This approach is known as the “discrete approach,”
or “discretize-then-differentiate.” Glowinski & He [12] provide an example of non-convergence
when such a scheme is not followed.

My experience in carrying out shape optimization, in particular for wave-propagation prob-
lems [2, 22] (e.g.), supports the benefits of the fully discrete shape calculus approach to achieve a
robust performance of the optimization algorithm. However, when a mesh deformation algorithm
is used to modify the location of interior mesh nodes with respect to a reshaped boundary, the
dependency on this algorithm is a complication with the fully discrete approach. The exact
directional derivative will depend on the “mesh sensitivities,” that is, on the mapping between
the displacements of the boundary and internal nodes as well as on the Jacobian transpose of
this mapping [3, § 3.2]. This complication introduces at the very least a software dependency
between tools that may be more convenient to keep separated.
A simpler approach from an implementation point of view is to use directional-derivative

expressions involving only boundary quantities, coming from an analysis of the problem before
discretization. This approach is known as the “continuous approach” or “differentiate-then-
discretize” and ignores the dependency on the mesh deformation algorithm. In spite of my own
preferences, I have to admit to have accepted this approach in a full 3D case to simplify the
implementation [18]; we obtained good results in this case, but I believe that a fully discrete
approach is still to be preferred, if possible.

Backing away from these well-established concepts in order to take a fresh look at the subject;
what is the basic reason for the occurrence of these varying directional-derivative expressions? I
believe it goes all the way back to the decision how to treat geometry as a variable with respect to
which differentiation is carried out. The standard, universally used approach, covered for instance
in the above mentioned monographs [9, 20], is build on domain transformations, analogous to
how the mechanics of continuous media is handled. It is so universally accepted that it is easy to
forget that the use of transformations is a choice! Using domain transformations, an integral over
a modified geometry can be transformed back to the unmodified geometry, which means that
the parameters of the transformation will appear in the integrand. Then, ordinary differential
calculus can be applied to the transformed integrand.
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The classical approach to shape calculus using domain transformation is particularly well
suited to traditional numerical methods using body-fitted meshes, since domain transformations
are also useful to modify the interior mesh in order to preserve mesh quality. However, mesh
deformation algorithms are an annoyance in themselves. The algorithms can have robustness
issues, particularly in three space dimensions, and large changes in the domain shape will generally
require remeshing, adding an extra layer of complexity. For shape optimization, it is therefore of
interest to consider fictitious-domain methods, in which the domain Ω of interest is embedded in
a fixed hold-all domain D. No mesh deformations or remeshings are then needed; instead of
fitting the mesh to the domain, the fictitious-domain methods instead restrict the computations
to Ω and assign boundary conditions on ∂Ω, which will be an interior boundary in D. Roland
Glowinski was a noted contributor to the development of fictitious-domain methods [13, 14]
(e.g.), and there have been a recent reemergent interest in a class of fictitious-domain methods
known as CutFEM or XFEM [7]. We have demonstrated the effectiveness of the CutFEM
for acoustic shape optimization [4, 5], and we also discovered some striking differences with
respect to the use of mesh-deformation techniques, to be expanded on in this article. A first
observation is that the domain-transformation approach to the treatment of geometry changes
is not natural for fictitious-domain methods, since domain changes are then effectuated just by
moving the boundary over a fixed background mesh. It is possible to artificially introduce a
domain transformation, which is what we did [4, 5], but since the mesh is fixed, the transformation
should be localized just around the mesh elements crossing the boundary in order to reflect what
really happens in the computations.
The purpose of the current contribution is to introduce a shape calculus approach that is

conceptually different from the domain-transformation idea, namely an approach built on localized
dilations of boundary faces. The idea, introduced in § 5.2, constitutes a generalization of what
is here called Delfour dilations. Delfour [10] introduced the concept of domain perturbations
generated by dilations of lower-dimensional objects into Euclidean space. For instance, the
dilation of a point can be used to generate a domain perforated by a ball, and the dilation of
a curve to generate a domain perforated by a curved rod. Of interest here is dilations of the
boundary of a bounded domain. As demonstrated by Delfour, this dilation can be used to define
a shape derivative with respect to a uniform extension or contraction of the domain. Here we
generalize this approach and apply it in the discretized case to localized dilations effectuated by a
perturbation of a level-set function. The use of a level-set function to specify the geometry is a
standard and attractive approach in shape optimization, which is why the current contribution
could serve as a tool box for shape calculus in the context of fictitious-domain methods using
level-set geometry descriptions.
In a recent article, Gangl and Gfrerer [11] also extend the Delfour dilations using, as here,

perturbations of a level-set function in the discretized case. Their aim is to unify the topological
and shape derivative into an object they call the topological–shape derivative. Gangl and
Gfrerer’s contribution is complementary to what is presented here. A main focus here is on
the general directional-derivative expressions in Theorems 6.7 and 6.11, valid in both 2 and 3
dimensions, with minimal regularity requirements on the integrands. In contrast, Gangl and
Gfrerer’s main focus is on the interesting concept of defining a combined topological–shape
derivative, which they apply to a 2-dimensional tracking-type model problem in order to work
out detailed derivative expressions on the matrix–vector level.
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To highlight the contrast of the approach introduced here to the traditional approach, the
standard shape calculus using domain transformations is reviewed in § 4. The analysis is applied
to the simple model shape optimization problem introduced in § 2. In particular, we highlight the
different directional derivative expressions that are obtained for the problem before and after
discretization when deforming meshes are used. In contrast, § 5.4 shows that the fully discrete
shape derivative is much simpler when a fictitious-domain method with a fixed mesh is used, and
the final expression agrees more closely with the simple boundary expression for the directional
derivative before discretization.

This article constitutes a kind of continuation of contribution [3], published in the proceedings
of the conference arranged on the occasion of Roland Glowinski’s 70th birthday. The previous
article presented a unified shape calculus for the cases before and after discretization when
domain transformations are employed. It showed that the exact directional derivative in the
discrete case when mesh deformations are used cannot avoid the changes in mesh and solutions
taking place inside the domain. It also highlighted which terms that will be ignored when
using the simpler boundary integral expression coming from the “differentiate-than-discretize”
approach. In contrast, the present contribution shows that the directional derivatives when using
fictitious-domain methods and fixed meshes can be expressed as boundary expressions, a result
that even more increases the attractiveness of such methods for shape optimization.
The proofs of the shape calculus formulas for surface dilations, although conceptually not

difficult, are unfortunately quite long and somewhat tedious. To ease the exposition for readers
more interested in the big picture and the resulting formulas, these proofs are collected in a
separate § 6.

2. A model shape optimization problem

As a model problem to illustrate the differences between the shape calculus for various cases,
we consider compliance minimization for the following Poisson problem,

−∆u = r in Ω,
u = 0 on ΓD,

αu +
∂u
∂n
= 0 on ΓR,

(2.1)

where Ω is an open, bounded, and connected domain in Rd (d = 2 or 3), r ∈ H1(Rd) is a given
function, α ≥ 0 a constant, and the domain boundary ∂Ω comprises the nonoverlapping parts ΓD
and ΓR, both of positive d − 1-dimensional measure.

The objective function is

J(Ω) =
∫
Ω

ru dV, (2.2)

and the optimization problem is to find the shape of the domain Ω that minimizes J, typically
subject to constraints such as a bound on the volume of Ω. Well-posedness of this problem
requires some regularization scheme such as a suitable restriction on the class of admissible
domains. However, here our interest will only be the shape calculus with respect to changes in Ω
effectuated either by domain transformations (§ 4) or by dilations (§ 5).

Remark 2.1. The name “compliance minimization” is borrowed from structural mechanics.
In the corresponding problem for linear elasticity, the objective function corresponds to the
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mechanical compliance of the structure, or, equivalently, to the work carried out on the structure
by the external forces r .

3. Shape functions and shape calculus using domain paths

We define the hold-all D ⊂ Rd as the point set within which all feasible domains will be
contained. For the purpose of this article, it will be convenient to constrain D to be nonempty,
open, bounded, and simply connected. A shape function is a function J : U → R, defined on a
familyU of admissible subsets compactly embedded in D. Typical example shape functions are
the domain and boundary integrals

J1(Ω) =
∫
Ω

f dV, J2(Ω) =
∫
∂Ω

f dS, (3.1)

where f ∈ L1(D) and f ∈ W1,1(D) for J1 and J2, respectively; further requirements are specified
below when needed. To carry out shape calculus on such functions, we will consider domain
paths t → Ωt inU and, in particular, limits of the type

lim
t→0+

Jk(Ωt) − Jk(Ω)
t

. (3.2)

Depending on how these paths are constructed, the aim of the shape calculus is to identify
such limits as directional derivatives in order to supply gradient information to the optimization
algorithm.

As reviewed in § 4, the classical way of constructing such paths relies on domain transformations.
An alternative, based on boundary dilations is presented in § 5. In particular, § 5.2 introduces a
dilation method suitable for fictitious-domain methods.

4. Domain paths using transformations

Here, in order to construct domain paths, we fix a given reference domain Ω ⊂⊂ D with
a Lipschitz boundary and generate the path through a family of smooth homeomorphisms
Tt : D → Rd , parametrized by t ≥ 0. In this way, shape calculus can be converted to ordinary
differential calculus by a change of variables based on Tt .

Specifically, we consider objective functions (3.1) defined on the mapped domain Ωt = Tt(Ω)
and with integrands given by a family of functions t 7→ ft , where each ft ∈ L1(D) for J1 and
each ft ∈ W1,1(D) for J2. A change of variables yields that

J1(Ωt) =
∫
Ωt

ft dV =
∫
Ω

ft ◦ Tt |det DT t | dV, (4.1a)

J2(Ωt) =
∫
∂Ωt

ft dS =
∫
∂Ω

ft ◦ Tt |(DT t)−Tn | |det DT t | dS, (4.1b)

where DT t is the Jacobian matrix of the transformation and n the normal field on the boundary.
The transformation now appears explicitly in the integrands, which means that the integrals can
be differentiated with respect to t using ordinary calculus.

Now consider the special case of a transformation such that Tt(Ω) = Ω for each t ≥ 0; note that
such a transformation is not necessarily just the identity! When the integrand function is fixed,
that is, there is an f such that ft = f for each t, the shape functions will be unchanged under such
a transformation. That is, a transformation that just involves a rearrangement of the points inside
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the domain will not change the value of such shape functions; in this case, difference quotient(
J(Ωt) − J(Ω))/t will therefore vanish. Indeed, this property motivates the terminology shape
functions for integrals (3.1); the only transformations that may yield nontrivial derivatives are
those that modify ∂Ω. This transformation property is also reflected in the so-called structure
theorem [9, Thm. 3.6, Ch. 9], which says that the gradients of the shape functions (3.1) can be
identified as distributions on Rd with their support contained in ∂Ω.

Now, how can the transformations Tt be defined? One option is employ an explicit parametriza-
tion. For instance, in the case D is a cube (d = 3) or a square (d = 2), transformations of
a reference domain Ω ⊂ D can be effectuated through free-form deformations, a technique
originating in computational geometry [16, 19]. Here a grid of control points are distributed
throughout D, and the parameters of the transformation will be displacements in each coordinate
direction of these control points. (The directional derivatives will be computed with respect to
these displacements.) To utilize formulas (4.1), the point displacements need to be extended to a
transformation on D, for instance using Bernstein polynomials or non-uniform rational B-splines
(NURBS), depending on whether the control points are uniformly distributed in D or not.

A more common and more flexible approach is to define each transformation using a so-called
velocity field V : D→ Rd . The simplest use of the velocity field is as a perturbation of identity;
that is, for each x ∈ Ω,

Tt(x) = x + tV (x). (4.2)
Another option is to use the so-called velocity method, in which the evaluation of the transformation
at each x ∈ Ω is the flow of the vector field initiated at x. That is,Tt(x) = X x(t), where t 7→ X x(t)
satisfies

dX x

dt
= V ◦ X x t > 0,

X x(0) = x.
(4.3)

(It is straightforward to generalize equation (4.3) to use a nonautonomous vector field (x, t) 7→
V (x, t), a generality not needed here.) The transformations defined through perturbations of
identity and the velocity method agree to first order at t = 0 and will thus provide the same first
derivatives at t = 0 of shape functions (4.1).

Both integrands in the transformed objective functions (4.1) involve the compound function ft ◦
Tt as well as a geometric term, |det DTt | and |(DT t)−Tn | |det DT t |, respectively. A differentiation
of the compound function with respect to t yields the material derivative

Ûf (x) def== lim
t→0+
( ft ◦ Tt)(x) − f (x)

t
=

d+

dt

����
t=0
( ft ◦ Tt)(x). (4.4)

The differentiated geometric terms can, after a few steps of algebra, be shown to satisfy
d+

dt

����
t=0
det DT t = ∇ · V,

d+

dt

����
t=0
det DT t |(DT t)−Tn | = ∇ · V − ∂

∂n
(n · V ) def== ∇T · V ;

(4.5)

the last expression is the tangential divergence1 of the velocity field along ∂Ω. Using formulas (4.4)
and (4.5) together with the product rule, a differentiation under the integral signs of objective

1The definition can also be written ∇T ·V = ∇ ·V − n · (∇V )n = ∇ ·V − n ·
((n · ∇)V )

, where ∇V is the Jacobian
of V .
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functions (4.1) yields the directional derivatives

dJ1(Ω;V ) =
∫
Ω

(
Ûf + f∇ · V

)
dV, (4.6a)

dJ2(Ω;V ) =
∫
∂Ω

(
Ûf + f∇T · V

)
dS, (4.6b)

using the notation f = ft |t=0, a convention that will be followed henceforth.
As we have seen, formulas (4.6) are rather straightforward consequences of defining domain

paths using transformation (4.2) and hold as long as all constituents are well-defined and
integrable. Formula (4.6a) holds for V ∈ W1,∞(D)d and when the compound function t 7→ ft ◦Tt
is continuous with values in L1(Ω) and differentiable with values in L1(Ω), and formula (4.6b) for
V ∈ W2,∞(D)d and when t 7→ ft ◦ Tt |∂Ω is continuous with values in L1(∂Ω) and differentiable
with values in L1(∂Ω)

Under different and stronger conditions, it is possible to devise a different set of formulas for
the directional derivatives. These formulas, proved by Delfour & Zolésio[9, Ch. 9, §4], contain
the shape derivative f ′, that is, the derivative of the map t 7→ ft evaluated at t = 0, and the local
summed curvature κ = ∇T · n of ∂Ω,

dJ1(Ω;V ) =
∫
Ω

f ′ dV +
∫
∂Ω

fV · n dS, (4.7a)

dJ2(Ω;V ) =
∫
∂Ω

f ′ dS +
∫
∂Ω

(∂ f
∂n
+ κ f

)
V · n dS. (4.7b)

The proofs by Delfour & Zolésio require V ∈ C1(D) and the following additional assumptions.
• For formula (4.7a): the function t 7→ ft is continuous with values in W1,1(D) and
differentiable with values in L1(D).
• For formula (4.7b): Ω is of class C2 and the function t 7→ ft is continuously differentiable
with values in H2(D).

Both sets of formulas, the “weak” directional derivatives (4.6) as well as the “strong” (4.7),
are useful for shape optimization problems. For the problem introduced in § 2, the analysis
in § 4.1 below will assume sufficient regularity for expressions (4.7) tho hold. However, we
will see that when applying a standard finite-element discretization approach using deforming
meshes, the regularity assumptions fail to hold. As will be discussed in § 4.2, formulas (4.6)
are the appropriate choice in the discrete case when using deforming meshes. Note that these
considerations are contingent on the use of domain transformations. Indeed, we will see that
when creating domain paths using dilations, the role of these formulas will in a sense be reversed,
so that a version of formulas (4.7) will then be the appropriate choice in the discrete case!

4.1. Shape calculus for the model problem before discretization. We consider the problem
of § 2 and a domain path t 7→ Ωt generated by domain transformation (4.2) associated with a
smooth velocity field V vanishing on ΓD. The standard variational formulation of the Poisson
problem (2.1) on the deformed domain Ωt is

u(t) ∈ W(t) such that∫
Ωt

∇v · ∇u(t) dV + α
∫
ΓR,t

vu(t) dS =
∫
Ωt

rv dV ∀v ∈ W(t), (4.8)
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where W(t) is the subset of functions in H1(Ωt) with vanishing trace on ΓD. Note that ΓD is fixed
under this domain transformation, since we have chosen V to vanish on ΓD, whereas ΓR may be
displaced by the perturbation. Objective function (2.2) evaluated on the deformed domain will be

J(Ωt) =
∫
Ωt

ru(t) dV. (4.9)

The conventional shape calculus approach for this kind of problems is to view objective
function (4.9) as a composite mapping involving the intermediate state variable u(t), which will be
differentiated with respect to t. One way to carry out these calculations is to apply formulas (4.6),
which will involve the material derivative Ûu. The existence of Ûu can be rigorously established,
as shown by Sokolowski & Zolézio [20, § 2.28–2.29] for similar problems. Here, however, we
will demonstrate the use of formulas (4.7). Since these involve boundary traces of derivatives,
we need to assume enough smoothness of Ω for full elliptic regularity of problem (4.8) to hold;
that is, we assume that u(t) ∈ H2(Ωt) ∩W(t). Note that this assumption may not be completely
justified, since the presence of the mixed boundary conditions in problem (2.1) can introduce
a local loss of regularity at the interface between ΓD and ΓR. Moreover, our calculations will
involve the shape derivative u′ = limt→0+

(
u(t) − u(0))/t, whose existence, properties, and the

regularity requirements necessary for a rigorous analysis are nontrivial and delicate. Thus, our
calculation will be merely formal.
These complications, together with the fact that the final directional-derivative expression

will not depend on a differentiated state variable, has lead several authors to search for ways to
rigorously establish a shape calculus without requiring a differentiation of the state. Using a
Lagrangian formalism, Delfour & Zolésio [9, Ch. 10] discuss ways of carrying out such a task. A
more general framework for shape calculus that circumvents the introduction of Ûu or u′ has been
introduced by Ito, Kunish, and Peichl [15]. Based on the introduction of a so-called averaged
adjoint equation, Sturm [21] has devised another state-differentiation-free approach with relaxed
continuity assumptions. Finally, in a recent contribution, Laurain et al. [17] discuss, compare,
and systematize several Lagrangian-based methods bypassing the need for state differentiation.

Since the objective here, however, is just to illustrate different shape calculus approaches and
compare the final expressions, we will follow a quick, formal approach and simply assume that u′

exists and is regular enough for all required calculations to be valid. In particular, in this section
we assume that u′ ∈ W .

Under this assumption, the directional derivative of objective function (4.9) at t = 0 can be
computed by first observing that the solution to problem (4.8) satisfies∫

Ωt

|∇u(t)|2 dV + α
∫
ΓR,t

u(t)2 dS =
∫
Ωt

ru(t) dV, (4.10)

which means that objective function (4.9) at t = 0 can be written

J(Ω) =
∫
Ω

ru dV = 2
∫
Ω

ru dV −
∫
Ω

|∇u|2 dV − α
∫
ΓR

u2 dS. (4.11)
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Formulas (4.7) and the product rule then yield that

dJ(Ω;V ) = 2
∫
Ω

ru′ dV − 2
∫
Ω

∇u′ · ∇u dV +
∫
∂Ω

n · V (
2ru − |∇u|2) dS

− 2α
∫
ΓR

u′u dS − α
∫
ΓR

n · V
( ∂
∂n

u2 + κu2
)
dS

=

∫
ΓR

n · V
(
2ru − |∇u|2 − α

( ∂
∂n

u2 + κu2
))

dS,

(4.12)

where the vanishing of V on ΓD and variational form (4.8) with v = u′ has been used in the
second equality. Note that we have also used that r′ = 0 since r ∈ H1(D) does not depend on t.
Directional derivative (4.12) vanishes whenever n · V = 0, which shows that objective

function (4.9) in this case indeed is a shape function. However, as we will see, the situation
changes after finite-element discretization.

Remark 4.1. Note that the directional derivative (4.12) only depends on the solution u and the
velocity field V . This is a rather special case for problems having certain symmetries. Other
choices of objective functions will necessitate the introduction of an adjoint state as well. In the
current case, the state equation does double duty also as adjoint equation.

4.2. Discrete shape calculus with body-fitted meshes and mesh deformations. Standard
finite-element methods use meshes that are fitted to the domain, at least approximately. Typically,
the mesh boundary points are located exactly on the domain boundary, whereas the union of the
mesh boundary surfaces will in general only approximate the domain boundary if it is curved.
We introduce such a nondegenerate triangulation Th using simplicial elements. The union of
the elements in Th generates a approximating computational domain Ωh containing boundaries
ΓD,h and ΓR,h. Parameter h > 0 specifies the largest diameter of any element in Th. Moreover,
by Sh and Eh we denote the set of faces and subfaces of the elements in Th. For simplicity of
exposition, in this section we will specialize to 3 space dimensions, d = 3. Thus, the elements,
faces, and subfaces are here tetrahedrons, triangles, and line segments. The changes needed to
interpret the formulas below to d = 2 are rather straightforward. Based on the triangulation, we
introduce finite-element function spaces Wh,p of continuous functions that are polynomials of at
most degree p ≥ 1 on each element K ∈ Th and that vanish on ΓD,h.
The use of a domain-fitted mesh means that it has to be regenerated or adjusted when the

shape of the domain changes. Gradient-based optimization algorithms assume smoothness in
the evolution of the objective function under changes in the decision variables, which is why a
complete regeneration of the mesh is usually performed only when necessary, as it will introduce
a “meshing noise” in the evolution of the objective function. However, the domain transformation
idea, which above was introduced just as a tool to generate domain paths for the definition of
shape derivatives, fits very well also with the need to modify the mesh under shape changes.
We thus apply transformation (4.2) with V = Vh, where Vh ∈ Wd

h,1 is the space of continuous,
piecewise-linear vector-valued functions on the triangulated domain. This choice of space for
Vh assures that each face in Sh will remain planar under the transformation and, as long as t is
small enough, that the transformed mesh points still generate a valid mesh. Note that, similarly
as in the case before discretization, Vh vanishes on ΓD,h.

The transformation deforms the mesh to generate a domainΩh,t , and we define on the deformed
mesh the deformed finite element space Wh,p(t) and arrive at the following finite-element
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approximation of variational problem (4.8):
uh(t) ∈ Wh,p(t) such that∫
Ωh,t

∇vh · ∇uh(t) dV + α
∫
ΓR,h,t

vhuh(t) dS =
∫
Ωh,t

rvh dV ∀vh ∈ Wh,p(t). (4.13)

The discrete objective function is, consequently,

Jh(Ωh,t) =
∫
Ωh,t

ruh(t) dV. (4.14)

Now assume that we choose a Vh , 0 that vanishes on ∂Ωh. Corresponding transformation
keeps the boundary nodes fixed but offsets the locations of internal nodes of the triangulation.
Such a transformation will change the finite element solution uh (even though its order of
approximation with respect to the exact solution u is unchanged). Thus, Jh can change, albeit
slightly, with transformations that vanish on ∂Ωh, and it follows that Jh, as opposed to the J in
expression (4.11), is not a strict shape function. Indeed, as shown below in § 4.2.1, the directional
derivative of objective function (4.14) at t = 0 can be written in the form
dJh(Ωh;Vh) =

=

∫
ΓR,h

n · Vh

(
2ruh − |∇uh |2 − α

( ∂
∂n

u2
h + κhu2

h

))
dS −

∑
e∈Eh

α

∫
e∩ΓR,h

JmK · Vhu2
h dl

−
∑

S∈S 0
h

∫
S
Vh · Jn |∇uh |2K dS

+ 2
∑

K∈Th

∫
K

(
∇uh · ∇

(
Vh · ∇)uh − rVh · ∇uh

) )
dV + 2α

∫
ΓR,h

uh(Vh · ∇)uh dS.

(4.15)

Before deciphering the notation, we note that the first integral in expression (4.15) looks like
corresponding formula (4.12) before discretization. The other terms are due to the discretization.
Note, in particular, that integrals 3 and 4 depend on Vh and uh in the interior, reflecting the fact
that Jh is not a pure shape function.

The function κh in the first integral of expression (4.15) is defined such that, for each S ∈ Sh,
κh |S = ∇T · n |S is the summed curvature of S. Since we here assume planar mesh faces, κh
vanishes almost everywhere on ΓR,h, so associated term in expression (4.15) could be removed.
The term is kept in the expression in order to highlight the parallel to the case before discretization.
Moreover, as we will see below, κh will be nonzero if elements with curved faces at ΓR,h are used.

Discrete curvature contributions will come from the second integral in expression (4.15). This
term constitutes a sum over the mesh edges on ΓR,h and contains the co-normal field m, defined
for each S ∈ Sh on the boundary ∂S as indicated to the left in Figure 1. As illustrated to the
right in Figure 1, on an edge e interfacing two faces S1, S2 on ΓR,h, we define the jump term

JmK = m1 + m2. (4.16)

The integral of this jump term yields a discrete curvature measure; note that it vanishes if S1 and
S2 are coplanar.
The third integral in expression (4.15) is taken over over all mesh faces S 0

h ⊂ Sh interior to
the domain. Each such S ∈ Sh is a common face of two elements K1,K2 ∈ Th, and Jn |∇uh |2K
denotes the jump of |∇uh |2 over the surface, as defined below in expression (4.25).
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𝑆

𝒎𝒎

𝒎

𝑒

ΓR,ℎ ∩ 𝑆1

ΓR,ℎ ∩ 𝑆2

𝒎1

𝒎2
𝒏

𝒏

Figure 1. Left: the co-normal m is defined on each edge of a mesh face S ∈ Sh
and is orthogonal to the face normal and the edge. Right: the co-normal jump
over an edge e ∈ Eh interfacing two neighboring faces S1, S2 on a piece of ΓR,h is
JmK = m1 + m2.

Finally, the last two integrals in expression (4.15) contain element-wise evaluations of the
residual of the state equation (4.13) at t = 0, evaluations in which Vh · ∇uh < Wh,p replaces the
test function. Assuming full elliptic regularity of weak solutions to the Poisson problem (2.1)
and the convergence properties of finite-element solutions for properly chosen meshes, we expect
integrals 3–5 of expression (4.15) to vanish as h→ 0.

4.2.1. How to obtain directional derivative (4.15). To show expression (4.15), we use the same
approach as in a previous contribution [3], based on a systematic use of the concept of material
derivative, introduced already in definition (4.4). The chain rule yields the following relation of
the material derivative and the shape derivative f ′ of expressions (4.7),

f ′ = Ûf − V · ∇ f . (4.17)

(The shape andmaterial derivatives correspond to the partial and total derivatives in themechanics
of continuum media.)
We summarize here the rules for the material derivative that will be used to establish

formula (4.15), and we refer to previous publication [3] for details. The restriction on Ωt of a
fixed r ∈ H1(D), such as the one in equation (4.8), has a vanishing shape derivative, r′ = 0 (since
it is fixed and not dependent on t). Thus, by relation (4.17),

Ûr = V · ∇r . (4.18)

The product rule holds for the material derivative, so for functions g1, g2 : Ω→ R,

(g1g2)· = Ûg1g2 + g1 Ûg2, (4.19)

provided that the derivatives exist. We will need a product rule for |∇g |2. The shape derivative,
being a partial derivative, commutes with the gradient operator, but the material derivatives does
not. Instead the rule ( |∇g |2) · = 2∇ Ûg · ∇g − 2∇g · (∇V )∇g (4.20)
holds for g ∈ H1(Ω) such that Ûg ∈ H1(Ω) [3, eq. (30)]. (In Cartesian components, ∇V is the
Jacobian matrix of V .)

Since the mesh is deformed, the support of each finite-element basis functionw for the functions
in Wh,p(t) will be transformed with the velocity field Vh, which implies that Ûw = 0. Consequently,
the material derivative of any finite-element function conforms to the finite-element space; that
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is, if vh ∈ Wh,p then Ûvh ∈ Wh,p [3, § 4, example 3]. However, we see from expression (4.17) that
the shape derivative of a finite-element function does not conform. Indeed, v′h < Wh,p in general,
since Vh · ∇vh will generally not be continuous. This property is a source to the differences with
respect to the case in § 4.1; recall that the property u′ ∈ W was used in expression (4.12) to arrive
to the final expression!
We now possess the tools to establish formula (4.15). Proceeding similarly as in the case

before discretization, we start by noticing that the solution to equation (4.13) satisfies∫
Ωh,t

|∇uh(t)|2 dV + α
∫
ΓR,h,t

uh(t)2 dS =
∫
Ωh,t

ruh(t) dV, (4.21)

which means that objective function (4.14) again can be written in the form

Jh(Ωh) = 2
∫
Ωh

ruh dV −
∫
Ωh

|∇uh |2 dV − α
∫
ΓR,h

u2
h dS. (4.22)

Assuming that uh is material differentiable and recalling that the material derivative of the
finite-element functions stays in the space, we utilize formulas (4.6) on objective function (4.22),
which yields

dJh(Ωh;Vh) = 2
∫
Ωh

( Ûruh + r Ûuh + ruh∇ · Vh
)
dV −

∫
Ωh

((|∇uh |2)· + |∇uh |2∇ · Vh
)
dV

− α
∫
ΓR,h

(
2 Ûuhuh + u2

h∇T · Vh
)
dS

= 2
∫
Ωh

(
uh(Vh · ∇)r + r Ûuh + ruh∇ · Vh

)
dV

−
∫
Ωh

(
2∇ Ûuh · ∇uh − 2∇uh · (∇Vh)∇uh + |∇uh |2∇ · Vh

)
dV,

− α
∫
ΓR,h

(
2 Ûuhuh + u2

h∇T · Vh
)
dS,

(4.23)

where expressions (4.18) and (4.20) have been used in the second equality. We recall that
Ûuh ∈ Wh,p. Thus, choosing vh = Ûuh in equation (4.13) evaluated at t = 0, the three terms in
expression (4.23) containing Ûuh cancel, which, together with the product rule, leaves us with

dJh(Ωh;Vh) = 2
∫
Ωh

uh∇ · (Vhr) dV +
∫
Ωh

(
2∇uh · (∇Vh)∇uh − ∇ · Vh |∇uh |2

)
dV

− α
∫
ΓR,h

u2
h∇T · Vh dS

= 2
∫
ΓR,h

n · Vhuhr dS − α
∫
ΓR,h

u2
h∇T · Vh dS

−
∫
Ωh

(
2rVh · ∇uh − 2∇uh · (∇Vh)∇uh + ∇ · Vh |∇uh |2

)
dV,

(4.24)

where integration by parts and the fact that uh vanishes on ΓD,h has been used in the second
equality.
The somewhat complicated expression (4.24) is called the volume form or the weak form of

the directional derivative. This form is the one usually employed in implementations that aim for
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an exact derivative of the discrete objective function, and we note that the directional derivative
depends in a quite intricate way on the transformation and the solution in the interior of Ω. As
shown in the previous publication [3], an analysis similar to the one done here holds also in the
case before discretization. To achieve the simpler boundary form, or the strong form (4.12) of the
directional derivative, integration by parts and some additional calculations have to be carried
out, as exemplified in the previous publication [3]. We will perform these calculations also here
in the discrete case, but the final expression will not be as simple as formula (4.12).
Let S 0

h ⊂ Sh be the set of element faces strictly inside the domain Ω. For each S ∈ S 0
h ,

there thus are two element K1,K2 ∈ Th such that S̄ = K̄1 ∩ K̄2. For q1 ∈ C0(K̄1), q2 ∈ C0(K̄2)
and employing a notation of the type used for Discontinuous Galerkin methods (cf. [1, p. 1756]),
we define the jump quantity

JqnK
��
S = q1

��
Sn1 + q2

��
Sn2, (4.25)

where n1 and n2 = −n1 are the normals on S pointing outward from K1 and K2, respectively.
We recall an integration-by-parts formula for vector-valued continuous functions ψ and scalar

functions q with jump discontinuities across element surfaces.2 Forψ ∈ H1(Ωh)d and q ∈ C1(T̄h)
— that is, q |K ∈ C1(K̄) for each K ∈ Th — hold the integration-by-parts formula

∫
Ωh

∇ · ψ q dV +
∑
K∈Th

∫
K
ψ · ∇q dV =

∫
∂Ωh

n · ψ q dS +
∑

S∈S 0
h

∫
S
ψ · JnqK dS. (4.26)

(A nonzero last term is a consequence of a presence of jump discontinuities in q.) Using
formula (4.26) with ψ = Vh and q = |∇uh |2, we find that

∫
Ωh

∇ · Vh |∇uh |2 dV = −
∑
K∈Th

∫
K
(Vh · ∇)|∇uh |2 dV

+

∫
∂Ωh

n · Vh |∇uh |2 dS +
∑

S∈S 0
h

∫
S
Vh · Jn |∇uh |2K dS.

(4.27)

2As with notation (4.25), such formulas are standard tools in the context of Discontinuous Galerkin methods [1,
equation (3.6)]
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Substituting integration-by-parts formula (4.27) into expression (4.24), and recalling that Vh
vanishes on ΓD,h, we obtain

dJh(Ωh;Vh) =
∫
ΓR,h

n · Vh
(
2uhr − |∇uh |2

)
dS − 2

∫
Ωh

rVh · ∇uh dV

+
∑
K∈Th

∫
K

(
Vh · ∇)|∇uh |2 + 2∇uh · (∇Vh)∇uh︸                                      ︷︷                                      ︸

=2∇uh ·∇
(
(Vh ·∇)uh

) )
dV

−
∑

S∈S 0
h

∫
S
Vh · Jn |∇uh |2K dS − α

∫
ΓR,h

u2
h∇T · Vh dS

=

∫
ΓR,h

n · Vh
(
2uhr − |∇uh |2

)
dS −

∑
S∈S 0

h

∫
S
Vh · Jn |∇uh |2K dS

+ 2
∑
K∈Th

∫
K

(
∇uh · ∇

(
Vh · ∇)uh − rVh · ∇uh

) )
dV − α

∫
ΓR,h

u2
h∇T · Vh dS.

(4.28)

To continue, we need to apply integration by parts on the last term in expression (4.28). For this
purpose, we will employ the following tangential divergence theorem for a function ψ ∈ C1(Γ)d
defined on bounded smooth surface Γ with a piecewise-smooth boundary ∂Γ,∫

Γ

∇T · ψ dS =
∫
Γ

κn · ψ dS +
∫
∂Γ

m · ψ dl, (4.29)

where κ = ∇T · n is the summed curvature and m the outward-directed co-normal field on ∂Γ.
Formula (4.29) follows from the standard vector-calculus Stokes theorem equaling the flux of the
curl of a vector field F over Γ to its circulation along ∂Γ. First note that the directed normal
field n on Γ can be extended into a tubular neighborhood of Γ with the help of the signed
distance function3 bΓ chosen such that n = ∇bΓ

��
Γ
. Formula (4.29) then follows from the choice

F = ∇bΓ × ψ.
Now let S ∈ Sh be anymesh face on ΓR,h. Applying formula (4.29) with Γ = S andψ = −Vhu2

h,
together the product rule, we find that

−
∫

S
u2

h∇T · Vh dS =
∫

S
Vh · ∇Tu2

h dS −
∫

S
κSn · Vhu2

h dS −
∫
∂S

m · Vhu2
h dl, (4.30)

where we have introduced the tangential gradient, defined by

∇T f = ∇ f − n
∂ f
∂n

. (4.31)

Since S is a planar surface, κS = 0; however, we will keep the term in order to expose the parallel
to formula (4.12). Moreover, keeping κs will make the final formula correct also when using
isoparametric elements with curved faces at the boundary. Summing equality (4.30) over all
faces on ΓR,h, we find the integration-by-parts formula

−
∫
ΓR,h

u2
h∇T · Vh dS =

∫
ΓR,h

Vh · ∇Tu2
h dS −

∫
ΓR,h

κhn · Vhu2
h dS −

∑
e∈Eh

∫
e∩ΓR,h

JmK · Vhu2
h dl, (4.32)

3Distance functions, signed distance functions, and tubular neighborhoods will be covered in more detail in § 5.1



SHAPE CALCULUS FOR FITTED AND UNFITTED DISCRETIZATIONS 15

where κh almost everywhere on ΓR,h is defined by κh |S = κS for S ∈ Sh ∩ ΓR,h, and where
JmK = m1 + m2 (4.33)

in which m1 and m2 are the outward co-normals associated with the two surfaces S1 and S2 that
meet at the line segent e; see the right picture in Figure 1. By definition (4.31),

Vh · ∇Tu2
h = Vh · ∇u2

h − n · Vh
∂

∂n
u2

h

= 2uhVh · ∇uh − n · Vh
∂

∂n
u2

h,

(4.34)

which substituted into expression (4.32) yields

−
∫
ΓR,h

u2
h∇T · Vh dS = 2

∫
ΓR,h

uhVh · ∇uh dS −
∫
ΓR,h

n · Vh
∂

∂n
u2

h dS

−
∫
ΓR,h

κhn · Vhu2
h dS −

∑
e∈Eh

∫
e∩ΓR,h

JmK · Vhu2
h dl .

(4.35)

Substituting formula (4.35) into expression (4.28), we finally arrive at
dJh(Ωh;Vh) =

=

∫
ΓR,h

n · Vh

(
2ruh − |∇uh |2 − α

( ∂
∂n

u2
h + κhu2

h

))
dS −

∑
e∈Eh

α

∫
e∩ΓR,h

JmK · Vhu2
h dl

−
∑

S∈S 0
h

∫
S
Vh · Jn |∇uh |2K dS

+ 2
∑

K∈Th

∫
K

(
∇uh · ∇

(
Vh · ∇)uh − rVh · ∇uh

) )
dV + 2α

∫
ΓR,h

uh(Vh · ∇)uh dS.

(4.36)

Note that this directional derivative expressions is completely equivalent to the “volume
form” (4.24), although the relation to the before-discretization boundary expression (4.12) is
clearer here.

5. Domain paths using surface dilations

5.1. Delfour dilations. In 2018, Michel Delfour [10] introduced a way to construct domain paths
t 7→ Ωt that is fundamentally different from the domain transformation approach considered so
far. Instead of transformations, the domain paths are built from dilations of a lower-dimensional
object E into Rd . Delfour uses such dilations to generalize the concept of topological derivative,
that is, when sensitivities are calculated with respect to the introduction of a small hole in the
domain.

Thus, let E be a closed subset of Rd of dimension m = 0, . . . , d − 1 with finite m-dimensional
measure. For instance, E could be a point (m = 0), a curve segment (m = 1), or a surface patch
(m = 2). The r-dilated set Er is the set of points x ∈ Rd within a distance r > 0 from E , that
is, the set of points x such that dE (x) = infe∈E |x − e | ≤ r . (Note that E and Er are of different
dimensions; E is of dimension m < d, whereas the dilated Er is of dimension d). The dilations
Er will be be used to construct domain paths Ωt with parameter t being the volume of the ball of
codimension m with radius r . That is, t = αd−mrd−m, where αd−m is the volume of the unit ball
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of codimension m. Various perturbations of Ω may be defined using Er . Here we consider the
domain path t 7→ Ωt = Ω \ Er(t), that is, the domain Ω with the dilated region cut out. The idea
is now to define directional semiderivatives of a shape function J(Ω) with respect to E as the
limit of the difference quotient

dJ(Ω; E) = lim
t→0+

J(Ωt) − J(Ω)
t

, (5.1)

if the limit exists. If E ⊂ Ω and J(Ω) =
∫
Ω
dV, the quantity −dJ(Ω; E) turns out to be the

Minkowski content of E , which equals the Hausdorff measure4 of E for so-called m-rectifiable
and closed E .
As a first example, let m = 0 and E = { x0 } for some x0 ∈ Ω [10, Ex, 4.1]. The dilated

region Er is a ball of radius r centered at x0, t = αdrd = |Er | , and Ωt = Ω \ Er . For J1 from
expression (3.1), it then follows that

dJ1
(
Ω; { x0 }

)
= lim

t→0+
J(Ωt) − J(Ω)

t
= lim

r→0+
1
|Er |

(∫
Ω\Er

f dV −
∫
Ω

f dV
)

= − lim
r→0+

1
|Er |

∫
Er

f dV = − f (x0),
(5.2)

which equals the usual topological derivative of J1 for a fixed integrand f ∈ C(D).
Similarly, for m = 1, if E = γ, where γ is a closed C2 curve embedded in Ω, an analogous

calculation [10, Ex. 4.16] shows that, for f ∈ W1,1(D),

dJ1(Ω; γ) = −
∫
γ

f ds. (5.3)

However, the focus here will be the case m = d − 1 and E = ∂Ω, which, as we will see, leads
to a shape derivative. According to the above scheme, we should have t = αd−mrd−m = 2r .
However, E is in this case not a subset of Ω, as assumed above. Indeed, Er = Ur(∂Ω), where

Ur(∂Ω) =
{
x ∈ Rd | d∂Ω(x) ≤ r

}
(5.4)

is the r-tubular neighborhood of ∂Ω, which consists of two parts, one inside and one outside
Ω. It will only be the interior part Er ∩Ω that will perturb Ω when forming Ω \ Er . Recall the
property that for rectifiable E ⊂ Ω and J(Ω) =

∫
Ω
dV, the quantity −dJ(Ω; E) is the measure of

E . In order to retain this property when E = ∂Ω, we need to choose t = r , otherwise −dJ(Ω; ∂Ω)
will only represent half of the measure of ∂Ω.

Now, forming the difference quotient for shape function J1 with f ∈ W1,1(D), we obtain, since
Ωt = Ω \Ut ,

dJ1(Ω; ∂Ω) = lim
t→0+

1
t

(∫
Ωt

f dV −
∫
Ω

f dV
)
= − lim

t→0+
1
t

∫
Ut∩Ω

f dV = −
∫
∂Ω

f dS. (5.5)

Thus, the directional derivative of J1 with respect to dilation of the domain boundary coincides
with the directional derivative (4.7a) with velocity field V = −n. (Integrand f is fixed, so
f ′ = 0.)

4scaled such that that it agrees with the m-dimensional Lebesgue measure
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Moreover, proceeding similarly as Delfour [10, § 5], for the choice E = ∂Ω and assuming
sufficient smoothness, it follows that

dJ2(Ω; ∂Ω) = −
∫
∂Ω

(∂ f
∂n
+ κ f

)
dS. (5.6)

Again, the directional derivative of J2 with respect to dilation of the domain boundary coincides
with the directional derivative (4.7b) with the velocity field V = −n. For shape optimization
applications, the directional derivatives (5.5) and (5.6) are of limited use, since only uniform
extensions and contraction of the domain are addressed. To achieve a localized control over
boundary shapes, we will reformulate and generalize the dilation concept using level-set functions.

5.2. Dilation through level sets. In the case m = d − 1 and E = ∂Ω, the Delfour dilation
generated the domain path t → Ωt = Ω \Ut , where Ut is the tubular neighborhood of ∂Ω, defined
in expression (5.4). Equivalently, this domain path can be constructed through the use of the
signed distance function bΩ : D→ R, defined as

bΩ(x) = dΩ(x) − dD\Ω(x), (5.7)

where, as before, dE (x) = infe∈E |x − e |. The signed distance function is negative and positive
inside and outside of Ω, respectively, and its absolute value specifies the distance to the boundary
∂Ω. In terms of the signed distance function, Ωt = Ω \Ut can alternatively be defined as

Ωt = { x ∈ D | bΩ(x) + t ≤ 0 } . (5.8)

Aiming to generalize and localize characterization (5.8), let φ : D→ R be a level-set function,
that is, a Lipschitz-continuous function φ that partitions D such that

Ω =
{
x ∈ D | φ(x) < 0

}
, ∂Ω =

{
x ∈ D | φ(x) = 0

}
,

D \Ω = {
x ∈ D | φ(x) > 0

}
.

(5.9)

The signed distance function is an example of a level-set function. Moreover, let w : D→ [0, 1]
be a Lipschitz function with local support suppw ⊂⊂ D, such that w > 0 in the interior of its
support. The function w will later be chosen as a continuous, piecewise-linear finite-element
basis function. Definition (5.8) can then be generalized to

Ωt(w) = { x ∈ D | φ(x) + tw(x) ≤ 0 } . (5.10)

We will define, in the discretized case, semi-derivatives of shape functions (3.1) using domain
paths as in definition (5.10). Note that this definition does not involve any domain transformation!

5.3. Fictitious-domain shape optimization and dilations. Instead of requiring the computa-
tional mesh to conform to changing domain shapes, an alternative is offered by fictitious-domain,
also called domain embedding, methods. There are many flavors of this idea, but common to all
of them is that a fixed computational mesh is introduced on the hold-all D, and that the domain
boundary ∂Ω cuts through D. In the most general versions of the method — the kind considered
here — the boundary is also allowed to intersect the interior of the mesh cells. In the context
of shape optimization, the big advantage with this class of methods is that mesh deformation
strategies are not needed. The cost of the method is that additional efforts are usually needed to
assure numerical stability and accurate imposition of boundary conditions.
As opposed to the body-fitted methods discussed previously, the fictitious-domain approach

does not fit well with the domain-transformation concept; there are no domain transformations
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naturally involved when moving boundary ∂Ω over a fixed background mesh. However, the
dilation technique introduced in § 5.2 is a good framework for shape calculus in the context of
fictitious-domain methods.
Using a similar notation as in § 4.2, we assume a simplicial triangulation Th, now of the

full hold-all D, and a function space Wh,1 of continuous, piecewise-linear functions on this
triangulation. The boundary of each admissible domain will be defined as the zero level set of a
function φ ∈ Wh,1, and perturbations of the domain are defined through a perturbation of the
level-let function,

φt(x) = φ(x) + tw(x), (5.11)
where t ≥ 0 and w a Lagrangian basis function for Wh,1. We are thus in the framework of § 5.2.

We start with the directional semiderivative of the volume integral J1 in expression (3.1). The
domain transformation approach used to show expression (4.7a) required f ∈ W1,1(D). For the
proof of the corresponding formula in the current framework, we can considerably relax this
condition. We only need to assume that the integrand is given in terms of functions f (t) ∈ C0(T̄h),
that is, f (t)|K ∈ C0(K̄) for each K ∈ Th. Thus, jump discontinuities between elements of the
mesh are permitted. In this case, the following theorem holds.

Theorem 5.1. Under perturbation (5.11) and for t 7→ f (t) and t 7→ f ′(t) continuous in
some nonempty interval [0, tmax] such that f (t), f ′(t) ∈ C0(T̄h) on (0, tmax), the directional
semiderivative of volume integral

J1(φt) =
∫
Ωt

ft dV (5.12)

at t = 0 satisfies

dJ1(φ;w) = lim
t→0+

1
t
(
J1(φt) − J1(φ)

)
=

∫
Ω

f ′ dV −
∫
∂Ω

f
w

|∂nφ| dS. (5.13)

Theorem 5.1 is an immediate consequence of theorem 6.7 in § 6, which proves the statement
for a fixed f ∈ C0(T̄h). When ∂Ω only cuts through the interior of the mesh elements, as in
the right picture of Figure 2, there is no ambiguity in formula (5.13). In fact, the limits of
t → 0+ and t → 0− will then agree. However for a domain like in the left picture of Figure 2,
when

∫
S∩∂Ω dS > 0 for some mesh face S, both f and ∂nφ are typically discontinuous across

S. Formula (5.13) then holds for the limit of these values from the interior of Ω. Note that
this ambiguity means that whenever

∫
S∩∂Ω dS > 0 for some mesh face S, J1 possesses only a

one-sided derivative; when the limit t → 0− is considered, it will be the limit of the values from
the exterior that should be employed.

Regarding the shape calculus associated with surface integral J2 of expression (3.1), note that
any nonempty K ∩ ∂Ω is a line segment for d = 2 and either a triangle or a quadrilateral for d = 3
(Figure 4). For any such K ∩ ∂Ω, we will need the concept of co-normals, already introduced in
§ 4.2, illustrated for the current case in Figure 6. These will be used below to define limits and
jumps across ∂Ω∩ S where S is a mesh surface. Such a ∂Ω ∩ S is a line segment for d = 3 and a
point for d = 2.

The following theorem is an immediate consequence of theorem 6.11 in § 6, which proves the
statement for a fixed f ∈ C 1(T̄h). As for theorem 5.1, nondifferentiability can be expected when
the boundary ∂Ω is partly aligned with a mesh face, as in the left picture of Figure 2. In fact,
the nondifferentiability situation is even more severe here due to the last term in the expression
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for dJ2 below. Possible ambiguities with respect to this term is not as easy to resolve as for dJ1,
which is why the proof of theorem 6.11 is restricted to domains where the boundary does not
intersect any mesh nodes, such as the one exemplified to the right in Figure 2.

Theorem 5.2. Assume that the boundary ∂Ω of the domain Ω does not intersect with any mesh
nodes of Th. Then, under perturbation (5.11) and for t 7→ f (t) and t 7→ f ′(t) being continuous
in some nonempty interval [0, tmax] such that f (t), f ′(t) ∈ C1(T̄h) on (0, tmax), the directional
derivative of surface integral

J2(φt) =
∫
∂Ωt

ft dS (5.14)

at t = 0 satisfies

dJ2(φ,w) =
∫
∂Ω

(
f ′ − ∂ f

∂n
w

|∂nφ|
)
dS −

∑
S∈Sh

∫
∂Ω∩S

nS · J f mK
w

|∂nS φ|
dγ, (5.15)

where nS is the normal vector to ∂Ω ∩ S, located in S and outward-directed from Ω, and where
J f mK = f1m1 + f2m2. Here, for k = 1, 2, mk are the co-normals to ∂Ω ∩ Kk at ∂Ω ∩ S, where
K1, K2 ∈ Th such that S̄ = K̄1 ∩ K̄2. Each mk lies in the plane of and is directed outward from
∂Ω ∩ Kk , and fk is the limit f on S defined by fk(x) = limε→0+ f (x − εmk) , for any x ∈ S.

Remark 5.3. For d = 2, ∂Ω∩ S is a point, so the the second integral in expression (5.15) should
be interpreted as a point evaluation at ∂Ω ∩ S; that is, the expression simply is

dJ2(φ,w) =
∫
∂Ω

(
f ′ − ∂ f

∂n
w

|∂nφ|
)
dS −

∑
S∈Sh

nS ·
(
J f mK

w

|∂nS φ|

)����
∂Ω∩S

, (5.16)

and nS is a unit vector along the mesh edge S. �

We note that expressions (5.13) and (5.15) constitute discrete versions of the directional
derivative expressions (4.7). The weight w/|∂nφ| corresponds to the velocity −n · V and the last
term in formula (5.15) corresponds to the term involving the boundary curvature in formula (4.7b).
As will be seen from the proof of theorem 6.11, the first integral of expression (5.15) also formally
includes a term κ f , as in formula (4.7b), which however vanishes since, in this case , ∂Ω ∩ K is
planar for each K ∈ Th.

5.4. Shape calculus of the model problem for fictitious-domain methods. On the triangula-
tion Th of the full hold-all D, we consider the space Wh,p of continuous finite-element functions
that are polynomials of maximal degree p ≥ 1 on each K ∈ Th. Any such function can be
expressed as a sum over Lagrangian basis functions N p

i ,

uh(x) =
I∑

i=1
uiN

p
i (x), (5.17)

where I is the number of evaluation nodes for the basis. (Function N1
i corresponds to the linear

basis function w used for the level-set functions.)
Now assume that the connected reference domain Ωh ⊂⊂ D is defined as the set of points

where level-set finite-element function φ ∈ Wh,1 is strictly negative. Moreover, we consider
perturbation (5.11), which generates a domain path t 7→ Ωh,t that cuts through the background
mesh Th.
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Analogously with the treatments in § 4.1 and 4.2, we will keep the Dirichlet boundary ΓD of
problem (2.1) fixed under domain perturbations. Therefore, we adapt the mesh so that ΓD aligns
with faces of the elements in Th. Then the homogeneous boundary condition ΓD is easy to assign
just by removing the evaluation nodes on Γ̄D from the expansion (5.17). To keep ΓD fixed, we
only permit perturbations (5.11) for basis functions w whose support does not intersect with ΓD.

Remark 5.4. If ΓD is not aligned with the faces of Th, a more elaborate strategy is needed to
assign the Dirichlet boundary condition, for instance using a Nitsche-type approach [8].

A fictitious-domain finite-element approximation of variational problem (4.8) can then be
formulated as

uh(t) ∈ Ŵh,p(t) such that∫
Ωh,t

∇vh · ∇uh(t) dV + α
∫
ΓR,h,t

vhuh(t) dS =
∫
Ωh,t

rvh dV ∀vh ∈ Ŵh,p(t),
(5.18)

where here Ŵh,p(t) is the space of restriction on Ωh,t of functions in Wh,p. The discrete objective
function is

Jh(φ) =
∫
Ωh,t

ruh(t) dV. (5.19)

The approximation properties of problem (5.18) is similar to the mesh conforming discretiza-
tion (4.13), but the condition number of the matrix with elements

∫
Ωh,t
∇N p

i · ∇N p
j dV can be

arbitrarily high for cases when Ωh,t ∩ K has a small measure for some K ∈ Th. Approxima-
tion (5.18) can be viewed as being in the class of cut-finite-element methods [7], for which a
condition-number stabilization scheme, suggested by Burman [6], has been developed. In this
scheme, an additional so-called ghost-penalty term is added to the variational form to bound some
of the jumps in the normal derivatives across neighboring elements. As analyzed by Bernland et
al. [4], the presence of the ghost penalty term affects the shape calculus only in exceptional cases,
which is why we for simplicity ignore stabilization issues here.

In § 4.2, we concluded that it is the material derivative (4.4) of the finite-element function
that stays in the finite-element space when mesh deformations are employed, whereas the shape
derivative will not. The reason is that the support of each basis function is also transformed in
that case. However, the mesh is fixed in the fictitious-domain case, so it is only the coefficients
of expansion (5.17) that can change with domain-path parameter t. Thus, here it is the shape
derivative that will stay in the finite-element space, whereas the material derivative is not even
well defined, since no transformations are involved a priori.

Thus, the shape calculus of our model problem under fictitious-domain discretization can
be carried out in the same manner as in § 4.1, but using formulas (5.13) and (5.15) instead of
formulas (4.7), resulting in

dJh(φ;w) = −
∫
ΓR,h

w

|∂nφ|

(
2ruh − |∇uh |2 − α ∂

∂n
u2

h

)
dS

+ α
∑

S∈Sh

∫
ΓR,h∩S

nS · JmKu2
h

w

|∂nφ| dγ. (5.20)
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We note that directional derivative (5.20) corresponds to the boundary expression (4.12) with
the substitution

n · V = − w

|∂nφ| (5.21)

and with the jump of the co-normals m serving as a discrete measure of the curvature κ of ΓR.
As seen in the proof of theorem 6.11, the summed curvature of each K ∩ ∂Ωh also appear in the
derivation but vanishes due to the piecewise planar shape of the cut boundary.

6. Proofs for the discrete fictitious-domain case

This section provides the precise assumptions and supplies the proofs behind theorems 5.1
and 5.2. For completeness and to make this section independently readable, there is some
repetition of previously introduced notation and definitions.
Assume that the hold-all D ⊂ Rd, for d = 2 or 3, is a simply connected bounded polyhedron

(d = 3) or polygon (d = 2). We introduce a nondegenerate triangulation Th of D using simplices
(tedrahedra for d = 3 and triangles for d = 2). Associated with Th, we consider the set of faces
Sh and and subfaces Eh. These are simplices of codimension 1 and 2, respectively. The faces Sh
are mesh surfaces for d = 3 and mesh edges for d = 2, and the subfaces Eh are mesh edges for
d = 3 and mesh points for d = 2. Associated with this mesh, we consider the space Wh = Wh,1
of continuous functions on D that are linear on each K ∈ Th.
Now assume that φ ∈ Wh partitions D such that

Ω =
{
x ∈ D | φ(x) < 0

}
, ∂Ω =

{
x ∈ D | φ(x) = 0

}
,

D \Ω = {
x ∈ D | φ(x) > 0

}
,

(6.1)

and, moreover, that Ω is nonempty and connected. With this choice of Wh, the boundary ∂Ω
comprises a set of polygons of codimension 1. Figure 2 illustrate example cases for d = 2.

Remark 6.1. Here we use the convention that each K ∈ Th, each S ∈ Sh, and, for d = 3, each
E ∈ Eh are relatively open in the sense that they exclude their boundaries ∂K , ∂S, and ∂E .

Now consider the perturbation
φt(x) = φ(x) + tw(x), (6.2)

where t ≥ 0 and w is a Lagrangian nodal basis function for Vh, and the associated family of
domains given by

Ωt =
{
x ∈ D | φt(x) < 0

}
. (6.3)

Linear Lagrangian basis functions satisfy w ≥ 0, so t′w(x) ≤ tw(x) for 0 ≤ t′ ≤ t. Thus, if
x ∈ Ωt , then φ(x) + t′w(x) ≤ φ(x) + tw(x) < 0, so x ∈ Ωt ′ also. Hence, Ωt ⊂ Ωt ′, for t′ ≤ t;
that is, the domains are shrinking for increasing positive t.

Remark 6.2. The choice t ≥ 0 and the limits t → 0+ considered below is arbitrary. We could as
well consider t ≤ 0 and limits t → 0−. The domains would then be expanding for decreasing
negative t, but the analysis below would be completely analogous also in this case. �

Since in the end, we will only be concerned with limits as t → 0+, we may without loss of
generality restrict the perturbation to be small enough for the following condition to hold.

Assumption 6.3. There is a tmax > 0 such that for each K ∈ Th, if ∂Ωt ∩ K is either empty or
non empty for some t ∈ (0, tmax], it has the same property for each t ∈ (0, tmax]. �
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𝜙 < 0

𝜙 > 0

𝜙 < 0

𝜙 > 0

Figure 2. Examples for d = 2 of a rectangular hold-all D and domainsΩ generated
by level-set functions φ defined on the mesh in the figure. Assumption 6.4 is
satisfied for the domain to the right but not for the one to the left.

That is, it cannot happen that ∂Ωt starts intersecting an element K only for a large enough t in
(0, tmax]. Assumption 6.3 yields some immediate consequences:

(1) Since φt is a continuous function, assumption 6.3 will hold also for the elements in Sh
and Eh. That is, for each S ∈ Sh and for each e ∈ Eh, if ∂Ωt ∩ S or ∂Ωt ∩ e is either
empty or non empty for some t ∈ (0, tmax], the same property holds for each t ∈ (0, tmax].

(2) No topology changes of Ωt can happen as t is varied, only boundary perturbations of the
initial domain.

(3) The center node xw of basis function w in perturbation (6.2), that is, the mesh vertex
satisfying w(xw) = 1, will not intersect ∂Ωt for any t ∈ (0, tmax], since xw < K for any
K ∈ Th (K is open; remark 6.1) and such an intersection would therefore contradict
assumption 6.3.

Thus, item 3 says that φt(xw) , 0 for t ∈ (0, tmax]. Note, however, that it may happen that
φ(xw) = 0; that is, the boundary ∂Ω may intersect nodes in the mesh, as exemplified with the
mesh nodes marked in red in Figure 2.
For k ∈ N, let Ck(T̄h) denote the space of functions such that f |K ∈ Ck(K̄) for each K ∈ Th.

In practice, these will be finite-element functions f that are polynomials on each element, but
which are allowed to possess jump discontinuities between elements. For integrals

J1(φ) =
∫
Ω(φ)

f dV, J2(φ) =
∫
∂Ω(φ)

f dS, (6.4)

containing such function, we will devise expressions for the directional semiderivatives

dJk(φ;w) = lim
t→0+

1
t
(
Jk(φt) − Jk(φ)

)
, k = 1, 2. (6.5)

Theorems 6.7 and 6.11 below are general enough to cover objective functions with such
integrands f , a generality that will be needed when applying the formulas to finite-element
variational expressions. However, there are issues with this generality for domains such as the
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Ω

supp𝑤

𝒙𝑤

𝜕Ω
𝐸𝑡

Figure 3. An example of a region Et = Ω \ Ωt using level-set perturbation
φt = φ + tw = 0, where the support of the linear Lagrangian basis function w is
indicated with a tinted blue color.

one in Figure 2, where ∂Ω intersects nodes in the mesh and, in particular, partly aligns with the
mesh, instances marked red in the figure. The seriousness of this issue differs for dJ1 and dJ2,
being worse for the latter.
The directional semiderivate dJ1 contains integrals over ∂Ω with objects such as f and ∂nφ

possessing jump discontinuities at mesh surfaces. Limiting values of these are well defined
almost everywhere on ∂Ω— but in general different — when approaching opposite sides of
a mesh surface. A consequence is that the directional semiderivatives of J1 as t → 0+ and as
t → 0− will differ in general, meaning that only semidifferentiability has any chance of hold for
such domains.
Semiderivative dJ2 includes in addition to integrals over ∂Ω also line integrals (d = 3) or

point evaluations (d = 2) of quantities evaluated at points where the boundary intersects a mesh
surface. These terms will be well defined whenever these intersections are strictly inside the mesh
surface, but it is less clear how to treat the general case. Thus, we will introduce an additional
requirement, assumed for dJ2 but optional for dJ1; when assumed, it will force the directional
semiderivatives of J1 as t → 0+ and as t → 0− to agree.

Assumption 6.4. The boundary ∂Ω does not intersect any mesh points of the triangulation Th.

Figure 2 illustrate domains satisfying and not satisfying the assumption.

6.1. The domain integral J1. For t ∈ (0, tmax], it holds for domain integral J1 in definition (6.4)
that

1
t
(
J1(φt) − J1(φ)

)
=

1
t

∫
Ωt

f dV − 1
t

∫
Ω

f dV = −1
t

∫
Et

f dV, (6.6)

with Et = Ω \ Ωt , which is nonempty and open provided that the support of basis function w

possesses a nonempty intersection with Ω. Figure 3 shows an example for d = 2. We will
parametrize region Et , element by element, using functions X̂ of the following lemma. Roughly
speaking, each nonempty Et ∩ K will be parametrized along rays crossing the node xw of basis
function w and the face S of K positioned opposite to xw.

Lemma 6.5. Consider perturbation (6.2) for some t ∈ (0, tmax], according to assumption 6.3.
Let K ∈ Th be an element in the support of basis function w. Then, for some S ∈ Sh, there exists
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𝒙𝑤

𝜕Ω𝜏

𝑆

𝒙𝑤

𝜕Ω𝜏
𝑆

𝒙𝑤

𝜕Ω𝜏

𝑆

Figure 4. Each point xτ on the perturbed level-set surface ∂Ωτ ∩ K , for some
element K ∈ Th, can be written as xτ = xS + σ(xw − xS) where xw is the
center node of the basis function w involved in the perturbation, σ ∈ (0, 1), and
xS ∈ Ŝ ⊂ S, where S is the mesh surface opposite to xw. The figure illustrates the
three different cases in which ∂Ωτ can intersect a tetrahedral mesh element. The
domain Ŝ consists of all points xS on S such that φ(xS) has the opposite sign from
φtmax(xw).

a line segment (d = 2) or a polygonal area (d = 3) Ŝ ⊂ S and a diffeomorphism X̂ : Ŝ × (0, t)
such that X̂

(
Ŝ, (0, t)) = Et ∩ K and X̂(Ŝ, τ) = ∂Ωτ ∩ K for each τ ∈ (0, t).

Proof. We may assume that Et ∩ K is nonempty, otherwise the statement is vacuously true.
Denote by xw the center node of basis function w, that is, the node satisfying w(xw) = 1. Note
that xw is one of the vertices of K . Let S ∈ Sh be the face of K opposite to xw, that is, the unique
face S ⊂ K̄ such that xw < S̄. Each point x ∈ K lies somewhere on a ray from S through xw.
More precisely, for each x ∈ K , there is a unique pair (xS, σ) ∈ S × (0, 1) such that

x = xS + σ(xw − xS). (6.7)

In particular, since ∂Ωτ ∩ K is nonempty for each τ ∈ (0, t) due to assumption 6.3, given any
xτ ∈ ∂Ωτ ∩ K , there is a unique pair xS ∈ S and σ ∈ (0, 1) such that

xτ = xS + σ(xw − xS). (6.8)

We will now specify the domain Ŝ ⊂ S for xS above. Figure 4 illustrates, for d = 3, the conceptual
geometry options for Ŝ. Formula (6.8) specifies ∂Ωτ ∩ K in terms of the zero set of φτ |K ,
which means that xS and xw must be on different sides of ∂Ωτ ∩ K , and thus that φτ(xS) and
φτ(xw) are of opposite signs, that is, φτ(xS)φτ(xw) < 0. This inequality suggests the following
characterization of the set of points Ŝ ⊂ S used to generate ∂Ωτ ∩ K according to formula (6.8),

Ŝ =
{
x ∈ S | φ(x)φtmax(xw) < 0

}
, (6.9)

where we have used that sgn
(
φτ(xS)φτ(xw)

)
= sgn

(
φ(x)φtmax(xw)

)
, since φτ = φ on S, due to

the vanishing of w on S, and since sgn φτ = sgn φtmax , due to assumption 6.3.
Since φτ vanishes on ∂Ωτ, from formula (6.8) follows that

0 = φτ(xτ) = φτ
(
xS + σ(xw − xS)

)
= φτ(xS) + σ∇φτ

��
K · (xw − xS), (6.10)

where in the last equality, we use that φτ |K is an affine function. Since xw and each xS ∈ Ŝ are
on opposite sides of ∂Ωτ, the directional derivative in the last term of expression (6.10) cannot
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vanish. We may thus, for each xS ∈ Ŝ, solve equation (6.10) for σ, using that φτ(xS) = φ(xS),
substitute σ into expression (6.8), and define a rational function X̂ : Ŝ × (0, t) by

X̂(xS, τ) = xS − φ(xS)
∇φτ

��
K · (xw − xS)

(xw − xS), (6.11)

which satisfies X̂(Ŝ, τ) = ∂Ωτ ∩ K and X̂
(
Ŝ, (0, t)) = Et ∩ K . Thus, X̂ is surjective. Smoothness

follows from that X̂ is rational and nonsingular, and injectiveness from the uniqueness of
representation (6.8) together with the fact that ∂Ωτ ∩ K and ∂Ωτ′ ∩ K do not intersect whenever
τ , τ′. �

Lemma 6.5 provides the necessary tool to parametrize the integral over Et involved in
expression (6.6), starting with the following result.

Lemma 6.6. Consider perturbation (6.2) for some t ∈ (0, tmax], according to assumption 6.3.
Let K ∈ Th be an element in the support of basis function w. For f ∈ C0(Et ∩ K), it holds that∫

Et∩K
f dV =

∫ t

0

∫
∂Ωτ∩K

f
w

|∂nφτ | dS dτ. (6.12)

Proof. We may again assume that Et ∩ K is nonempty, otherwise the statement is vacuously true.
Let X̂ be the mapping of lemma 6.5 andUd−1 the domain of a smooth parametrization of the
region Ŝ, which is polygonal for d = 3 and a line segment for d = 2. Then we may devise a
smooth parametrization of Et ∩ K with a function X : Ud−1 × (0, t), defined by

X(u, τ) = X̂
(
xS(u), τ

)
, (6.13)

where u = (u, v) ∈ U2 for d = 3 and u = u ∈ U1 for d = 2. The parametrization is constructed
such that X(Ud−1, τ) = ∂Ωτ ∩ K .
The Jacobian determinant of X satisfies

det DX =
∂X

∂τ
· nτσd−1; (6.14)

where

nτσ2 = ±∂X
∂u
× ∂X
∂v

, nτσ1 = ±Q
∂X

∂u
, (6.15)

in which Q =
( 0 −1

1 0
)
; where nτ is the unit normal to ∂Ωτ ∩ K , outward directed with respect to

Ωτ as a function of the parametrization variable u ∈ Ud−1; where σd−1 > 0; and where the sign
depends on the orientation of the parametrization.
In order to obtain an expression for the right side of expression (6.14), we note that since

X(Ud−1, τ) = ∂Ωτ ∩ K , by Lemma 6.5, and φτ
��
∂Ωτ∩K = 0, we compose φτ with X and conclude

that onUd−1 × (0, t),
φτ ◦ X = φ ◦ X + τw ◦ X = 0. (6.16)

Differentiating equation (6.16) with respect to τ, we find that
∂

∂τ

(
φ ◦ X + τw ◦ X )

= (∇φ ◦ X) · ∂X
∂τ
+ w ◦ X + τ(∇w ◦ X) · ∂X

∂τ

= w ◦ X + (∇φτ ◦ X) · ∂X
∂τ
= w ◦ X + |∇φτ ◦ X |nτ · ∂X

∂τ
= 0,

(6.17)
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where in the third equality, we use the fact that

nτ =
∇φτ ◦ X
|∇φτ ◦ X | . (6.18)

Combining expressions (6.17) and (6.14), we find that

det DX = − w ◦ X
|∇φτ ◦ X |σd−1. (6.19)

Now we compute using parametrization X ,∫
Et∩K

f dV =
∫ t

0

∫
Ud−1

f ◦ X |det DX | du dτ =
∫ t

0

∫
Ud−1

f ◦ X w ◦ X
|∇φτ ◦ X |σd−1 du dτ

=

∫ t

0

∫
∂Ωτ∩K

f
w

|∇φτ | dS dτ =
∫ t

0

∫
∂Ωτ∩K

f
w

|∂nφτ | dS dτ,
(6.20)

where expression (6.19) and the fact that that w ≥ 0 is used in the second equality, and a change
of variables is carried out in the third equality. In the last equality, we use that the tangential
gradient of φτ vanishes on ∂Ωτ ∩ K . �

Now we are ready to work out the directional semiderivative of volume integral J1.

Theorem 6.7. Under perturbation (6.2), the directional semiderivative of volume integral J1 in
expression (6.4), for f ∈ C0(T̄h), satisfies

dJ1(φ;w) = lim
t→0+

1
t
(
J1(φt) − J1(φ)

)
= −

∫
∂Ω

f
w

|∂nφ| dS. (6.21)

(i) If assumption 6.4 is violated, then f and ∂nφ are the limits of these functions from the
interior of Ω whenever these quantities possess jump discontinuities on ∂Ω.

(ii) If assumption 6.4 is satisfied, the semiderivatives t → 0− and t → 0+ agree.

Proof. If the support of basis function w does not intersect Ω, formula (6.21) is trivially true.
Otherwise, let t ∈ (0, tmax], according to assumption 6.3, use expression (6.6) and lemma 6.6 to
obtain

1
t
(
J1(φt) − J1(φ)

)
= −1

t

∑
K∈Th

∫
Et∩K

f dV = −1
t

∑
K∈Th

∫ t

0

∫
∂Ωτ∩K

f
w

|∂nφτ | dS dτ. (6.22)

Formula (6.21) then follows after passing to the limit in t. Conclusion (i) follows from the fact
that ∂Ωτ is interior to Ω for each τ ∈ (0, t). As concluded in remark 6.2, an analogous analysis
as above can be carried out for t ≤ 0 which would also lead to formula as (6.21) for t → 0−, but
with f and ∂nφ being the limits from the exterior of Ω. Under assumption 6.4, conclusion (ii)
then follows since f and ∂nφ are then continuous almost everywhere on ∂Ω. �

6.2. The boundary integral J2. In order to calculate the semiderivative of boundary integral
J2 in definition (6.4), the basic idea is to involve the normal field on ∂Ω and think about the
integral as

J2(φ) =
∫
∂Ω(φ)

f |n | dS. (6.23)
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𝒕𝑆1𝒏𝑆
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𝑆

𝐸𝑡 ∩ 𝑆

Figure 5. The relation between the normal vector n1 to a mesh surface
S̄ = K̄1 ∩ K̄2 and the S-confined vector nS (and tS

1 for d = 3). The central mesh
node for the perturbation basis function is marked xw, here assumed to be outside
of Ω.
Left (d = 2): Et is the gray area, K1 is to the left, K2 to the right, and vector n1
points from K1 to K2. “Surface” S is a line segment; Et ∩ S is the tinted part of
S; ∂Ωτ ∩ S is a point in S; and nS is the normal to ∂Ωτ ∩ S, confined in S and
orthogonal to n1.
Right (d = 3): K1 and K2 are below and above the plane, respectively, and n1
points upwards, orthogonal to the plane. Surface S is the triangle; Et ∩ S is the
tinted polygonal area; and ∂Ωτ is a line segment with normal nS and tangent tS

1 ,
confined in S and oriented such that n1 = tS

1 × nS.

The calculation will use the fact that the normal field on the perturbed boundary ∂Ωt can be
computed by the formula

nt =
∇φt

|∇φt |

����
∂Ωt

. (6.24)

As previously mentioned, all calculations in this section will be made under assumption 6.4, that
is, that the boundary does not intersect any mesh points. A consequence of this assumption is
that the right side of expression (6.24) is well defined almost everywhere on ∂Ωt . However, due
to the jump discontinuities of ∇φt across elements boundaries, the final expression will involve
more terms, generated by these jumps, compared to the domain integral case above.

We start by introducing some additional notation that will be used throughout the rest of this
section. Figure 5 illustrates the definitions introduced below.
For each face S ∈ Sh not residing on ∂D, there are two adjacent elements K1,K2 ∈ Th such

that S̄ = K̄1 ∩ K̄2. Denote by n1 the normal to S directed towards K2 and by n2 = −n1 the
normal directed toward K1. Let t ∈ (0, tmax], and assume that the support of basis function
w in perturbation (6.2) has a nonempty intersection with Ω so that Et = Ω \ Ωt is nonempty.
Consider adjacent elements K1,K2 ∈ Th such that Et ∩ K1 and Et ∩ K2 are both nonempty. For
any τ ∈ [0, t], we define a unit vector nS located in S, outward directed from Ωτ ∩ S; for d = 3
we require nS to be orthogonal to the edge ∂Ωτ ∩ S. Note that the outward normal field on ∂Ωτ
may have a jump discontinuity at ∂Ωτ ∩ S and that vector nS is in the span of the normals on
∂Ωτ ∩ K1 and ∂Ωτ ∩ K2. For d = 3, there are also two opposite-directed tangent vectors tS

1, t
S
2 in
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Figure 6. Illustration for d = 2 (left) and d = 3 (right) of the co-normals mk
defined in expression (6.26). These are in the planes of ∂Ωτ ∩ Kk and normal to
the tangent vector tS

k along the edge ∂Ωτ ∩ S.

S to ∂Ωτ ∩ S. Given nk and nS, we choose the orientation of these tangent vectors such that

nk = tS
k × nS k = 1, 2. (6.25)

Since n2 = −n1, it follows that tS
2 = −tS

1 . Note that vectors n
S, tS

k are constant on ∂Ωτ ∩ S but
depend in general on τ, and that nk is constant on S.

For d = 2, S is a line segment, nS is parallel to S, orthogonal to nk , and it holds that n2 = QnS,
with Q =

( 0 −1
1 0

)
, and n1 = −n2. However, in order to unify the notation, we will also for

d = 2 use the notation (6.25), where nk and nS are regarded as extended, by zero in the third
component, into R3 using right-handed orientation, and where tS

2 = e3 and tS
1 = −e3.

The last piece of notation concerns co-normals mk which are normal to the edges of surface
patches ∂Ωτ ∩ Kk , as illustrated in Figure 6. Let n∂Ωτ∩Kk

be the outward-directed, with respect
to Ωτ, normal field on surface patch ∂Ωτ ∩ Kk . The co-normals are then defined by

mk = tS
k × n∂Ωτ∩Kk

. (6.26)

Note that the co-normals depend on τ ∈ [0, t]. Given a function f ∈ C0(T̄h) with jump
discontinuities at S, vector mk can be used to specify the limit function fk of f when approaching
∂Ωτ ∩ S from ∂Ωτ ∩ Kk . That is, for each x ∈ ∂Ωτ ∩ S,

fk(x) = lim
ε→0+

f (x − εmk). (6.27)

In the following, we will carry out integration over mesh surfaces that cut through Et , that is,
over nonempty Et ∩ S for some S ∈ Sh. To parametrize Et ∩ S, which is an object of dimension
d − 1, we use an analogous construction as in the proof of Lemma 6.5, which parametrized the
d-dimensional object Et ∩ K . Assumption 6.3, which was used in the proof, has an analogue for
each S ∈ Sh, as remarked in point 1 in the discussion after assumption 6.3. Hence, the following
results are proven in the same way as Lemma 6.5.

Lemma 6.8. Consider perturbation (6.2) for some t ∈ (0, tmax], according to assumption 6.3. Let
face S ∈ Sh be in the support of basis function w. Then, for some subface e ∈ Eh, there exists an
ê ⊂ e and a diffeomorphism X̂ : ê × (0, t) such that X̂

(
ê, (0, t)) = Et ∩ S and X̂(ê, τ) = ∂Ωτ ∩ S

for each τ ∈ (0, t).
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With the help of Lemma 6.8, we may now parametrize integrals over Et ∩ S and arrive at the
following result, whose proof is a precise analogue of the proof of Lemma 6.6,

Lemma 6.9. For S ∈ Sh, g ∈ C0(Et ∩ S), it holds that∫
Et∩S

g dS =
∫ t

0

∫
∂Ωτ∩S

g
w

|∂nSφτ |
dγ dτ. (6.28)

Note that φτ
��
S is differentiable in the n

S direction although it is not differentiable in the directions
orthogonal to S!

The crucial tool for the differentiation of J2 will be the following integration-by-parts formula
involving functions f and Θ containing jump discontinuities along mesh surfaces.

Lemma 6.10. Let t ∈ (0, tmax] according to assumption 6.3 and consider perturbation (6.2) .
Moreover, let f ∈ C1(T̄h) and Θ ∈ L∞(Et)d such that Θ|Et∩K ∈ C1(Et ∩ K)d for each K ∈ Th.
It holds that∑

K∈Th

∫
Et∩K

[(∇ ·Θ) f +Θ · ∇ f
]
dV

=

∫
∂Et

n ·Θ f dS +
∑

S∈Sh

∫ t

0

∫
∂Ωτ∩S

nS · J fΘ × tSK
w

|∂nS φτ |
dγ dτ, (6.29)

where
J fΘ × tSK = f1Θ1 × tS

1 + f2Θ2 × tS
2, (6.30)

in which tS
k is a tangent vector to ∂Ωτ ∩ S, related, through expression (6.25), to nS and a given

normal vector nk to the plane S. Moreover, fk and Θk are the limits of f and Θ on ∂Ωτ ∩ S
defined by

fk(x) = lim
ε→0+

f (x − εmk), Θk(x) = lim
ε→0+

Θ(x − εmk), ∀x ∈ ∂Ωτ ∩ S, (6.31)

where mk are the co-normals of expression (6.26).

Proof. Weassume the support of basis functionw in perturbation (6.2) has a nonempty intersection
with Ω so that Et = Ω \Ωt is nonempty; otherwise the statement is vacuously true. Let K ∈ Th,
integrate (∇ ·Θ) f by parts on Et ∩ K , and sum over all elements to find∑

K∈Th

∫
Et∩K

[(∇ ·Θ) f +Θ · ∇ f
]
dV

=

∫
∂Et

n ·Θ f dS +
∑

S∈Sh

∫
Et∩S

(
f1n1 ·Θ1 + f2n2 ·Θ2

)
dS. (6.32)

Note that the last term of formula (6.32) sums solely over mesh surfaces interior to Et and that
this term vanishes if f and the normal component of Θ are continuous between elements, which
will turn expression (6.32) into a “normal” integration-by-parts formula.

By lemma 6.9, the last integral in expression (6.32) satisfies∫
Et∩S

(
f1n1 ·Θ1 + f2n2 ·Θ2

)
dS =

∫ t

0

∫
∂Ωτ∩S

(
f1n1 ·Θ1 + f2n2 ·Θ2

) w

|∂nS φτ |
dγ dτ. (6.33)
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By expression (6.25), the properties of the triple product, and definition (6.30), it follows that

f1n1 ·Θ1 + f2n2 ·Θ2 = f1
(
tS
1 × nS) ·Θ1 + f2

(
tS
2 × nS) ·Θ2

= nS · ( f1Θ1 × tS
1 + f2Θ2 × tS

2
)
= nS · J fΘ × tSK

��
S .

(6.34)

Substituting identity (6.34) into expression (6.33), we find that∫
Et∩S

(
f1n1 ·Θ1 + f2n2 ·Θ2

)
dS =

∫ t

0

∫
∂Ωτ∩S

nS · J fΘ × tSK
w

|∂nS φτ |
dγ dτ, (6.35)

which substituted into expression (6.32) yields the result. �

Now we are ready to obtain the final expression for the semiderivative of J2.

Theorem 6.11. Consider perturbation (6.2) according to assumption 6.3 of a domain respecting
assumption 6.4. The semiderivative of boundary integral J2 in expression (6.4), for f ∈ C1(T̄h)
satisfies

dJ2(φ,w) = lim
t→0+

1
t
(
J2(φt) − J2(φ)

)
= −

∫
∂Ω

∂ f
∂n

w

|∂nφ| dS −
∑

S∈Sh

∫
∂Ω∩S

nS · J f mK
w

|∂nS φ|
dγ,

(6.36)

where nS is a unit vector located in S, outward-directed from Ω, and orthogonal to ∂Ω ∩ S
for d = 3. Moreover, J f mK = f1m1 + f2m2. Here, mk is the conormal for τ = 0 defined
in expression (6.26), and fk is the limit f on S defined by fk(x) = limε→0+ f (x − εmk) for
x ∈ ∂Ω ∩ S.

Remark 6.12. For d = 2, the second integral in expression (6.36) should be interpreted as a
point evaluation; that is, the expression simply is

dJ2(φ,w) = −
∫
∂Ω

∂ f
∂n

w

|∂nφ| dS −
∑

S∈Sh

nS ·
(
J f mK

w

|∂nS φ|

)����
∂Ω∩S

. (6.37)

Here nS is a unit vector along the face S, outward-directed from Ω.

Proof. Let t ∈ (0, tmax] according to assumption 6.3, and assume that the support of basis function
w in perturbation (6.2) has a nonempty intersection with Ω so that Et = Ω \ Ωt is nonempty.
(Otherwise, formula (6.36) is trivially true.)

Due to assumption 6.4, almost everywhere on ∂Ωτ, for τ ∈ [0, t], it holds for the normal field
on ∂Ωτ, outward-directed from Ωτ, that

nτ =
∇φτ
|∇φτ |

����
∂Ωτ

. (6.38)

Let K ∈ Th have a nonempty intersection with Et . Since the mapping X̂ of lemma 6.5 is an
diffeomorphism on Et ∩ K (and thus invertible), we may define the function ψ(t)K : Et ∩ K → RN

through its composition with X̂ such that

ψ(t)K

(
X̂(xS, τ)

)
=
∇φτ

(
X̂(xS, τ)

)��∇φτ (X̂(xS, τ)
) �� ∀(xS, τ) ∈ Ŝ × (0, t), (6.39)
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We moreover define the assembled function ψ(t) ∈ L∞(Et)N such that ψ(t)
��
Et∩K = ψ

(t)
K for each

K ∈ Th having nonempty intersection with Et . Functionψ(t) is constructed, using property (6.38),
so that, for K having nonempty intersection with Et ,

ψ(t)
��
∂Ωτ∩K = nτ

��
∂Ωτ∩K ∀τ ∈ (0, t). (6.40)

By the smoothness of mapping X̂ , function ψ(t) fulfills the conditions forΘ in lemma 6.10, which
implies that for f ∈ C1(T̄h),

∑
K∈Th

∫
Et∩K

[(∇ · ψ(t)) f + ∫
Et

ψ(t) · ∇ f
]
dV

=

∫
∂Et

n · ψ(t) f dS +
∑

S∈Sh

∫ t

0

∫
∂Ωτ∩S

nS · J fψ(t) × tSK
w

|∂nS φτ |
dγ dτ. (6.41)

Using lemma 6.6 and property (6.40), nonvanishing element contributions to the left side of
formula (6.41) satisfy∫

Et∩K

[(∇ · ψ(t)) f + ψ(t) · ∇ f
]
dV =

∫ t

0

∫
∂Ωτ∩K

(∇ · nτ︸︷︷︸
=κτ

f + nτ · ∇ f
) w

|∂nφτ | dγ dτ

=

∫ t

0

∫
∂Ωτ∩K

nτ · ∇ f
w

|∂nφτ | dγ dτ,
(6.42)

where κτ is the summed curvature of ∂Ωτ ∩ K , which vanishes since ∂Ωτ ∩ K is planar.
Regarding the first term on the right side of formula (6.41), note that ∂Et consists of two

parts, corresponding to the boundaries of ∂Ω and ∂Ωt , respectively (cf. Figure 3). Moreover, the
integrand of this term satisfies

n · ψ(t) f
��
∂Et
=

{
f on ∂Ω ∩ Et ,
− f on ∂Ωt ∩ Et,

(6.43)

where the minus sign is due to that n here denotes the outward-directed normal from Et , whereas
ψ(t), due to property (6.40), is directed outward from Ωτ; those directions are the same on ∂Ω
but opposite on ∂Ωt .

Expression (6.43) implies that the first term on the right side of formula (6.41) can be written∫
∂Et

n · ψt f dS =
∫
∂Ω∩Et

f dS −
∫
∂Ωt∩Et

f dS =
∫
∂Ω

f dS −
∫
∂Ωt

f dS, (6.44)

where the last equality follows from that ∂Ω = ∂Ωt outside of Et .
Recalling jump notation (6.30) and property (6.40), the triple product in the last integral of

formula (6.41) can be written

nS · J fψ(t) × tSK
���
∂Ωτ∩S

= nS · ( f1ψ
(t)
1 × tS

1 + f2ψ
(t)
2 × tS

2
) ���
∂Ωτ∩S

= nS · ( f1nτ,1 × tS
1 + f2nτ,2 × tS

2
) ���
∂Ωτ∩S

= nS · J f nτ × tSK
���
∂Ωτ∩S

= −nS · J f mK
���
∂Ωτ∩S

,

(6.45)
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where nτ,k = nτ
��
∂Ωτ∩Kk

and J f mK = f1m1 + f2m2, in which mk denotes the co-normals (6.26),
illustrated in Figure 6, and where fk is defined in expression (6.31).
Substituting expressions (6.42), (6.44), and (6.45) into formula (6.41) and rearranging, we

find that∫
∂Ω

f dS −
∫
∂Ωt

f dS

=

∫ t

0

∫
∂Ωτ

nτ · ∇ f
w

|∂nφτ | dτ dS +
∑

S∈Sh

∫ t

0

∫
∂Ωτ∩S

nS · J f mK
w

|∂nS φτ |
dτ dS. (6.46)

Finally, dividing by t and passing to the limit, we find

dJ2(φ,w) = lim
t→0+

1
t
(
J2(φt) − J2(φ)

)
= lim

t→0+
1
t

(∫
∂Ωt

f dS −
∫
∂Ω

f dS
)

= −
∫
∂Ω

∂ f
∂n

w

|∂nφ| dS −
∑

S∈Sh

∫
∂Ω∩S

nS · J f mK
w

|∂nS φ|
dS,

(6.47)

which is the claim. �
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