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1. INTRODUCTION

The present paper continues our studies in [4, 5]. Our main aim here is to show the well-
posedness of some important differential complementarity problems and frictionless contact
problems by utilizing our recent well-posedness theorem in [4] on integro-differential sweeping
process.

The sweeping process was introduced and largely treated by J. J. Moreau in a series of papers,
in particular in [12, 13]. It was shown in [12] that such processes play a fundamental role in
mechanics, especially in elasto-plasticity, quasi-statics, dynamics. The mathematical model of
the sweeping process (see [12, 13]) corresponds to a point which is swept by a moving closed
convex set C(t) in a Hilbert space H according to the differential inclusion{

−ẋ(t) ∈ NC(t)(x(t)) a.e. t ∈ [T0,T ]
x(T0) = x0 ∈C(T0),

(1.1)
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where T0,T ∈ R with 0≤ T0 < T and NC(t)(·) denotes the normal cone of C(t) (in the standard
sense). The analysis of systems with external forces (see, e.g., [7, 20] and [6] for more details)
led to consider and analyze the following perturbed variant{

−ẋ(t) ∈ NC(t)(x(t))+ f (t,x(t)) a.e. t ∈ [T0,T ]
x(T0) = x0 ∈C(T0),

(1.2)

where f : [T0,T ]×H → H is a Carathéodory mapping, i.e., f (t, ·) is continuous and f (·,x) is
Bochner measurable for [T0,T ] endowed with the Borel σ -field B([T0,T ]). By Bochner mea-
surable mapping we mean here any limit of uniformly convergent sequence of simple mappings
from [T0,T ] into H with [T0,T ] endowed with its Borel σ -field.

In [4, 5] we studied a general integro-differential sweeping process of Volterra type in the
form (Pf1, f2),

−ẋ(t) ∈ NC(t)(x(t))+ f1(t,x(t))+
t∫

T0

f2(t,s,x(s))ds a.e. t ∈ [T0,T ]

x(T0) = x0 ∈C(T0),

(1.3)

where C(t) is a prox-regular moving set of the Hilbert space H (see Section 2 for the definition
of such sets) and NC(t)(·) is its normal cone. Many differential complementarity problems have
been studied through sweeping processes in the form (1.2) by, e.g., Adly [1] and Adly et al
[2, 3]. Sofonea et al [9, 11, 16, 17, 18] largely employed the sweeping process (1.2) to analyze
several types of contact mechanical problems. In this work, we show how our analysis in [4]
of integro-differential sweeping process of type (1.3) furnishes an efficient approach to study
integro-differential complementarity problems and frictionless contact mechanical problems.

2. WELL-POSEDNESS OF INTEGRO-DIFFERENTIAL SWEEPING PROCESSES

Throughout the paper, H denotes a Hilbert space endowed with its inner product 〈·, ·〉 and
associated norm ‖ ·‖. We use standard notation with BH(x,δ ) (resp. BH [x,δ ]) as the open (resp.
closed) ball around x∈H with radius δ > 0. When there is no risk of ambiguity, we will remove
the subscript H. Let S be a subset of H. Considering the distance function and the projection
multimapping

dS(x) = d(x,S) := inf
y∈S
‖x− y‖ and ΠS(x) :=

{
w ∈ S

∣∣ ‖x−w‖= dS(x)
}
, for all x ∈ H,

the basic proximal normal cone NS(x) to S at x can be defined by

NS(x) :=
{

v ∈ Rn∣∣ ∃α > 0 such that x ∈ΠS(x+αv)
}

if x ∈ S (2.1)

and by NS(x) := /0 otherwise, see e.g., [15, 19] for equivalent descriptions and further references.
Notice that the cone NS(x) is convex but it may not be closed.
Based on (2.1), we describe now the concept of prox-regularity of sets, it plays a fundamental
role in variational analysis and the theory of sweeping processes. The set S in H is said to be
r-prox-regular for an extended real r ∈]0,∞], if it is closed and if for all x ∈ bdS (the boundary
of S) and v ∈ NS(x) with ‖v‖= 1 one has

BH [x+ηv,η ]∩S = {x} for every real η ∈]0,r[,



INTEGRO-DIFFERENTIAL SWEEPING PROCESS 3

which is equivalent to

〈v,y− x〉 ≤ |v|
2r
|y− x|2 for all y ∈ S, x ∈ bdS and v ∈ NS(x). (2.2)

We refer the reader to [14, 15, 19] and the references therein for more details and several ref-
erences. It is also worth mentioning that any closed convex subset in H is r-prox-regular with
r = ∞.

Next, we present our important result in [4] ensuring the existence and uniqueness issues
for the generalized integro-differential sweeping process (1.3). The result will be used several
times in the sequel.
Our study in [4] of problem (1.3) is based on a new Gronwall-like differential inequality and
on a new semi-discretization method for perturbed sweeping processes. Recently, in another
paper [5] we also proved the solvability of another version of the same problem by setting up
an appropriate catching-up algorithm (full discretization).

Consider for a multimapping C : [0,T ]⇒ H and mappings f1, f2 the following assumptions:

(H1) For each t ∈ I := [T0,T ], C(t) is a nonempty closed subset of H which is r-prox-regular
for some constant r ∈]0,+∞], and has an absolutely continuous variation in the sense
that there is some absolutely continuous function υ : [T0,T ]−→ R such that

C(t)⊂C(s)+ |υ(t)−υ(s)|BH [0,1], ∀ t,s ∈ [T0,T ]. (2.3)

(H2) The mapping f1 : [T0,T ]×H −→ H is Bochner measurable in time (i.e., f (·,x) is
Bochner measurable for each x ∈ H), and such that

(H2,1) there exists a non-negative function β1(·) ∈ L1([T0,T ],R) such that

‖ f1(t,x)‖ ≤ β1(t)(1+‖x‖), for all t ∈ [T0,T ] and for any x ∈
⋃

t∈[T0,T ]

C(t).

(H2,2) for each real η > 0 there exists a non-negative function Lη

1 (·) ∈ L1([T0,T ],R) such
that for any t ∈ [T0,T ] and for any (x,y) ∈ BH [0,η ]×BH [0,η ],

‖ f1(t,x)− f1(t,y)‖ ≤ Lη

1 (t)‖x− y‖.

(H3) The mapping f2 : [T0,T ]2×H −→ H is Bochner measurable in (s, t) ∈ [T0,T ]2 (i.e.,
f2(·, ·,x) is Bochner measurable on [T0,T ]2 for each x ∈ H) and such that

(H3,1) there exists a non-negative function β2(·, ·) ∈ L1(Q∆,R) such that

‖ f2(t,s,x)‖ ≤ β2(t,s)(1+‖x‖), for all (t,s) ∈ Q∆ and for any x ∈
⋃

t∈[T0,T ]

C(t).

(H3,2) for each real η > 0 there exists a non-negative function Lη

2 (·) ∈ L1([T0,T ],R) such
that for all (t,s) ∈ Q∆ and for any (x,y) ∈ B[0,η ]×B[0,η ],

‖ f2(t,s,x)− f2(t,s,y)‖ ≤ Lη

2 (t)‖x− y‖.

Above L1([T0,T ],R) (resp. L1(Q∆,R)) stands for the space of Lebesgue integrable functions on
[T0,T ] (resp. Q∆), where

Q∆ := {(t,s) ∈ [T0,T ]× [T0,T ] : s≤ t}.
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We are now in a position to recall our theorem in [4] on the well-posedness of integro-
differential sweeping processes. For the knowledge of the reader, the result is recalled in its
full statement. We refer to [4] for the proof.

Theorem 2.1 ([4]). Let H be a real Hilbert space and assume that (H1), (H2) and (H3) are
satisfied. Then for any initial point x0 ∈ H with x0 ∈ C(T0), there exists a unique absolutely
continuous solution x : [T0,T ]−→H of the differential inclusion (Pf1, f2). This solution satisfies:

(1) For a.e. t ∈ [T0,T ]

‖ẋ(t)+ f1(t,x(t))+
t∫

T0

f2(t,s,x(s))ds‖ ≤ |υ̇(t)|+‖ f1(t,x(t))‖+
t∫

T0

‖ f2(t,s,x(s))‖ds.

(2) If
T∫

T0

[
β1(τ)+

τ∫
T0

β2(τ,s)ds
]

dτ <
1
4

, one has

‖ f1(t,x(t))‖ ≤ (1+M)β1(t), for all t ∈ [T0,T ],

‖ f2(t,s,x(s))‖ ≤ (1+M)β2(t,s), for all (t,s) ∈ Q∆,

and for almost all t ∈ [T0,T ]∥∥∥∥ẋ(t)+ f1(t,x(t))+
t∫

T0

f2(t,s,x(s))ds
∥∥∥∥≤ (1+M)

(
β1(t)+

t∫
T0

β2(t,s)ds
)
+ |υ̇(t)|,

where M := 2
(
‖x0‖+

T∫
T0

|υ̇(τ)|dτ +
1
2

)
.

(3) Assume the following strengthened form of assumption (H3,1) on the function f2 holds:
(H ′

3,1) : there exist non-negative functions α(·) ∈ L1([T0,T ],R) and g(·) ∈ L1(Q∆,R)
such that

‖ f2(t,s,x)‖ ≤ g(t,s)+α(t)‖x‖, for any (t,s) ∈ Q∆ and any x ∈
⋃

t∈[T0,T ]

C(t).

Then one has

‖x(t)‖ ≤ M̃,

‖ f1(t,x(t))‖ ≤ (1+ M̃)β1(t), for all t ∈ [T0,T ],

‖ f2(t,s,x(s))‖ ≤ g(t,s)+α(t)M̃, for a.e. (t,s) ∈ Q∆,

and for almost all t ∈ [T0,T ]

‖ẋ(t)+ f1(t,x(t))+
t∫

T0

f2(t,s,x(s))ds‖ ≤|υ̇(t)|+(1+ M̃)β1(t)+
t∫

T0

g(t,s)ds+T α(t)M̃,
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where

M̃ := ‖x0‖exp
( T∫

T0

(b(τ)+1)dτ

)

+ exp
( T∫

T0

(b(τ)+1)dτ

) T∫
T0

(
|υ̇(s)|+2β1(s)+2

T∫
T0

g(s,τ)dτ

)
ds,

and b(t) := 2max{β1(t),α(t)} for all t ∈ [T0,T ].

3. NONLINEAR INTEGRO-DIFFERENTIAL COMPLEMENTARITY SYSTEMS

In the present section, we show how Theorem 2.1 allows us to derive the existence and
uniqueness of solutions for nonlinear integro-differential complementarity systems (NIDCS),
our results complements those in [3].

Let T > T0 be real numbers, I = [T0,T ], n,m ∈ N, f1 : I×Rn −→ Rn, f2 : I2×Rn −→ Rn

and g : I×Rn −→ Rm be given mappings. For u1,u2 ∈ Rm we will write 0 ≤ u1 ⊥ u2 ≤ 0 to
mean that u1 ∈Rm

+, u2 ∈−Rm
+ and 〈u1,u2〉= 0, where 〈·, ·〉 is the canonic scalar product in Rm.

Assuming that g(t, ·) is differentiable for each t ∈ I and denoting ∇2g(t,y) the gradient of g(t, ·)
at y, the NIDCS (associated with f1, f2 and g) can be described as

(NIDCS):


−ẋ(t) = f1(t,x(t))+

t∫
T0

f2(t,s,x(s))ds+∇2 g(t,x(t))T z(t)

0≤ z(t)⊥ g(t,x)≤ 0,

where z : I −→ Rm is unknown mapping. The term ∇2 g(t,x(t))T z(t) can be seen as the gener-
alized reactions due to the constraints in mechanics.
For a mapping z : [T0,T ]→ Rm we note that

z(t) ∈ Rm
+ and 〈z(t),g(t,x)〉= 0 ⇐⇒ z(t) ∈ NRm

+
(g(t,x)).

So, proceeding as, for example, in [3, Section 9.2] with 9.2−9.3 therein, (NIDCS) is equivalent
to

− ẋ(t) ∈ NC(t)(x(t))+ f1(t,x(t))+
t∫

T0

f2(t,s,x(s))ds, (3.1)

where

C(t) := {x ∈ Rn : g1(t,x)≤ 0, g2(t,x)≤ 0, ...,gm(t,x)≤ 0}, (3.2)

and where we set g(t, ·) = (g1(t, ·),g2(t, ·), ...,gm(t, ·)) for each t ∈ I.

Theorem 3.1. [3] Let C(t) be defined as in (3.2) and assume that, there exists an extended real
ρ ∈]0,+∞] such that

(1) for all t ∈ I, for all k ∈ {1, ...,m}, gk(t, ·) is continuously differentiable on Uρ(C(t)) :=
{y ∈ Rn : dC(t)(y)< ρ}.
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(2) there exists a real γ > 0 such that, for all t ∈ I, for all k ∈ {1, ...,m}, and for all x,y ∈
Uρ(C(t))

〈∇2 gk(t,x)−∇2 gk(t,y),x− y〉 ≥ −γ‖x− y‖2,

that is, ∇2 gk(t, ·) is γ-hypomonotone on Uρ(C(t)).
(3) there is a real δ > 0 such that for all (t,x) ∈ I×Rn with x ∈ bd(C(t)) (the boundary of

C(t)), there exists ῡ ∈ B[0,1] satisfying, for all k ∈ {1, ...,m}
〈∇2 g(t,x), ῡ〉 ≤ −δ . (3.3)

Then for every t ∈ I, the set C(t) is r-prox-regular with r = min
{

ρ,
δ

γ

}
.

The nonlinear differential complementarity system (NDCS) (i.e., (NIDCS) with f2 ≡ 0 ) was
studied in [3], where the authors transform the (NDCS) involving inequality constraints C(t)
to a perturbed sweeping process in the form (1.2). We extend this approach by employing
the above transformation of (NIDCS) into an integro-differential sweeping process of the form
(1.3). Also, in contrast to [3], we do not assume that the moving set C(t) described by a finite
number of inequalities is absolutely continuous with respect to the Hausdorff distance. Rather,
inpired by [2] we provide sufficient verifiable conditions ensuring this type of regularity needed
on C(·).

Proposition 3.2. Let C(t) be defined as in (3.2). Assume that there exist an absolutely continu-
ous function w, a real δ > 0 and a vector y ∈Rn with ‖y‖= 1 such that for any i = 1, ...,m and
any s, t ∈ I

gi(t,x)≤ gi(s,x)+ |w(t)−w(s)|, for all x ∈Ur(C(s)), (3.4)
〈∇2 gi(t,x),y〉 ≤ −δ , for all t ∈ I, x ∈Ur(C(t)), (3.5)

where r denotes the prox-regularity constant of all sets C(t). Then C(·) is absolutely continuous
on I in the sense of (2.3) with υ(·) := δ−1w(·).

Proof. Let δ ,y and w(·) be as given in the statement. Let s, t ∈ I, let x ∈ C(s) and choose a

subdivision T0 < T1 < ... < Tp = T such that

Tk∫
Tk−1

|υ̇(τ)|dτ < r for every k = 1, ..., p. Fix any

k = 1, ..., p and s, t ∈ [Tk−1,Tk]. Take any i = 1, ...,m and note that

gi(t,x+ |υ(t)−υ(s)|y) = (gi(t,x+ |υ(t)−υ(s)|y)−gi(s,x+ |υ(t)−υ(s)|y))
+gi(s,x+ |υ(t)−υ(s)|y)
≤ |w(t)−w(s)|+gi(s,x+ |υ(t)−υ(s)|y)
= |w(t)−w(s)|+gi(s,x)

+

1∫
0

〈∇2 gi(s,x+θy|υ(t)−υ(s)|),y|υ(t)−υ(s)|〉dθ .

According to (3.5) and to the inclusion x ∈C(s) it ensues that

gi(t,x+ |υ(t)−υ(s)|y)≤ |w(t)−w(s)|−δ |υ(t)−υ(s)| ≤ 0.

This being true for every i= 1, ...,m, it follows that x+ |υ(t)−υ(s)|y belongs to C(t), otherwise
stated, x ∈C(t)+ |υ(t)−υ(s)|(−y). It results that C(s)⊂C(t)+ |υ(t)−υ(s)|B[0,1]. Since the
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variables s and t play symmetric roles, the multimapping C(·) has an absolutely continuous vari-
ation on [Tk−1,Tk] in the sense of (2.3). From this we clearly derive that C(·) has an absolutely
continuous variation on I. �

Example 3.3. Let m = 1, n = 2, T0 = 0, T = 1, g(t,x) = t
1
3 − x1− x2

2, and define

C(t) = {x ∈ R2 : g(t,x)≤ 0}.

Clearly, C(t) is r-prox-regular, since g(t, ·) satisfies all assumptions of Theorem 3.1 for all t ∈ I.
Now we check (3.4) and (3.5). Let x ∈ R2, t,s ∈ I. Fix any δ ∈ (0,1] and put y = (1,0). Then
for w(t) := t1/3 we have

g(t,x)−g(s,x) = t
1
3 − s

1
3 ≤ |t

1
3 − s

1
3 |= |w(t)−w(s)|,

〈∇2 g(t,x),y〉=−1≤−δ .

We see that w(t) = t1/3 is not Lipschitz on I but it is absolutely continuous there. Then C(·) has
an absolutely continuous variation υ on I in the sense of (2.3), with υ(t) = t1/3/δ .

Theorem 3.4. Assume that, with f1, f2 and g as avove, the assumptions in Theorem 3.1 and
Proposition 3.2 hold and that conditions (H2), (H3) are satisfied. Then, for every initial data
x0 with g(0,x0)≤ 0, problem (NIDCS) has one and only one solution x(·).

Proof. Like, for example, in [3, Section 9.2], the result follows from the above equivalence
between the problem (NIDCS) and the integro-differential sweeping process (3.1) since all
assumptions of Theorem 2.1 are satisfied according to Theorem 3.1 and Proposition 3.2. �

4. AN INTEGRO-DIFFERENTIAL SWEEPING PROCESS APPROACH TO A FRICTIONLESS

CONTACT PROBLEM

This section is concerned with another application of Theorem 2.1. Here we consider an im-
portant frictionless contact problem. We need first to introduce some preliminaries and notation
which will be employed in the description of the contact problem.
Let d ∈ {1,2,3} and let Sd denote the space of second-order symmetric tensors on Rd , or equiv-
alently, the space of symmetric matrices of order d. As usual for mechanical contact problems,
generic vectors and tensors in Rd and Sd will be denoted by boldface characters, and index no-
tation will be utilized for their components, so ζ ∈Rd and α ∈ Sd can be written as ζ = (ζi) and
α = (αi j). The zero elements of the spaces Rd and Sd will be denoted 0Rd and 0Sd respectively.
The inner product and norm on Rd and Sd are canonically defined by

ζ ·ξ = ∑
i

ζi ·ξi, ‖ζ‖= (ζ ·ζ )
1
2 for all ζ = (ζi), ξ = (ξi) ∈ Rd,

α ·β = ∑
i, j

αi j ·βi j, ‖α‖= (α ·α)
1
2 for all α = (αi j), β = (βi j) ∈ Sd,

where the indices i, j in the above sums run from 1 to d. Here it is convenient to denote ζ · ξ
the inner product instead of 〈ζ ,ξ 〉.
We consider a viscoelastic body which occupies a domain Ω⊂ Rd with Lipschitz boundary Γ.
We denote by Ω = Ω∪Γ the closure of Ω in Rd . The boundary Γ is decomposed into three parts
Γ1, Γ2 and Γ3 with Γ1, Γ2 and Γ3 being relatively open and mutually disjoint and, moreover,
the (area/surface) measure meas(Γ1) relative to Γ is positive, i.e., meas(Γ1)> 0.
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As usual, H1(Ω) is the Sobolev space of real-valued functions in L2(Ω) with first order distri-
butional derivatives in L2(Ω) as well. Denoting H1(Ω)d the space of mappings v : Ω→Rd with
vi ∈ H1(Ω), i = 1, · · · ,d, we will use the spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1},

Q = {θ = (θi j) : θi j = θ ji ∈ L2(Ω)}.
The spaces Q and V are endowed with the canonical inner products given by

(θ ,τ)Q =
∫
Ω

θ · τ dx, (u,v)E =
∫
Ω

ε(u) · ε(v)dx = (ε(u),ε(v))Q.

Here ε represents the deformation operator, that is

ε(u) = (εi j(u)), εi j(u) =
1
2

(
∂ ui

∂ x j
+

∂ u j

∂ xi

)
, i, j = 1, . . . ,d,

and the index ”E ” is utilized to emphasize that the inner product (u,v)E is constructed by means
of the function ε(·). Put ‖τ‖ = (τ,τ)

1/2
Q and ‖v‖E = (v,v)1/2

E . The space Q endowed with the
inner product (·, ·)Q and the associated norm ‖ · ‖Q is clearly a Hilbert space. Regarding V ,
by the assumption meas(Γ1) > 0 Korn’s inequality (see, e.g., [10, Lemma 6.2, p 115]) tells us
that for some constant κ > 0 we have κ‖v‖H1(Ω)d ≤ ‖v‖E for all v ∈ V , and from this and the
definition of ‖ · ‖E we see that ‖ · ‖E is a norm on V which is equivalent to ‖ · ‖H1(Ω)d on V .
Therefore, the space V endowed with the inner product (·, ·)E and the associated norm ‖ · ‖E is
also a Hilbert space.
For a vector v ∈ V , its normal and tangential components are vν = v · ν and vτ = v− vνν ,
respectively, where ν denotes the outward unit normal vector to the boundary Γ. The normal
and tangential components of the stress tensor σ on the boundary Γ are denoted by σν =(σν) ·ν
and σ τ = σν−σνν , respectively. In addition, we recall that the Sobolev trace theorem yields

‖v‖L2(Γ3)d ≤ c‖v‖E for all v ∈V, (4.1)

c being a positive constant which depends on Ω, Γ1 and Γ3.
Next, we recall that the following Green’s formula holds:∫

Ω

σ · ε(v)dx+
∫
Ω

Divσ · vdx =
∫
Γ

σν · vda for all v ∈ H1(Ω)d, (4.2)

where Div denotes the divergence operator given by Divσ = (∑
j

∂σi j
∂x j

), that is, the sum ∑
j

∂σi j
∂x j

is

the i-th component of Divσ .
Let Q∞ be the space of fourth order tensor fields given by

Q∞ = {e = (ei jkh) : ei jkh = e jikh = ekhi j ∈ L∞(Ω), 1≤ i, j,k,h≤ d}.

It is easy to see that Q∞ is a real Banach space with the norm

‖e‖Q∞

= max
1≤i, j,k,h≤d

‖ei jkh‖L∞(Ω),

and, moreover,
‖eτ‖Q ≤ d‖e‖Q∞

‖τ‖Q for all e ∈ Q∞, τ ∈ Q, (4.3)
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where eτ is the tensor function in Q given by its i, j components as eτ = (∑
k,h

ei jkhτkh). More on

actions of tensors on vectors and matrices can be found, e.g., in [8].
Classically, for u : Ω× [0,T ]→ Rd and σ : Ω× [0,T ]→ Sd it can be convenient (as below) to
denote by u(t) and σ(t) the mappings u(·, t) and σ(·, t).

We can now present the frictionless contact problem which we are interested in. It is a
quasistatic problem which models the contact between a deformable body and an obstacle, the
so-called foundation. The material is assumed to have a viscoelastic behavior which is modeled
by a constitutive law with long-term memory, thus, at each moment of time, the stress tensor
depends not only on the present strain tensor, but also on its whole history. The contact is
frictionless and is modeled by the well-known Signorini conditions. We refer to [9, 11, 16, 18]
for the modeling details of this kind of problem. For our purpose of motivation, the main
concern is to derive a formulation of the problem, expressed in terms of integro-differential
sweeping process, and to prove its unique solvability under mild regularity hypotheses.

The formulation of the problem is as follows.

Problem 1. Find u : Ω× [0,T ]→Rd and σ : Ω× [0,T ]→ Sd with ui(·, t) and σi j(·, t) in H1(Ω)
such that for a.e. t ∈]0,T [

σ(t) = A ε(u̇(t))+B(t,ε(u(t)))+
t∫

0

R(t− s)ε(u(s))ds in Ω, (4.4)

Divσ(t)+ f 0(t) = 0 in Ω, (4.5)

σ(t)ν = f N(t) on Γ2, (4.6)

uν(t)≤ 0, σν(t)≤ 0, σν(t)uν(t) = 0, σ τ(t) = 0 on Γ3, (4.7)
and

u(t) = 0 on Γ1×]0,T [, (4.8)

u(0) = u0 in Ω. (4.9)

Here, A : Ω×Sd→ Sd , R : [0,T ]→Q∞, B : [0,T ]×Q→Q are prescribed mappings, and B
is defined in the form B(t,θ)(x) =B0(x, t,θ(x)) for all x∈Ω, where B0 : Ω×]0,T [×Sd→ Sd .

Let us give a short description of the conditions in Problem 1. Equation (4.4) represents
the viscoelastic constitutive law with long memory in which A , B and R denote the viscos-
ity, elasticity and relaxation operators, respectively. Equations of type (4.4) are related to the
Kelvin-Voigt law, so when R vanishes, (4.4) reduces to the well known Kelvin-Voigt constitu-
tive law extensively studied in the literature, see Shillor, Sofonea and Telega [16, Chapter 8],
and the references therein. Equation (4.5) is the equilibrium equation, while conditions (4.8)
and (4.6) are the displacement and traction boundary conditions, respectively. Conditions (4.7)
represent the frictionless Signorini contact conditions in which uν denotes the normal displace-
ment, σν represents the normal stress, and σ τ is the tangential stress on the potential contact
surface. Finally, (4.9) represents the initial condition in which u0 is the initial displacement
field.

We consider the following usual hypotheses (see, e.g., [17]):

H(A ): The viscosity tensor A = (ai jkh) : Ω×Sd→ Sd satisfies the natural standard properties
of symmetry and ellipticity:
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(a) ai jkh ∈ L∞(Ω).
(b) A σ · τ = σ ·A τ for all σ ,τ ∈ Sd , a.e. in Ω.
(c) ∃mA > 0 : A τ · τ ≥ mA ‖τ‖2

Sd for all τ ∈ Sd , a.e. in Ω.
We recall that the i, j component of the tensor function A τ is ∑

kh
ai jkhτkh.

H(B): The mapping B0 : Ω×]0,T [×Sd → Sd is such that
(a) There is LB ≥ 0 such that

‖B0(x, t,α1)−B0(x, t,α2)‖Sd ≤ LB‖α1−α2‖Sd for all α1,α2 ∈ Sd, a.e. (x, t) ∈Ω×]0,T [.

(b) B0(·, ·,ε) is Borel measurable on Ω×]0,T [ for all ε ∈ Sd .
(c) B0(·, t,0Sd) belongs to Q for all t ∈]0,T [.

H(R, f 0, f N): The prescribed relaxation tensor R and densities of body forces f 0 and surface
tractions f N are such that

(a) R ∈ C ([0,T ],Q∞).
(b) f 0 ∈ C ([0,T ],L2(Ω)d).
(c) f N ∈ C ([0,T ],L2(Γ2)

d).
Let us turn to an analysis of any eventual solution of Problem 1 (if any).

To this end we assume in what follows that the viscosity and elasticity operators satisfy assump-
tions H(A ) and H(B), respectively. The relaxation operator, the densities of body forces and
the surface tractions satisfy the assumption H(R, f 0, f N).
We also introduce the set of admissible displacements fields, defined by

U = {v ∈V : vν ≤ 0 a.e. on Γ3}, (4.10)

and we note that U is a closed convex subset of V such that 0V ∈U . And, finally, the initial
displacement satisfies u0 ∈U . For u,v ∈V let

(u,v)V = (A ε(u),ε(v))Q, ‖u‖V = (u,u)
1
2
V . (4.11)

Using the assumption H(A ) we obtain that (·, ·)V is an inner product on V and ‖ · ‖V and ‖ · ‖E
are equivalent norms on V . Therefore, (V,‖ · ‖V ) is a real Hilbert space.
Next, with the volume measure dx and the area/surface measure da on Γ, we notice that

v 7→
∫
Ω

f 0(t) · vdx+
∫
Γ2

f N(t) · vda ∀v ∈V, t ∈ [0,T ],

is a continuous linear functional on the space V . Therefore, we may apply the Riesz represen-
tation theorem to define the element f (t) ∈V by the equality

( f (t),v)V =
∫
Ω

f 0(t) · vdx+
∫
Γ2

f N(t) · vda ∀v ∈V, t ∈ [0,T ]. (4.12)

Let (u,σ) be a pair of feasible functions, satisfying (4.4)-(4.9). Fix any t in a suitable (full
Lebesgue measure) subset of ]0,T [ over which (4.4)-(4.7) hold. Let v ∈U . Using the Green
formula (4.2) and using (4.5) we have∫

Ω

σ(t) · (ε(v)− ε(u(t)))dx =
∫
Γ

σ(t)ν · (v−u(t))da+
∫
Ω

f 0(t) · (v−u(t))dx.
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From the boundary conditions (4.8), (4.6) and the following decomposition formula σ(t)ν ·(v−
u(t)) = σν(t)(vν −uν(t))+σ τ(t) · (vτ −uτ(t)) on Γ3, it ensues that∫

Ω

σ(t) · (ε(v)− ε(u(t)))dx =
∫
Γ2

f N(t) · (v−u(t))da+
∫
Γ3

σν(t)(vν −uν(t))da

+
∫
Γ3

σ τ(t) · (vτ −uτ(t))da+
∫
Ω

f 0(t) · (v−u(t))dx.
(4.13)

Using (4.10) and putting (4.7) into (4.13) we obtain∫
Ω

σ(t) · (ε(v)− ε(u(t)))dx≥
∫
Γ2

f N(t) · (v−u(t))da+
∫
Ω

f 0(t) · (v−u(t))dx. (4.14)

The inequality (4.14), the constitutive law (4.4) and the initial conditions (4.9) yield that any
solution of Probem 1 is a solution of the following Problem 2.

Problem 2. Find the displacement field u : [0,T ]→V , such that

(
A ε(u̇(t)),ε(v)− ε(u(t))

)
Q +

(
B(t,ε(u(t))),ε(v)− ε(u(t))

)
Q

+

( t∫
0

R(t− s)ε(u(s))ds,ε(v)− ε(u(t))
)

Q
≥ ( f (t),v−u(t))V ∀v ∈U,

u(0) = u0, u(t) ∈U for t ∈ [0,T ].

(4.15)

We will see below that Problem 2 has one and only one solution. Thus, consider the unique
solution u of Problem 2. Let D := D(Ω;Rd) = C ∞

0 (Ω;Rd) denote the space of all mappings
defined on Ω with values in Rd which are infinitely differentiable and have compact support in
Ω. Consider any ϕ ∈ D and take v := u(t)+ϕ . Clearly, v ∈U since D(Ω;Rd) ⊂U . Then by
the inequality in (4.15), by (4.4) and (4.12) we have in the sense of distribution that

〈σ(t),ε(ϕ)〉D′×D ≥ 〈 f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd) a.e. t ∈ [0,T ].

We perform integrations by parts to obtain that

〈−Divσ(t),ϕ〉D′×D ≥ 〈 f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd).

Similarly, taking v := u(t)−ϕ and using the same arguments we also have that

〈−Divσ(t),ϕ〉D′×D ≤ 〈 f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd).

So, it follows that
Divσ(t)+ f 0(t) = 0.

On the other hand, it is clear by definition of the spaces V and U that

u(t) = 0 on Γ1× [0,T ],

and for a.e. t ∈]0,T [
uν(t)≤ 0, on Γ3.

Notice also that u(0) = u0 in Ω.
Suppose in addition that the mapping u is smooth, in the sense that u(·, t) ∈ C 2(Ω), and that Γ2
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and Γ3 are C ∞-smooth for example. Then Theorem 6.3 in the book [10] of Kikuchi and Oden
along with the comments subsequent to that theorem in that book, ensue that for a.e. t ∈]0,T [

σ(t)ν = f N(t) on Γ2,

σν(t)≤ 0, σν(t)uν(t) = 0, σ τ(t) = 0 on Γ3.

So, under the above smoothness conditions, u is solution of Problem 1.

To summarize, Problem 2 admits one and only one solution (as we will see below), and any
solution of Problem 1 (if any) coincides with the solution of Problem 2. Furthermore, under the
above regularity of Γ2 and Γ3, if the unique solution u of Problem 2 possesses the regularity
u(·, t) ∈ C 2(Ω), then it is a solution of Problem 1. The conclusion is that the unique solution
u of Problem 2 (furnished by the next theorem) is a right weak solution for the concerned
Problem 1.

After the preceding analysis, we establish our existence and uniqueness result for Problem 2.

Theorem 4.1. Under the above assumptions, for each u0 ∈U, Problem 2 has a unique abso-
lutely continuous solution u.

Proof. The proof consists of two parts in which we rewrite Problem 2 in an equivalent form
of integro-differential sweeping process and apply the result of Theorem 2.1. To this end,
denoting by L (V ) the space of continuous linear operators from V into itself, we apply the
Riesz representation theorem to define the operators B : [0,T ]×V →V and R : [0,T ]→L (V )
by

(B(t,v),w)V =
(
B(t,ε(v)),ε(w)

)
Q (R(t)v,w)V =(R(t)ε(v),ε(w))Q for all v,w∈V, t ∈ [0,T ].

(4.16)
Moreover, using (4.11) and inequality (4.15), we derive the following variational inequality for
a.e. t ∈]0,T [

(
u̇(t),v−u(t)

)
V +

(
B(t,u(t)),v−u(t)

)
V

+

( t∫
0

R(t− s)u(s)ds,v−u(t)
)

V
≥ ( f (t),v−u(t))V for all v ∈U,

(4.17)

along with u(0) = u0 and u(t) ∈U . Then, the variational inequality (4.17) subject to the latter
conditions is equivalent to the following integro-differential inclusion

−u̇(t) ∈ NU(u(t))+B(t,u(t))− f (t)+
t∫

0

R(t− s)u(s)ds a.e. t ∈ [0,T ]

u(0) = u0 ∈U.

(4.18)

Now, we prove the existence and uniqueness result for problem (4.18), by applying Theorem
2.1. In what follows, we will verify that the data of problem (4.18) satisfy hypotheses of Theo-
rem 2.1 on the space H =V .

(I). Clearly, C(·) =U satisfies (H1) since U is a fixed nonempty closed convex subset of V .

(II). The function f1 defined by f1(t,v) = B(t,v)− f (t) for all t ∈ [0,T ] and all v ∈ V satisfies
for some real constant k > 0 the hypothesis (H2) with β1(t) = max(k2LB,k‖B(t,0Sd)‖Q +
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‖ f (t)‖V ) and L1(t) = k2LB for all t ∈ [0,T ].
Indeed, by definition of the operator B in (4.16) we see for all v ∈V and all t ∈ [0,T ] that

‖B(t,v)‖2
V =

(
B(t,v),B(t,v)

)
V =

(
B(t,ε(v)),ε(B(t,v))

)
Q

≤ ‖B(t,ε(v))‖Q · ‖ε(B(t,v))‖Q = ‖B(t,ε(v))‖Q · ‖B(t,v)‖E ,

so recalling that the norms ‖ · ‖V and ‖ · ‖ε are equivalent we obtain some real constant k > 0
such that for all v ∈V and all t ∈ [0,T ]

‖B(t,v)‖2
V =

(
B(t,v),B(t,v)

)
V ≤ k‖B(t,ε(v))‖Q · ‖B(t,v)‖V .

On the other hand, using H(B) yields

‖B(t,v)‖V ≤ k‖B(t,ε(v))‖Q ≤ k(‖B(t,ε(v))−B(t,0Sd)‖Q +‖B(t,0Sd)‖Q)

≤ k(LB‖ε(v)‖Q +‖B(t,0Sd)‖Q) = k(LB‖v‖E +‖B(t,0Sd)‖Q)

≤ k(kLB‖v‖V +‖B(t,0Sd‖Q).

We conclude that
‖ f1(t,v)‖V ≤ ‖B(t,v)‖V +‖ f (t)‖V ≤ k(kLB‖v‖V +‖B(t,0Sd‖Q)+‖ f (t)‖V

≤max(k2LB,k‖B(t,0Sd)‖Q +‖ f (t)‖V )(1+‖v‖V ).

Similarly, given v1,v2 ∈V we have by the way that B(t,v) has been defined

‖B(t,v1)−B(t,v2)‖V = sup
‖w‖V≤1

(B(t,ε(v1))−B(t,ε(v2)),ε(v))Q

≤ sup
‖w‖V≤1

‖B(t,ε(v1))−B(t,ε(v2))‖Q‖ε(w)‖Q

≤ k‖B(t,ε(v1))−B(t,ε(v2))‖Q.

From this and H(B) we obtain for all v1,v2 ∈V

‖B(t,v1)−B(t,v2)‖V ≤ kLB‖ε(v1)− ε(v2)‖Q = kLB‖v1− v2‖E
≤ k2LB‖v1− v2‖V .

(III). The function f2(t,s,v) = R(t− s)v for all (t,s) ∈Q∆ and v ∈V satisfies, for the above real
constant k> 0, the hypothesis (H3) with β2(t,s)= k2d‖R(t−s)‖Q∞

and L2(t)= k2d sup
t∈[0,T ]

‖R(t)‖Q∞

for all (t,s) ∈ Q∆.
Indeed, by definition of operator R in (4.16) we have for all v ∈V and all (t,s) ∈ Q∆ that

‖R(t− s)v‖2
V = (R(t− s)v,R(t− s)v)V = (R(t− s)ε(v),ε(R(t− s)v))Q

≤ ‖R(t− s)ε(v)‖Q · ‖ε(R(t− s)v)‖Q = ‖R(t− s)ε(v)‖Q · ‖R(t− s)v‖E
≤ k‖R(t− s)ε(v)‖Q · ‖R(t− s)v‖V .

Next, using assumptions H(R, f 0, f N)-(a) and the inequality (4.3), we obtain

‖ f2(t,s,v)‖V = ‖R(t− s)v‖V ≤ kd‖R(t− s)‖Q∞
· ‖ε(v)‖Q = kd‖R(t− s)‖Q∞

· ‖v‖E
≤ k2d‖R(t− s)‖Q∞

· ‖v‖V
≤ k2d‖R(t− s)‖Q∞

· (1+‖v‖V ).
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Further, by (4.19) we have for any v1,v2 ∈V and (t,s) ∈ Q∆ that

‖ f2(t,s,v1)− f2(t,s,v2)‖V = ‖R(t− s)v1−R(t− s)v2‖V = ‖R(t− s)(v1− v2)‖V
≤ k2d‖R(t− s)‖Q∞

· ‖v1− v2‖V
≤ k2d sup

t∈[0,T ]
‖R(t)‖Q∞

· ‖v1− v2‖V .

We have verified that all hypotheses of Theorem 2.1 are satisfied. Hence, we deduce that prob-
lem 4.18 has a unique absolutely continuous solution u, so Problem 2 has a unique solution.
The proof of the theorem is then complete. �
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