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NUMERICAL ASPECTS OF FINDING NONLINEAR PRODUCTION -
CONSUMPTION EQUILIBRIUM
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Abstract. Recently introduced nonlinear production-consumption equilibrium (NPCE) is a combination and gen-
eralization of both linear programming (LP) and input-output (IO) models. Finding NPCE is equivalent to solving
a variational inequality (VI) with a very simple feasible set, projection on which is a low cost operation. There-
fore for finding NPCE we use Extra Pseudo-Gradient (EPG) method. We present and analyze numerical results
obtained by using EPG method on a set of random generated NPCE. The obtained results show that the number
of EPG steps required for finding NPCE grows linearly with the number of products of a given economy. The
number of arithmetic operations or time required for finding NPCE grows as a cube of the number of products.
The numerical results strongly corroborate the complexity bounds established under reasonable assumptions on
the input data in [8].
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1. INTRODUCTION

The NPCE is a fundamental departure from both Linear Programming (LP) and Input–Output
(IO) models.

First, the NPCE combines the production and the consumption sectors of an economy.
Second, in contrast to LP and IO models, the production cost per unit, the consumption vector

and the factor (resources) vector are not fixed and not given a priori.
They are operators with values dependent on the production output, prices for goods and

prices for factors.
As it turns out, finding NPCE is equivalent to solving a particular variational inequality (VI)

with a simple feasible set. Projection on the feasible set is a low cost numerical operation.
Therefore, for finding NPCE we used the EPG method introduced by Galina Korpelevich in
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the mid 1970s [1] and extensively studied in the last few decades (see [2]-[8] and references
therein). The main computational cost at each step of the EPG method is computing the pseudo-
gradient, which requires a few matrix by vector multiplications.

We apply the EPG method to a set of randomly generated NPCE problems with various
production, consumption and factor operators. The obtained results confirm theoretical findings
(see [8]): under reasonable assumptions on input data, the number of EPG steps required for
finding NPCE grows linearly together with the number of products of a given economy. The
number of operations, or solving time grows as a cube of the number of products.

The paper is organized as follows. In the second section, we describe the NPCE and equiv-
alent variational inequality (VI). In the third section we describe the EPG method for finding
NPCE, its convergence, complexity bounds and estimate the Lipschitz constant for the pseudo-
gradient VI operator. We conclude the paper by discussing the numerical results.

2. NONLINEAR PRODUCTION-CONSUMPTION EQUILIBRIUM PROBLEM

Consider an economy with n products. The components xi, 1≤ i≤ n of the production vector
x ∈ IRn

+ specify how many units of each product to be produced.
The components pi, 1≤ i≤ n of the cost vector p ∈ IRn

+ define the production cost of a unit
of the product 1≤ i≤ n.

Vector x is used to define the consumption vector c= x−Ax=(I−A)x∈ IRn
+, where elements

ai j of the balance matrix A : IRn→ IRn define how much of a product 1 ≤ i ≤ n is required to
produce a unit of a product 1≤ j ≤ n.

We assume that A is a productive matrix, therefore for any c ∈ IRn
+ the solution x ∈ IRn

+ of
the system c = x−Ax exists.

The production uses additional m resources. The element bl j of the technological matrix
B : IRn→ IRm describe how much of a resource 1≤ l ≤ m is required to produce an item of the
product 1≤ j ≤ n, m≤ n.

The vector Bx∈ IRm defines how much of each resource is used for the production of x∈ IRn
+.

Therefore, Bx should not exceed a given resources availability vector r.
The NPCE combines both production and consumption parts of the economy. Also, the basic

vectors p, c and r are not fixed and not given a priori. They are replaced by operators with
values dependent on production output x ∈ IRn

+, consumption price vector λ ∈ IRn
+, and factor

price vector v ∈ IRm
+.

In other words, for a given production vector x the production cost per unit is defined by the
vector p(x) = (p1(x), . . . , pn(x)) . For a given consumption price vector λ the consumption is
defined by a vector c(λ ) = (c1(λ ), . . . ,cn(λ )) . For a given factor price vector v the availability
of resources is defined by vector r(v) = (r1(v), . . . ,rm(v)) .

The NPCE is defined by a triple y∗ = (x∗,λ ∗,v∗) ∈Ω = IRn
+× IRn

+× IRm
+ that

x∗ ∈ Agrminx
{

p(x∗)T x |(I−A)x≥ c(λ ∗), Bx≤ r(v∗), x≥ 0
}

(2.1)

and
(λ ∗,v∗) ∈ Agrmaxλ ,v

{
c(λ ∗)T

λ − r(v∗)T v | (2.2)

(I−A)T
λ −BT v≤ p(x∗), λ ≥ 0, v≥ 0

}
The existence and uniqueness of y∗ follows from strong monotonicity of the operators p, c and
r.
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The convergence rate and the complexity bounds for the EPG method were established under
strong monotonicity of the operators p, c and r only at NPCE y∗ (see [8]).

The operator p : IRn
+→ IRn

+ is strongly monotone increasing at x∗ if there exists α > 0 such
that for any x from IRn

+ the following inequality takes place

〈p(x)− p(x∗),x− x∗〉 ≥ α‖x− x∗‖2, (2.3)

where ‖x‖ =
√
〈x,x〉. The operator c : IRn

+ → IRn
+ is strongly monotone descreasing at λ ∗ if

there exists β > 0 such that for any λ ∈ IRn
+ the following inequality takes place

〈c(λ )− c(λ ∗),λ −λ
∗〉 ≤ −β‖λ −λ

∗‖2. (2.4)

The operator r : IRm
+→ IRm

+ is strongly monotone increasing at v∗ if there exists γ > 0 such that
for any v from IRm

+ the following inequality takes place

〈r(v)− r(v∗),v− v∗〉 ≥ γ‖v− v∗‖2. (2.5)

The conditions (2.3)-(2.5) mean that production, consumption price, and factor price operators
are sensitive to production, consumption and factor price violation at the equilibrium.

In addition to the strong monotonicity (2.3)-(2.5), we assume that p, c, and r are Lipschitz
continuous, i.e. there exist constants Lp, Lc, and Lr such that for any x1 and x2 from IRn, for any
λ1 and λ2 from IRn, and any v1 and v2 from IRm, the following bounds take place

‖p(x1)− p(x2)‖ ≤ Lp‖x1− x2‖, (2.6)

‖c(λ1)− c(λ2)‖ ≤ Lc‖λ1−λ2‖, (2.7)
and

‖r(v1)− r(v2)‖ ≤ Lr‖v1− v2‖. (2.8)
Consider the Lagrangian

L(y∗,X ,Λ,V ) = 〈p(x∗),X〉−〈Λ,(I−A)X− c(λ ∗)〉−〈V,−BX + r(v∗)〉
for LP (2.1). Then

y∗ ∈ Arg min
X∈IRn

+

max
Λ ∈ IRn

+

V ∈ IRm
+

L(y∗,X ,Λ,V ),

which means that finding NPCE is equivalent to solving a two person game with payoff func-
tions

ϕ1(y;X ,λ ,v) =−L(y,X ,λ ,v)
and

ϕ2(y;x,Λ,V ) = L(y,x,Λ,V )

and the corresponding strategies X ∈ IRn
+ and (Λ,V ) ∈ IRn

+× IRm
+. The normalized payoff func-

tion is
Φ(y,Y ) = ϕ1(y;X ,λ ,v)+ϕ2(y;x,Λ,V ).

Therefore,
y∗ ∈ Argmax{Φ(y∗,Y ) |Y ∈Ω}.

The pseudo-gradient of Φ(y,Y ) :

∇Y Φ(y,Y ) |Y=y = g(y) =
(
(I−A)T

λ − p(x)−BT v; c(λ )− (I−A)x; Bx− r(v)
)

is our main tool.
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It has been established in [8] that finding y∗ = (x∗,λ ∗,v∗) from (2.1)-(2.2) is equivalent to
solving the following variational inequality (VI)

〈g(y∗),y− y∗〉 ≤ 0, ∀y ∈Ω. (2.9)

From (2.3)-(2.5) for δ = min{α,β ,γ} follows

〈g(y)−g(y∗),y− y∗〉 ≤ −δ‖y− y∗‖2.

From (2.6)-(2.8) follows existence of L > 0 that

‖g(y1)−g(y2)‖ ≤ L‖y1− y2‖, ∀y1, y2 ∈Ω.

For a triple (x̄, λ̄ , v̄) ∈Ω to be the NPCE it is necessary and sufficient that the feasibility

(I−A)T
λ̄ − p(x̄)−BT v̄≤ 0, (2.10)

c(λ̄ )− (I−A)x̄≤ 0, (2.11)

Bx̄− r(v̄)≤ 0, (2.12)

and complementarity conditions〈
(I−A)T

λ̄ − p(x̄)−BT v̄, x̄
〉
= 0, (2.13)

〈
c(λ̄ )− (I−A)x̄, λ̄

〉
= 0, (2.14)

〈Bx̄− r(v̄), v̄〉= 0 (2.15)

are satisfied.
Let us define the complementarity violation function C : Ω→ IR+ by formula

C(y) =C(x,λ ,v) = max{
∣∣〈(I−A)T

λ − p(x)−BT v,x
〉∣∣ ;

|〈c(λ )− (I−A)x,λ 〉| ; |〈Bx− r(v),v〉|}

and the optimality violation function µ : Ω→ IR+ by formula

µ(x,λ ,v) = max
{
‖[(I−A)T

λ − p(x)−BT v]+‖∞,

‖[c(λ )− (I−A)x]+‖∞, ‖[Bx− r(v)]+‖∞,C(x,λ ,v)} ,

where

[z]+ = ([z1]+, . . . , [zq]+) ∈ IRq, [zi]+ =

{
zi, ifzi ≥ 0
0, ifzi < 0.

From (2.10)-(2.15) follows that for y = (x,λ ,v) to be NPCE it is necessary and sufficient that
ν(y) = 0. We use the value of ν(y) to measure the violation of y ∈Ω from y∗.
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1. Select 0 < t < (
√

2L)−1.
2. Select x0 ∈ IRn

++, λ0 ∈ IRn
++, and v0 ∈ IRm

++, Set s = 1.
3. Set x̂s = [xs−1 + t((I−A)T λs− p(xs−1)−BT vs−1)]+.

4. Set λ̂s = [λs−1 + t(c(λs−1)− (I−A)xs−1)]+
5. Set v̂s = [vs−1 + t(Bxs−1− r(vs−1))]+
6. Set xs = [xs−1 + t((I−A)T λ̂s− p(x̂s)−BT v̂s)]+.

7. Set λs = [λs−1 + t(c(λ̂s)− (I−A)x̂s)]+
8. Set vs = [vs−1 + t(Bx̂s− r(v̂s))]+
9. If µ(xs,λs,vs)≥ ε , Set s = s+1, Goto Step 3.
10. Output (xs,λs,vs).

FIGURE 1. Extra Pseudo Gradient algorithm

3. NUMERICAL EXPERIMENTS

Application of the EPG method for solving VI (2.9) leads to the following two stage method,
which is nothing but a pricing mechanism for finding the NPCE. First, one predicts the triple
ŷs = (x̂s, λ̂s, v̂s) by formula

ŷs = PΩ (ys−1 + tg(ys−1)) = [ys−1 + tg(ys−1)]+ , (3.1)

then one finds a new approximation

ys = PΩ (ys−1 + tg(ŷs)) = [ys−1 + tg(ŷs)]+ . (3.2)

The EPG algorithm is summarized in Figure 1.

Under assumptions (2.3)-(2.8) the algorithm converges to NPCE y∗ = (x∗,λ ∗,v∗) with a lin-
ear rate (see Theorem 5 in [8]).

Our main purpose is to analyze numerical performance of the EPG method and compare the
numerical results with the complexity bounds established in Theorem 5 [8]. The number of
iterations required to solve the problem with accuracy ε > 0 is

N = O(δ−1L lnε
−1). (3.3)

From Lipschitz continuity (2.6)-(2.8) of the operators p, c, and r follows directly that the
operator g is also Lipschitz continuous, i.e. there exists L > 0 such that for any y1 and y2 from
Ω the following bound holds:

‖g(y1)−g(y2)‖ ≤ L‖y1− y2‖.

To find an upper bound for the Lipschitz constant L let us consider the Jacobian of g :

J = ∇g(x,λ ,v) =

 −∇p(x) (I−A)T −BT

−(I−A) ∇c(λ ) 0(n,m)

B 0(m,n) −∇r(v)

 .
Then

L≤ ‖J‖F =

√√√√2n+m

∑
i=1

2n+m

∑
j=1

J2
i j ≤

√√√√2n+m

∑
i=1

2n+m

∑
j=1

M2 = (2n+m)M,
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where M = max{Jkl |1≤ k ≤ 2n+m, 1≤ l ≤ 2n+m}. Therefore, keeping in mind m≤ n, we
obtain that L = O(n). Hence, for a fixed δ > 0, and a fixed small enough 0 < ε� δ , from (3.3)
follows N = O(n). So it takes O(n) EPG steps to find an approximation y∈Ω for NPCE y∗ with
optimality violation given by ε > 0.

FIGURE 2. The upper bound for the Lipschitz constant as a function of n. The
blue and the red lines almost coincide

We generate NPCE problems with n = 1000,1100,1200, . . . ,10000 with δ = 1 and study
empirically the trends of the growth of both the total iteration count and the solving time. The
accuracy in the stopping criteria is selected ε = 10−2.

We use the following vector functions

p̂(x) = Px+ p̄, ĉ(λ ) =−Cλ + c̄, r̂(v) = Rv+ r̄, (3.4)

where P,C : IRn → IRn, R : IRm → IRm, p̄, c̄ ∈ IRn, r̄ ∈ IRm, are randomly generated positive
definite matrices with the smallest eigenvalue equal 1, and the positive entries not exceeding 2.
Matrices A and B has randomly generated entries uniformly distributed on (0,1). Matrix A is
ensured to be productive.

Then, we add nonlinear terms p̃, c̃ and r̃ :

p(x) = p̂(x)+ p̃(x),

with p̃(x) = (p̃1(x), . . . , p̃n(x)), p̃i(x) = ξi ln(1+ xi) and ξi being random numbers uniformly
distributed on (0,1). Similarly, we define

c(λ ) = ĉ(λ )− c̃(λ ), r(v) = r̂(v)+ r̃(v).
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FIGURE 3. The number of iterations it takes for EPG to solve NPCE problems
as a function of n (blue), a fitted line with the slope 0.91 (red).

Note that adding the nonlinear terms p̃, c̃ and r̃ do not increase the elements Ji j of the Jacobian
J by more than 1. Therefore due to the boundedness of the elements Ji j of the Jacobian J the
Lipschitz constant L grows as L = O(n) for the generated problems.

Every iteration requires O(n2) arithmetic operations, therefore the complexity of the EPG
method in Figure 1 is:

COMP(EPG) = O(n2
δ
−1L lnε

−1). (3.5)

We used a Windows laptop with Intel Xeon CPU E3-1535M v6 to run computational exper-
iments. While solving NPCE problems we record three parameters for each solved problem:
the upper bound for L, the number of iterations and the solving time. Then we generate a log-
arithmic (base 10) plot. The advantage of using the logarithmic plot is twofold. First, if the
logarithms of the plotted parameter follow a linear pattern (a line), that implies a polynomial
growth. Second, the slope of that line approximates the power of the polynomial. Therefore, to
find the slope we fit a line to the logarithmic data.

Figure 2 shows that the Lipschitz constant scales up as O(n). The line that shows the Lips-
chitz constants is covered by a perfectly fitted red line with the slope close to 1. We expect that
the number of iterations scale up similarly. Indeed, as Figure 3 suggests, the fitted line has a
slope of 0.91.

Each iterations requires O(n2) arithmetic operations. Therefore the total number of oper-
ations is expected to be O(n3), which is proportional to the time it takes to solve a NPCE
problem. Figure 4 suggests that the slope of the fitted line is 2.90 consistent with the bound
(3.5) established in [8].
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FIGURE 4. The time in seconds it took for the EPG to solve NPCE problems as
a function of n (blue), a fitted line with the slope 2.90 (red).

4. DISCUSSION AND CONCLUDING REMARKS

The EPG method (3.1)-(3.2) not only leads to a pricing mechanism for establishing equi-
librium, it also fully decompose the problem of finding NPCE. Such a decomposition allows
computing the primal and dual variables at each step simultaneously without solving any op-
timization problem or system of linear equations. Instead, each step requires a few matrix by
vector multiplications, which can be done in parallel. That allows solving large scale NPCE
problems.

From the obtained numerical results follows a few conclusions.
First, under a fixed δ > 0 and 0 < ε � δ the number of iterations grows linearly with n.

Second, the time required for finding NPCE grows as O(n3). The conclusions corroborate the
bounds established in [8].

Finally, it is rather remarkable that finding NPCE has similar complexity as solving a linear
system of equations of the same size.
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