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Abstract. We solve a bimodal optimal control problem with a non-concavity and uncertainty through a Poisson
process underlying the transition from a mode to another. We use a dynamic programming approach and are able
to uncover the global optimal dynamics (including optimal non-monotonic paths) under a few linear-quadratic
assumptions, which do not get rid of the non-concavity of the problem. This is in contrast to the related literature
on pollution control under irreversibility which usually explores local dynamics along monotonic solution paths to
first-order Pontryagin conditions.
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1. THE PROBLEM AND RELATED LITERATURE

Pollution irreversibility is being a crucial aspect of the current debate on sustainable devel-
opment, in particular in relation with global warming. Pollution is irreversible when its impact
on Nature and Humanity can no longer be reverted. There are strong reasons to believe that
irreversible change due to global warming is under way as documented by Boucekkine et al.
[1]. The problem is however under scrutiny since the 70s in hard sciences (for example, see
Holling [5], for an example in ecology). It has become the object of deep investigation since the
mid-90s in mathematical economics and operations research (see for example, Tsur and Zemel
[9], and, in particular, Tahvonen and Withagen [8]).

A key complication in the mathematical treatment of optimization problems involving irre-
versible pollution is the induced non-concavity of the problem. For example, in Tahvonen and
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Withagen [8], pollution may turn irreversible because above a certain threshold level of pol-
lution (the state variable), Nature self-cleaning capacity drops suddenly to zero, which makes
the problem non-concave. As a result, beside multiple stationary states and potential complex
dynamics, establishing the optimality of solution paths derived from first-order conditions may
not be easy. Nonetheless, the related literature uses the standard hamiltonian-based Pontrya-
gin method to tackle the optimization problems involved, at the cost of burdensome posterior
elaborations in the best case (see in particular, the seminal work of Tahvonen and Withagen [8].
Together with the multi-stage (or multi-modal) intrinsic nature of the optimal control problems
under study (as the associated state equations will feature two modes: reversible vs irreversible
pollution), this makes the analysis highly tricky. Quite often, the analysis provided falls how-
ever short to identify the global optimal dynamics and to provide with deep non-local analysis.

In this paper, we propose a dynamic programming (DP) approach, which in our view fits bet-
ter the structure of irreversible pollution control problems. While it will not of course eliminate
the complexity of the problem, we will show that it does allow to provide with the full picture
for (optimal) global dynamics. To this end, we consider the basic deterministic model studied
in Tahvonen and Withagen [8]. We extend it by introducing uncertainty in the following way:
we assume that the move from the reversible to irreversible pollution mode occurs through a
Poisson process with constant arrival rate. This is probably the simplest stochastic extension of
the basic model, it allows us to show in a way the flexibility of the DP approach followed.

There are a few papers studying irreversibility in stochastic environmental problems. The
most known is due to Tsur and Zemel [9] who study the optimal pace of underground water
extraction in the context where there exists a threshold of water reserves under which further
extraction is no longer feasible. The threshold is unknown and it’s assumed that it follows a
random process with given distribution. Another interesting work taking this avenue has been
proposed by Le Kama et al. [7], it is closer to our frame though both the mathematical and
economic modelling are different. Here the state variable under pressure is the environmental
quality: the irreversibility threshold for this variable is assumed to be reached at an uncertain
time with given distribution.

As argued above, both papers do not study optimal global dynamics. In the case of Le Kama
et al. [7], the results are derived for the steady state equilibria and their respective neighborhood.
Moreover, both papers specialise in nondecreasing state variable paths. While this restriction
makes economic sense, it also hides part of the complexity of the problem. By applying the DP
approach to a generic irreversibility problem with Poisson arrival rates for the irreversible mode,
we are able to produce the big picture of the optimal dynamics under a few linear-quadratic
specifications (which do not remove the non-concave nature of our optimization problem). With
respect to the literature quoted above, our main contributions are twofold: (1) we present the
complete possible dynamics under different modes, which are essentially attracted or repelled
by the two potential long-run steady states of the two modes, showing the potential emergence
of optimal non-monotonic dynamics, and (2) we investigate when the irreversible regime, under
Poisson process, can be triggered or not.

The rest of the paper is organized as following. Section 2 describes the model and Sec-
tion 3 provides solutions to the optimal control problems in two difference modes– reversible
and irreversible environmental regimes via dynamic programming. Section 4 presents possible
outcomes from the solutions and draws the main contributions.
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2. THE MODEL

Following Tahvonen and Withagen [8], we investigate a situation where the decision maker
faces irreversible pollution accumulation. For simplicity, the pollution emission, y(t), is used to
measure the output level. The objective of the decision maker is to maximize social welfare:

max
y

W =
∫ +∞

0
(U(y)−D(z))e−rtdt, (2.1)

where r is time preference, z(t) is accumulated pollution, U(y) is the utility from enjoying final
output generated with pollution y(t), and D(z) is damaging function from aggregate pollution
stock z. Pollution stock z(t) may decay at rate δ (z). However, the decay rate may sponta-
neously and irreversibly drop to zero. In other words, the pollution accumulation is given by
the following:

ż = y−δ (z), z(0) = z0 given, (2.2)
where δ (·) : R+ 7→ R+ is the decay function which can abruptly drops to zero. After the drop,
no decay is possible. Hence, there are two modes, with and without decay, denoted by m = 1
and 0, respectively. The jump from mode 1 to 0 when the state variable takes the value z occurs
with rate

lim
∆t→0

1
∆t

Pr{m(t +∆t) = 0|m(t) = 1}= q(z) . (2.3)

In other words, the probability of the mode change during the interval (t, t +∆t], given that
state z and the mode at t is 1, is proportional to ∆t, that is, the arrival of the irreversible regime
follows with intensity q(z)≥ 0. Obviously, when q(z) = 0, no regime change happens.

As a result, the planner’s optimal control problem are divided in periods I and II, correspond-
ing to modes 1 and 0, respectively, as follows.
Period I.

ż = y−δ (z), z(0) = z0.

Period II.
ż = y, z(T ) = z

(
T−
)
,

where T is the time of mode switching.

2.1. A special case. In the most part of the paper we focus on the following linear-quadratic
functional forms to obtain closed form solutions and equilibria,

U (y) = ay− y2

2
, D(z) =−c

2
z2, q(z) = λ (2.4)

and
δ (z) = max{α−β z,0} (2.5)

where a, c, λ , α , and β are positive constants.

3. THE OPTIMAL CHOICES

The proposed model is a piecewise-deterministic process which has been studied for decades.
General framework have been layed out and existence of solutions, in particular, viscosity so-
lutions, have been provided in the literature. (See, e.g., Davis (1984) [2], Vermes (1985) [10],
Lenhart and Yamada (1992) [6], Farid (1997) [4], and Dockner et al. (2000) [3], among others.)
An excellent exposition can be found in Dockner et al. (2000) [3, Chapter 8].
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3.1. Hamiltonians. We formulate the HJB equation for the value functions Vm (z) in mode
m(= 0,1) as follows. After mode change so that there is no decay, V0 (z) for any z > 0 is the
optimal welfare,

V0 (z) = sup
y(·)∈U0

∫
∞

0
[U (y(t))−D(w(t))]e−rtdt,

where Um is the set of feasible controls in Mode m for m = 0,1, and w(t) satisfies

ẇ = y(t) , w(0) = z.

On the other hand, before mode change, the value function V1 (z) is

V1 (z) = sup
y(·)∈U1

E
∫ T

0
[U (y(t))−D(w(t))]e−rtdt + e−rTV0 (w(T )) ,

where w(t) satisfies
ẇ = y(t)−δ (w(t)) , w(0) = z.

Define functions fm by

fm (z,y) = y−mδ (z) for m = 0,1, (3.1)

and let the Hamiltonians Hm (z, p) in mode m be

Hm (z, p) =U (y∗m)−D(z)+ p fm (z,y∗m) ,

where y∗ is the maximizer

y∗m = argmax
y∈Um

{U (y)−D(z)+ p fm (z,y)} , (3.2)

where Um is the set of feasible controls at state value z and Mode m ∈ {0,1}. By the standard
dynamic programming, we find the HJB equation for V0 in Mode 0 has the form

rV0 (z) = max
y∈U0

{
U (y)−D(z)+V ′0 (z)y

}
≡ H0

(
z,V ′0 (z)

)
. (3.3)

To derive the HJB equation for V1, we use Theorem 8.1 in [3] to obtain

rV1 (z) = max
y∈U1

{
U (y)−D(z)+V ′1 (z) [y−δ (z)]+q(z) [V0 (z)−V1 (z)]

}
,

where q(z) is given by (2.3). The above equation can be written as

(r+q(z))V1 (z) = H1
(
z,V ′1 (z)

)
+q(z)V0 (z) , (3.4)

where
H1
(
z,V ′1 (z)

)
= max

y∈U1

{
U (y)−D(z)+V ′1 (z) [y−δ (z)]

}
.

In the special case (2.4) and (2.5), the Hamiltonians take the form

H0 (z, p) = ay∗0−
1
2
(y∗0)

2− c
2

z2 + py∗0,

H1 (z, p) = ay∗1−
1
2
(y∗1)

2− c
2

z2 + p [y∗1−δ (z)] .

The feasible controls Um are the nonnegative values of ym. Hence,

y∗m = max{a+ p,0} for m = 0,1.
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In this case HJB equations (3.3) and (3.4) become

2rV0 (z) =
{ (

a+V ′0 (z)
)2− cz2 if V ′0 (z)>−a,

−cz2 if V ′0 (z)≤−a,
(3.5)

and

2(r+λ )V1 (z) =

 (a+V ′1 (z))
2−2δ (z)V ′1 (z)

−cz2 +2λV0 (z)
if V ′1 (z)>−a,

−2δ (z)V ′1 (z)− cz2 +2λV0 (z) if V ′1 (z)≤−a,
(3.6)

respectively.

3.2. Value function in Mode 0. The value function V0 in mode 0 satisfies the first equation in
(3.5). One of the solutions is piecewise quadratic in the form

V0 (z) =

{
A
2 z2 +Bz+C for z < z̄0,

−cz2

2r for z≥ z̄0,

where
z̄0 =

ra
c
, (3.7)

and the coefficients A, B, and C satisfies

rA = A2− c, rB = A(B+a) , 2rC = (B+a)2 .

The quadratic equation for A has two roots,

y1 =
r−
√

r2 +4c
2

, y2 =
r+
√

r2 +4c
2

. (3.8)

We use the negative one, y1. As the result,

A = y1, B =
y1a

r− y1
, C =

(B+a)2

2r
.

Hence,

2rV0 (z) =
(

y1z+
y1a

r− y1
+a
)2

− cz2.

Since
a

r− y1
+

a
y1

=
ar

(r− y1)y1
=

4ar(
r+
√

r2 +4c
)(

r−
√

r2 +4c
)

= −ar
c

=−z̄0,

it follows that
2rV0 (z) = (z− z̄0)

2 y2
1− cz2

for z < z̄0. As a result,

V0 (z) =

{
1
2r

[
(z− z̄0)

2 y2
1− cz2

]
for z < z̄0,

− c
2r z2 for z≥ z̄0.

(3.9)



6 R. BOUCEKKINE, W. RUAN, B. ZOU

3.3. Value function in Mode 1. For z ≥ z̄ where z̄ is the minimum zero of δ (z), there is no
difference whether mode changes or not. So V1 (z) =V0 (z) for such z. In particular,

V1 (z̄) =V0 (z̄) (3.10)

which serves as the transversality condition. Hence, one only needs solve V1 (z) for z < z̄ from
the HJB equation (3.6). The HJB equation is linear if V ′1 (z)≤−a and nonlinear if V ′1 (z)>−a.
In either case there exist linear or quadratic solutions to the HJB equation. (These solutions
are indeed derived below near the end of this section.) However, only in special cases these
quadratic solutions satisfy (3.10). In the case the quadratic solutions fail to satisfy (3.10), the
solution must be solved from the boundary value problem (3.6) and (3.10). As to be seen below,
such a solution is hyperbolically shaped.

To solve the boundary value problem for V1 (z), we first solve the associated equation for
f1 (z) defined by (3.1) with m = 1, which is the pollution accumulation rate in Mode 1. By
definition,

f0 (z) =V ′0 (z)+a, f1 (z) =V ′1 (z)+a−δ (z) .
To derive a differential equation for f1, we differentiate the both sides of (3.6) with respect to z
to obtain

f1 (z) f ′1 (z) = (r+λ ) f1 (z)+(r−β +λ )δ (z)+(β − r)a+ cz−λ f0 (z) (3.11)

if f1 (z)>−δ (z) and

−δ (z) f ′1 (z) = (r−β +λ ) f1 (z)+(r−2β +λ )δ (z)+(β − r)a+ cz−λ f0 (z) (3.12)

if f1 (z)≤−δ (z).
The boundary value f1 (z̄) is determined by the assumption

V1 (z̄) =V0 (z̄) , δ (z̄) = 0, (3.13)

as follows. If f0 (z̄)> 0, by (3.5)

2rV0 (z̄)+ cz̄2 = ( f0 (z̄))
2 > 0.

By (3.6) and (3.13) it follows that

2(r+λ )V1 (z̄)−2λV0 (z̄)+ cz̄2 = 2rV0 (z̄)+ cz̄2 > 0.

In view of (3.6), the above inequality implies that f1 (z̄)> 0 and

( f1 (z̄))
2 = 2(r+λ )V1 (z̄)−2λV0 (z̄)+ cz̄2

= 2rV0 (z̄)+ cz̄2 = ( f0 (z̄))
2 .

Hence, f1 (z̄) = f0 (z̄). If f0 (z̄)≤ 0, by (3.5),

V0 (z̄) =−
cz̄2

2r
.

By (3.6) and (3.13) again it follows that f1 (z̄) ≤ 0. From (3.9) it can be seen that f0 (z̄) ≤ 0 if
and only if z̄≥ z̄0 and in this case

f0 (z̄) = a− cz̄
r
. (3.14)

We use an asymptotic expansion to find f1 (z̄) in this case. Suppose

V1 (z) =
A1

2
(z− z̄)2 +B1 (z− z̄)+V0 (z̄)+o

(
(z− z̄)2

)
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and assume that V1 (z) is differentiable at z̄. Substituting the right-hand side into (3.6), and using

δ (z) =−β (z− z̄) , V0 (z) =−
cz2

2r
,

we abtain

(r+λ )
[
A1 (z− z̄)2 +2B1 (z− z̄)+2V0 (z̄)

]
= 2β (z− z̄) [A1 (z− z̄)+B1]− c

(
1+

λ

r

)
z2 +o

(
(z− z̄)2

)
.

By comparing coefficients of powers of z− z̄, we find

(r+λ )A1 = 2A1β − c
(

1+
λ

r

)
,

2(r+λ )B1 = 2B1β −2c
(

1+
λ

r

)
z̄.

This leads to

f1 (z̄) = a+B1 = a− c(r+λ ) z̄
r (r+λ −β )

. (3.15)

It is clear that f1 (z̄)< f0 (z̄)< 0 if z̄ > z̄0 and β < r+λ .
We now solve the boundary value problem associated with the equations (3.11) and (3.12).

We first consider (3.11). Since f0 (z) is linear, the equation can be written in the form

f1 (z) f ′1 (z) = (r+λ ) f1 (z)+B2z+C2

where
B2 = β (β − r−λ )+ c−λy1,
C2 = (r−β +λ )α +(β − r)a+λy1z̄0.

(3.16)

Using a change of variable x = z+C2/B2, the equation becomes

W1 (x)W ′1 (x) = (r+λ )W1 (x)+B2x.

where W1 (x) = f1 (z). The general solution in implicit form is

|W1− xY1|p1 |W1− xY2|p2 = K

where C is a constant,

Y1 =
1
2

[
r+λ −

√
(r+λ )2 +4B2

]
,

Y2 =
1
2

[
r+λ +

√
(r+λ )2 +4B2

]
,

(3.17)

and
p1 =

Y1

Y2−Y1
, p2 =

−Y2

Y2−Y1
.

This leads to
| f1 (z)− (z− z̄1)Y1|p1 | f1 (z)− (z− z̄1)Y2|p2 = K,

where

z̄1 =−
C2

B2
=−(r−β +λ )α +(β − r)a+λy1z̄0

β (β − r−λ )+ c−λy1
. (3.18)

Obviously if there were no mode change, z̄1 would be the “potential” long-run steady state
in the reversible environmental regime. Within the current framework there is either uncertain
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Poisson process or pollution accumulation across the threshold z, nevertheless, z̄1 plays an im-
portant role in determining the trajectory of the dynamics. The detail results will be presented
in the following Theorem 4.1 and 4.4.

Note that Eq. (3.12) for f1 (z) ≤ −δ (z) is linear, which can be readily solved. With f1 (z)
solved, one can find V1 from the second equation of (3.6) as

V1 (z) =
1

2(r+λ )

[
f1 (z)

2−δ (z)2 +2aδ (z)− cz2 +2λV0 (z)
]
. (3.19)

In the special case where K = 0, there are two value functions V1,i (z) with

f1,i (z) = (z− z̄1)Yi for i = 1,2.

These value functions may not match the value functions V0 (z) in Mode 0 at z̄. In other words,
the linear-quadratic autonomous system may not generate linear state strategy in Mode 1, even
though in the Mode 0, the strategy is linear in state variable. In the general case, K > 0, and
so, the solution is hyperbolic shaped. More precisely, due to the transversality condition at
z̄, V0 (z̄) = V1 (z̄), linear strategy, thus linear-quadratic value functions, may not hold in both
regimes at the same time.

We comment that the value function V1 (z) constructed above is continuous but not smooth at
z̄ in the case z̄ > z̄0. This can be seen from (3.15) which leads to

V ′1 (z̄) = f1 (z̄)−a 6= f0 (z̄)−a =V ′0 (z̄) .

In the case where z̄ < z̄0, as to be seen in the next section, the physically reasonable solutions
can be non-smooth at certain point (such as z̄∗1 in Theorem 4.1). Nevertheless, In all such
cases f1 (z) is bounded, which implies that V1 (z) is Lipschitz continuous. In such cases the
verification theorem, e.g. [3, Theorem 8.1], is still valid. (See the comments after Theorem 8.1
in [3].)

4. POSSIBLE OUTCOMES

As shown above, in Period II, the only possible steady state is z̄0 given by (3.7). The outcome
depends on whether the threshold value z̄ is below or above z̄0. In each case we construct a
physically meaningful value function V1 (z) and derive behavior of the stock of pollution z(t)
based on the value function.

By “physically meaningful value function” we mean a value function that is defined for all
z and is non-increasing in z. As can be seen from the HJB equation (3.5), the only physically
meaningful value function in Mode 0, V0 (z), is the one given by (3.9). The associated pollu-
tion accumulation rate, f0 (z), is affine. On the other hand, due to the transversality condition,
often a physically meaningful value function in Mode 1, V1 (z), needs to be constructed with
discontinuous rate, f1 (z). Such a value function is still Lipschitz continuous, and the point of
discontinuity of f1 (z) is a (usually unstable) steady state of the system dynamics.

4.1. Case 1: z̄ < z̄0. In this case f0 (z̄) > 0. As a result, the stock of pollution, z(t), increases
and converges to z̄0 in Period II. We give possible behavior of z(t) in Period I in the following
theorem.

Theorem 4.1. Suppose z̄ < z̄0. The following results are true.
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(1) Suppose either

z̄1 > z̄, Y1 > 0, (4.1)

or

z̄1 < z̄, Y1 > 0, (z̄− z̄1)Y2 < (z̄− z̄0)y1 (4.2)

or

z̄1 < z̄, Y1 < 0. (4.3)

Furthermore, suppose |Y1| is sufficiently small. Then there exist z̄∗1 < z̄ (possibly nega-
tive) such that for any z0 < z̄∗1, z(t) is decreasing in Period I, and for any z0 that satisfies
z̄∗1 < z0 < z̄, z(t) is increasing in Period I. In the case where z̄∗1 < 0, z(t) is increasing in
Period I for any z0 < z̄.

(2) Suppose z̄1 > z̄ and Y1 < 0. Then z(t) is increasing in Period I for any z0 < z̄.
(3) Suppose z̄1 < z̄ and either

Y1 > 0, (z̄− z̄1)Y1 ≤ (z̄− z̄0)y1 ≤ (z̄− z̄1)Y2 (4.4)

or

Y1 < 0, (z̄− z̄1)Y2 = (z̄− z̄0)y1. (4.5)

Then for any z0 < z̄1, z(t) is decreasing and for any z0 such that z̄1 < z0 < z̄, z(t) is
increasing in Period I.

FIGURE 1. Type 1 with (4.1) holds (left) and with (4.2) holds (right).

Proof. Since in Mode 0, there is no decay of pollution, it follows that V1 (z) = V0 (z) for z ≥ z̄.
In addition, as shown in Subsection 3.3,

f1 (z̄) = f0 (z̄)> 0. (4.6)

By continuity, f1 (z) > 0 for some z < z̄. Note that Eq. (3.11) is equivalent to the differential
equations

dx/dτ = (r+λ )x+(r−β +λ )δ (z)+(β − r)a+ cz−λ f0 (z) ,
dz/dτ = x

(4.7)
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FIGURE 2. Type 1 with (4.3) holds and |Y1| sufficiently small (left) and Type 2
with Y1 < 0 and z̄1 > z̄ (right).

FIGURE 3. Type 3 with (4.4) holds (left) and with (4.5) holds (right).

and (0, z̄1) is an equilibrium of this autonomous dynamical system. (Here, τ has nothing to do
with the time variable, t.)Its Jacobian matrix takes the form

J =

(
r+λ B2

1 0

)
, (4.8)

where B2 is defined in (3.16). Matrix J has eigenvalues Y1 and Y2 given by (3.17). Every trajec-
tory (x(t) ,z(t)) associates a value function with f1 (z) that satisfies f1 (z(t)) = x(t). Since value
functions are defined for all z, only trajectories whose range include all z ≥ 0 are acceptable.
These include stable and unstable manifolds.

It can be seen that f1 (z̄1) = 0 if and only if the trajectory is either a stable or unstable man-
ifold. Furthermore, the eigenvectors corresponding the eigenvalue Yi are parallel to the vector
〈1,Yi〉 for i = 1,2. In particular, at least one unstable manifold emanating from the equilibrium
with a positive angle to the z-axis. By optimality, f1 (z) is the least provided that f1 (z) is defined
for z ∈ [0, z̄]. On the other hand, without assuming that the value function V1 to be differentiate,
we can have f1 discontinuous at certain points.
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Part 1. Suppose (4.1) holds. Then the trajectory (z,x) that passes through (z̄, f0 (z̄)) intersects
the z-axis at some ẑ < z̄ and approaches the equilibrium (z̄1,0) along Y1 as τ →−∞. Hence,
there is a point z̄∗1, between ẑ and z̄, such that f1 (z̄∗1) = δ (z̄∗1). Either z̄∗1 ≤ 0 or z̄∗1 > 0. In the
former case, f1 (z) > δ (z) > 0 on the interval (0, z̄). Hence, z(t) is increasing in Period I for
any z0 ∈ (0, z̄). In the latter case, for Y1 sufficiently small, there is a trajectory passing through
the point (z̄∗1,−δ (z̄∗1)) such that x < 0 for z ∈ (0, z̄∗1). (See the left graph in Fig. 1.) We define
f1 (z) by this trajectory on (0, z̄∗1). This solution is defined for all z ∈ (0, z̄).

In the case where (4.2) holds, the construction is similar. The last inequality in (4.2) implies
that the trajectory that passes through (z̄, f0 (z̄)) does not converge to (z̄1,0) as τ → −∞, but
instead it intersects the z-axis somewhere to the left of z̄. Hence, again there is z̄∗1 at which
f1 (z̄∗1) = δ (z̄∗1). We then let the trajectory that passes through (z̄∗1,−δ (z̄∗1)) to define f1 (z) for
z < z̄∗1 if z̄∗1 > 0. (See the right graph in Fig. 1).

If (4.3) holds, then since |Y1| is sufficiently small, there is a point z̄∗1 < z̄ such that

f1 (z̄∗1) = δ (z̄∗1)> |Y1|(z̄∗1− z̄1) .

As a result trajectory that passes through the point (z̄∗1,−δ (z̄∗1)) will be below the z-axis for
z < z̄∗1. We let f1 (z) be defined by this trajectory on (0, z̄∗1). (See the left graph in Fig. 2.) This
solution is defined for all z ∈ [0, z̄].

Since in each case f1 (z)< 0 if z < z̄∗1 and f1 (z)> 0 if z̄∗1 < z < z̄, z(t) is decreasing if z0 < z̄∗1
and it is increasing if z̄∗1 < z0 < z̄. This proves Part 1 of the theorem.
Part 2. Suppose z̄1 > z̄ and Y1 < 0. Since f1 (z̄)> 0, the trajectory that passes through (z̄, f1 (z̄))
cannot intersect the z-axis to the left of z̄. Therefore, f1 (z) > 0 for 0 ≤ z ≤ z̄. (See the right
graph in Fig. 2.) It is clear that z̄0 is an attractor in Period II. This proves Part 2.
Part 3. Suppose (4.4) holds. Then the trajectory that passes through (z̄, f0 (z̄)) converges to
(z̄1,0) as τ → −∞, along the eigenvector 〈1,Y1〉. For z < z̄1 we let f1 (z) be defined by the
unstable manifold in the direction 〈1,Y1〉. Hence, f1 (z) < 0 if 0 < z < z̄1 and f1 (z) > 0 if
z̄1 < z < z̄. (See the left graph of Fig. 3.) Suppose (4.5) holds. Then the unstable manifold from
the equilibrium (z̄1,0) defines a solution f1 (z) that is negative for 0 < z < z̄1 and is positive for
z̄1 < z < z̄. (See the right graph of Fig. 3.) In both cases the conclusion in Part 3 follows.

This completes the proof.
The above theorem shows that in general in Period I, there is z̄∗1 < z̄ such that the stock of

pollution, z(t), is decreasing toward zero if 0≤ z0 < z̄∗1 and it is increasing toward z̄ if z̄∗1 < z0 < z̄.
Hence, the threshold, z̄ is reached in finite time in Period I if z0 > z̄∗1. In addition, since f1 (z) is
discontinuous at z̄∗1 in type 1, the value function V1 (z) has a corner point. In contrast, f1 (z) is
continuous at the repeller z̄1, and hence there is no corner point on the value function. We show
graphs of the value functions for types in Figure 4 for comparison.

To close this case, recall mentioned above that generally under multistage optimal control
(and differential game) problems with endogenous stage changes, even with linear-quadratic
autonomous framework, there is no guarantee that linear-state optimal control, thus linear-
quadratic value functions, are possible in mode 1 because of the transversality condition be-
tween the two modes. Nonetheless, Part 3 of Theorem 4.1 shows that under the condition (4.5)
there exists one group of linear-state dependent optimal choices, and thus linear-quadratic value
functions, in both mode 0 and 1. The method provided above could be applied to other studies
of multistage (or multi-mode) optimal control and differential game. We conclude the results in
the following.
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FIGURE 4. Value functions V0 (z) and V1 (z) for Type 1 (left) and Type 3 (right).
A corner point is present in the graph of V1 (z) for Type 1, but not for Type 3.

Proposition 4.2. Suppose z̄< z̄0 and (z̄− z̄0)y1 = (z̄− z̄1)Y2 hold. Then there exists linear-state
dependent optimal pollution control in both mode m = 0 and m = 1 which is given by: for any
z≥ 0, {

y∗0(z) = f0(z) = (z− z̄0)y1,

y∗1(z) = f1(z)+δ (z) = (z− z̄1)Y2 +δ (z).
(4.9)

The corresponding value functions are
V0(z) =

1
2r

[
(z− z̄0)

2y2
1− cz2] ,

V1(z) =
1

2(r+λ )

[
f 2
1 (z)−δ

2(z)+2aδ (z)− cz2 +2λV0(z)
]
,

(4.10)

provided V1(z) is concave in term of z. Furthermore, the time to reach z from any z0 on the
interval (z̄1, z̄) is given by

T =
∫ z̄

z0

dz
(z− z̄1)Y2

=
1
Y2

ln
(∣∣∣∣ z̄− z̄1

z0− z̄1

∣∣∣∣) . (4.11)

Proof. From Part 3 of Theorem 4.1 we see that the linear function

f1 (z) = (z− z̄1)Y2

satisfy (3.11). Hence (4.9) and (4.10) hold. In addition, (4.11) follows from the definition
ż = f1 (z) in Period I. This completes the proof.

Remark 4.3. Assumption (z̄− z̄0)y1 = (z̄− z̄1)Y2 is not indicating one special point, rather a
manifold which satisfies this equality condition.

4.2. Case 2: z̄ > z̄0. In this case, f0 (z̄) and f1 (z̄) are given by (3.14) and (3.15) respectively,
which are both negative. As a result, either z(t) is decreasing in the entire Period I if z0 < z̄ and
is near z̄. Hence, z̄ is never reached. We show that under certain conditions z(t) is decreasing
for any z0 < z̄.

Theorem 4.4. Suppose that z̄ > z̄0 and that β < r+λ .
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(1) If z̄1 < z̄ and either Y1 > 0, or Y1 < 0 and |Y1| is sufficiently small, then z(t) is decreasing
in Period I for any z0 ∈ (0, z̄).

(2) If z̄1 > z̄ and either Y1 < 0 or Y1 > 0 and is sufficiently small, then z(t) is decreasing in
Period I for any z0 ∈ (0, z̄).

FIGURE 5. z̄1 < z̄ with Y1 > 0 (left) or Y1 < 0 and |Y1| is sufficiently small (right).

FIGURE 6. z̄1 > z̄ with Y1 < 0 (left) or Y1 > 0 and is sufficiently small (right).

Proof. Since z̄ > z̄0 and β < r+λ , it is easy to see from (3.14) and (3.15) that

f1 (z̄)< f0 (z̄)< 0. (4.12)

Furthermore, Eq. (3.11) is equivalent to the dynamical system, and steady state z̄1 in Period
I is equivalent to the equilibrium (0, z̄1). Since δ (z̄) = 0, it follows that f1 (z) satisfies (3.12)
for z < z̄ and is near z̄. The solution f1 (z) may or may not stay below −δ (z). If it does, then
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f1 (z)< 0 for all z ∈ (0, z̄) and therefore z(t) is decreasing for any z0 ∈ (0, z̄). If it does not, we
use ẑ to denote the solution of the equation f1 (z) =−δ (z).

We examine the trajectories that passes the point (ẑ, f1 (ẑ)) in various cases.
Suppose z̄1 < z̄ and Y1 > 0. Then (z̄1,0) is a repeller for the dynamical system. The trajectory

passing through (ẑ, f1 (ẑ)) moves away from (z̄1,0) along the unstable manifold that is tangent
to 〈1,Y2〉. Hence, it does not intersect the z-axis. Therefore, f1 (z)< 0 for all z ∈ (0, z̄). (See the
left graph in Fig. 5.)

Suppose z̄1 < z̄ and Y1 < 0. Then (z̄1,0) is a saddle point. If |Y1| is small enough so that the
stable manifold passes ẑ above the point (ẑ, f1 (ẑ)), then the trajectory stays below the z-axis for
all z < ẑ. Hence, again f1 (z)< 0 for all z ∈ (0, z̄). (See the right graph in Fig. 5.)

Suppose z̄1 > z̄ and Y1 < 0. Then the trajectory that passes through (ẑ, f1 (ẑ)) moves away
from (z̄1,0) and approaches the unstable manifold. Hence f1 (z) for all z < ẑ. (See the left graph
in Fig. 6.)

Suppose z̄1 > z̄ and Y1 > 0. Then (z̄1,0) is a repeller. If Y1 is small enough such that the unsta-
ble manifold passing through ẑ above the point (ẑ, f1 (ẑ)). As a result, the trajectory that passes
through (ẑ, f1 (ẑ)) moves away from (z̄1,0) and stays between the two unstable manifolds. As a
result, f1 (z)< 0 on (0, ẑ). (See the right graph in Fig. 6.)

Since f1 (z)< 0 implies that z(t) is decreasing, the conclusion of the theorem follows.
This completes the proof.
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