
Commun. Optim. Theory 2023 (2023) 21 https://doi.org/10.23952/cot.2023.21

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS

ANDREAS FISCHER1, OLGA KHOMYAK2, PETRO STETSYUK2,∗

1Faculty of Mathematics, Technische Universität Dresden, Dresden, Germany
2V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Dedicated to the memory of Professor Naum Z. Shor on the occasion of his 85th birthday

Abstract. This paper gives an overview of particular older and recent results for the ellipsoid method with respect
to the contributions by Naum Zuselevich Shor. Therefore, we present this method as a subgradient algorithm
with space dilation. For a certain choice of the dilation coefficient, this is a method of outer approximation of
semi-ellipsoids by ellipsoids with monotonous decrease in their volume. The paper shows results on properties
and applications of the ellipsoid method including computational aspects. Two forms of the ellipsoid method are
described which differ in the way of updating the inverse space transformation matrix. The applicability of the
ellipsoid method to several problem classes, like convex programs and saddle point problems for convex-concave
functions, is discussed. Finally, the acceleration of the ellipsoid method by deeper ellipsoid approximations is also
dealt with.
Keywords. Ellipsoid method; Nonsmooth optimization; Subgradient algorithm; Space dilation; Saddle point
problem.
2020 Mathematics Subject Classification. 65K05, 90C25, 90C30, 90C90.

1. INTRODUCTION

The classical ellipsoid method was first proposed in 1976 by Yudin and Nemirovski [16].
They derived this method from the cutting plane scheme and called it modified centered cutting
method. Independently, the ellipsoid method was discovered by Shor in the paper [7] from
1977. There, the method is presented as a particular case of subgradient methods with space
dilation, which were proposed by Shor at the end of the sixties [5, 6]. Based on the framework
of methods with space dilation, a parametrized version of the ellipsoid method is able to unify
existing variants of the ellipsoid method, namely those by Shor [7], Nemirovski and Yudin [3,
page 76], and Khachiyan [2].

∗Corresponding Author.
E-mail address: andreas.fischer@tu-dresden.de (A. Fischer), khomiak.olha@gmail.com (O. Khomyak), stet-

syukp@gmail.com (P. Stetsyuk).
Received: November 14, 2022; Accepted: February 24, 2023.

c©2023 Communications in Optimization Theory

1

2 A. FISCHER, O. KHOMYAK, P. STETSYUK

In this paper, we provide properties of two algorithmic realizations of the ellipsoid method.
The first algorithm is based on updating a possibly nonsymmetric matrix B, as in the ellipsoid
method suggested by Shor, and the second updates a symmetric matrix H = BB>, as proposed
by Skokov [10] for subgradient methods with space dilation.

Furthermore, we present the Algorithm emshor (ellipsoid method of Shor) for the uncon-
strained minimization of a convex function. In particular, it is able to generate a point at which
the function value does not deviate more than a specified tolerance from the optimal function
value. The algorithm was successfully applied to the minimization of convex ravine functions.

We describe how the ellipsoid method can be applied to the solution of constrained convex
programs and to determining a saddle point of a convex-concave function. It is also shown
that one can use deeper ellipsoid approximations, i.e., minimal volume ellipsoids based on two
cutting hyperplanes. To this end, an anti-ravine technique, similar to that in Shor’s r-algorithm
[8, 9], is considered.

The material is presented as follows. In Section 2, the B- and the H-form of the ellipsoid
method and their properties are described. Thereafter, Section 3 shows Algorithm emshor to-
gether with an Octave implementation and numerical results for a smooth and a non-smooth
convex ravine function. In addition, the parametrized version of the ellipsoid method is dis-
cussed in Section 3.3. Then, in Section 4, we demonstrate how the ellipsoid method can be
applied to constrained convex programs and to saddle point problems of a convex-concave func-
tion. The accelerating the ellipsoid method by deeper ellipsoid approximations is discussed in
Section 5.

2. THE ELLIPSOID METHOD AND ITS PROPERTIES

Let a mapping g : Rn→Rn be given. We assume that x∗ ∈Rn exists so that g(x)>(x−x∗)≥ 0
for all x ∈ Rn and g(x) 6= 0 for all x 6= x∗. The ellipsoid method can be used to approximately
determine x∗. A prominent application in this setting is the minimization of a convex function
f : Rn→ R with g being the subgradient of f . This case is dealt with in Section 3.

2.1. The B-form of the ellipsoid method. This particular way to describe the ellipsoid method
is used in the following algorithm.

Algorithm 1 – The B-form of the ellipsoid method

Step 0. Choose x0 ∈ Rn, a non-singular matrix B0 ∈ Rn×n, and r0 > 0 so that∥∥B−1
0 (x0− x∗)

∥∥≤ r0.

Moreover, set α :=
√

n+1
n−1 and k := 0.

Step 1. If g(xk) = 0, then set x∗ := xk and STOP.

Step 2. Calculate

xk+1 := xk−hkBkξk, where ξk :=
B>k g(xk)∥∥B>k g(xk)

∥∥ , hk :=
1
2

(
1− 1

α2

)
rk.

Step 3. Update

Bk+1 := Bk +

(
1
α
−1
)
(Bkξk)ξ

>
k and rk+1 :=

1
2

(
α +

1
α

)
rk.

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 3

Step 4. Set k := k+1 and go to Step 1.

In Algorithms 2 – 4 later on, the appearance of α will be equivalently replaced by means of

1
2

(
1− 1

α2

)
=

1
n+1

,
1
α
−1 =

√
n−1
n+1

−1, and
1
2

(
α +

1
α

)
=

n√
n2−1

. (2.1)

Throughout, for any xk,xk+1 generated by Algorithm 1, let the ellipsoids

Ek := {x | ‖B−1
k (xk− x)‖ ≤ rk}

be defined. Moreover, let vol(E) denote the volume of the ellipsoid E .

Theorem 2.1 (Theorem 1 in [12]). Let xk and xk+1 be generated by Algorithm 1. Then, the
ratio of volumes of the ellipsoids Ek+1 and Ek does not depend on k and is equal to

qn(α) :=
vol(Ek+1)

vol(Ek)
=

1
α

(
1
2

(
α +

1
α

))n

< 1.

Moreover, x∗ ∈ Ek holds for all k ∈ N.

Theorem 2.2 (Theorem 3.14 in [8]). Let the sequence {xk} be generated by Algorithm 1. Then,

‖B−1
k (xk− x∗)‖ ≤ rk (2.2)

holds for k ∈ N.

At each iteration of Algorithm 1, the matrix Bk is updated in Step 3. Obviously, the update
requires O(n2) operations and can be described based on the space dilation operator Rα(ξ) :
Rn→ Rn with

Rα(ξ) := In +(α−1)ξ ξ
>,

where ξ ∈ Rn with ‖ξ‖ = 1 is the direction of dilation and In ∈ Rn×n the identity matrix. The
properties of this operator were studied in detail in [8, 9]. Setting β := 1/α and denoting the
inverse dilation operator by R−1

α (ξ), we have

R−1
α (ξ) = Rβ (ξ)

and
Bk+1 = BkRβ (ξk).

The latter shows the meaning of space dilation for the update of the B-matrices.
Algorithm 1 uses an ellipsoid of smaller volume containing a half-ball of radius r in Rn

(n≥ 2). Such an ellipsoid has an oblate shape in the direction ξ . The parameters of the ellipsoid
are shown in Fig. 1, where a is the length of the minor semi-axis of the ellipsoid, b is the length
of the major semi-axes of the ellipsoid (the number of such semi-axes is equal to n− 1), h is
the distance from the center of the ball to the center of the ellipsoid in the direction of its minor
semi-axis.

The volume of this ellipsoid is ve = v0abn−1 and the volume of the ball is vb = v0rn, where
v0 denotes the volume of the unit ball in Rn. Therefore, the volume reduction factor is equal to

ve

vb
=
(a

r

)(b
r

)n−1

=
(a

b

)(b
r

)n

=
1
α

(
1
2

(
α +

1
α

))n

= qn(α).

4 A. FISCHER, O. KHOMYAK, P. STETSYUK

FIGURE 1. The parameters of minimal volume ellipsoid containing a half-ball in Rn.

For α = b
a =

√
n+1
n−1 , it follows that qn(α)< 1. To transform the ellipsoid, containing a half-ball,

into a new ball, it is sufficient to dilate the space of variables in the direction of the minor semi-
axis with the coefficient α = b

a . This can be done using the operator of space dilation Rα(ξ),
where the direction ξ coincides with the direction of the minor semi-axis of the ellipsoid.

If X = Rn is the original space of variables, then in the transformed space of variables Y =
Rα(ξ)X , we get a new ball of radius b, which contains the solution of our problem. Repeating
this procedure, but for the new ball in the transformed space, we obtain Algorithm 1. Here, in
Step 2, the direction of the minor semi-axis of the ellipsoid in the transformed space Yk = B−1

k X
is calculated and the transition to its center is performed. The calculated direction is used for
the next space dilation, which is implemented in Step 3 by determining the matrix Bk+1. In the
next transformed space Yk+1 = B−1

k+1X , we get a ball of radius rk+1.

2.2. The H-form of the ellipsoid method. The B-form of the ellipsoid method (Algorithm 1)
can be written in H-form by means of positive definite symmetric matrices Hk. This is presented
and discussed below.

Algorithm 2 – The H-form of the ellipsoid method

Step 0. Choose x0 ∈ Rn, a positive definite symmetric matrix H0 ∈ Rn×n, and r0 > 0 so that

(x0− x∗)>H−1
0 (x0− x∗)≤ r2

0.

Moreover, set k := 0.

Step 1. If g(xk) = 0, then set x∗ := xk and STOP.

Step 2. Calculate

xk+1 := xk−hk
Hkg(xk)√

g(xk)>Hkg(xk)
, where hk :=

1
n+1

rk.

Step 3. Update

Hk+1 := Hk−
2

n+1
Hkg(xk)g(xk)

>Hk

g(xk)>Hkg(xk)
and rk+1 :=

n√
n2−1

rk.

Step 4. Set k := k+1 and go to Step 1.

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 5

The sequence {xk} generated by Algorithm 2 is (theoretically) identical to the corresponding
sequence generated by Algorithm 1 provided that in Step 0 of the latter the same values for
x0,r0 are chosen as for Algorithm 2 and B0 is chosen so that H0 = B0B>0 holds. To see that the
H-form indeed produces the same sequence {xk}, one inductively shows by simple calculations
that

xk+1 = xk−hkBkξk = xk−hk
Hkg(xk)√

g(xk)>Hkg(xk)
,

Bk+1B>k+1 = Hk−
2

n+1
Hkg(xk)g(xk)

>Hk

g(xk)>Hkg(xk)

holds for all k ∈ N for Algorithm 1 meaning that

Hk+1 = Bk+1B>k+1

is valid for k ∈ N. According to this, Ek has equivalent representations by means of Bk and
Hk-matrices, namely

Ek = {x | ‖B−1
k (xk− x)‖ ≤ rk}= {x | (xk− x)H−1

k (xk− x)≤ r2
k}.

Hence, Theorems 2.1 and 2.2 are valid for Algorithm 2 as well.
On the one hand, computing a sequence {xk} by Algorithm 2 requires just a half of the op-

erations than needed by Algorithm 1. The RAM memory usage shows about the same relation,
if the Bk matrices are nonsymmetric. On the other hand, the H-form is computationally less
stable since the matrices Hk may become unsymmetric and indefinite. Let us demonstrate this
by means of a small example.

For n = 2, H0 := I2, g(x2k) := (1,−1)> and g(x2k+1) := (2,1)> for k ∈ N, the formula for
updating Hk in Step 3 of Algorithm 2 (H-form of the ellipsoid method) then yields

H50=

(
8.6163e−13 9.5855e−14
9.5914e−14 1.6273e−12

)
, H70=

(
9.9927e−18 −1.8545e−17
4.0653e−17 −3.5467e−17

)
,

where H50 is nonsymmetric and H70 is neither symmetric nor positive definite.
For Algorithm 1 (B-form of the ellipsoid method), such problems were not observed. If we

look at the same example, the matrices B50 and B70 computed Algorithm 1 lead to

B50B>50=

∣∣∣∣ 8.6162e−13 9.5889e−14
9.5889e−14 1.6273e−12

∣∣∣∣ , B70B>70=

∣∣∣∣ 1.4592e−17 1.6239e−18
1.6239e−18 2.7559e−17

∣∣∣∣ ,
i.e., Hk = BkB>k stay symmetric and positive definite.

3. ELLIPSOID ALGORITHMS FOR MINIMIZING CONVEX FUNCTIONS

The ellipsoid method can be used to find the (unconstrained) minimizer x∗ of a convex func-
tion f : Rn→R. The minimum value of f is denoted by f ∗ := f (x∗). For simplicity, we assume
that x∗ is the only minimizer of f . To apply Algorithm 1 to the minimization problem just
described let the mapping g : Rn→ Rn used in Section 2 be specialized to g f : Rn→ Rn with
g f (x) being a subgradient of f at x, which implies

(x− x∗)>g f (x)≥ f (x)− f (x∗) = f (x)− f ∗ ≥ 0 for all x ∈ Rn. (3.1)

6 A. FISCHER, O. KHOMYAK, P. STETSYUK

Moreover, compared with Algorithm 1, a more appropriate termination criterion is used in
Step 1, which guarantees that Algorithm 3 below does not stop before

f (xk)≤ f ∗+ ε (3.2)

is fulfilled for some predefined ε > 0. This criterion is derived as follows. For any (xk,Bk,rk) ∈
Rn×Rn×n× (0,∞) generated by Algorithm 1, we obtain

f (xk)− f ∗ ≤ (xk− x∗)>g f (xk)

= (B−1
k (xk− x∗))>B>k g f (xk)

≤ ‖B−1
k (xk− x∗)‖‖B>k g f (xk)‖

≤ rk‖B>k g f (xk)‖,

(3.3)

where the first inequality follows from (3.1) and the last is a consequence of x∗ ∈ Ek according
to Theorem 2.1. Hence, rk‖B>k g f (xk)‖ ≤ ε implies that (3.2) is fulfilled.

The next algorithm includes this termination criterion. Moreover, instead of choosing any
non-singular matrix B0 as in Step 0 of Algorithm 1, the identity matrix is used below. Recall
further that we now replace terms with α according to (2.1). To honor the work of Naum Z.
Shor, the next algorithm is called Algorithm emshor, see [1, 13].

Algorithm 3 – Algorithm emshor

Step 0. Choose x0 ∈ Rn and r0 > 0 so that ‖x0− x∗‖ ≤ r0.
Moreover, choose ε > 0, set B0 := In and k := 0.

Step 1. If
∥∥B>k g f (xk)

∥∥rk ≤ ε , then set k∗ := k, x∗ε := xk and STOP.

Step 2. Calculate

xk+1 := xk−hkBkξk, where ξk :=
B>k g f (xk)∥∥B>k g f (xk)

∥∥ , hk :=
1

n+1
rk.

Step 3. Update

Bk+1 := Bk +

(√
n−1
n+1

−1

)
(Bkξk)ξ

>
k and rk+1 :=

n√
n2−1

rk.

Step 4. Set k := k+1 and go to Step 1.

The next theorem follows directly from Theorem 2.1, if one substitutes α according to its def-
inition and by taking into account the stopping criterion in Step 1 of Algorithm 3 with the
explanation above.

Theorem 3.1. Let xk and xk+1 be generated by Algorithm 3. Then, the ratio of volumes of the
ellipsoids Ek and Ek+1 does not depend on k and is equal to

qn :=
vol(Ek+1)

vol(Ek)
=

n
n+1

(
n√

n2−1

)n−1

< exp
{
− 1

2n

}
< 1.

Moreover, x∗ ∈ Ek holds for all k = 0,1, . . . ,k∗ and, if Algorithm 3 stops, f (x∗ε)≤ f ∗+ε is valid.

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 7

3.1. Octave implementation of Algorithm emshor. Algorithm 3 (Algorithm emshor) was
implemented in Octave [4, 13]. It uses a function of the form function[f,g]=calcfg(x),
which calculates the value f (x) and a subgradient g f (x) at x. This function has to be provided
by the user. The code of the implementation and some short comments are given below.

Octave code for Algorithm emshor

Input parameters:

calcfg - name of the function for calculation of f and g

x0 - starting point, x0(1:n)

r0 - the radius of the ball localizing the minimum point

epsf, maxitn - stop parameters (accuracy, max. iter.)

intp - printing interval (after each intp iterations)

Output parameters:

x - approximation of the minimum point, x(1:n)

f - value of function f at the point x

itn - number of iterations performed

ist - exit code (1=epsf, 4=maxitn)

function[x,f,itn,ist]=emshor(calcfg,x0,r0,epsf,maxitn,intp); #row01

n=length(x0); x=x0; B=eye(n); r=r0; #row02

dn=double(n); beta=sqrt((dn-1.d0)/(dn+1.d0)); #row03

for (itn=0:maxitn) #row04

[f,g1]=calcfg(x); g=B’*g1; dg=norm(g); #row05

if((mod(itn,intp)==0)&&(intp<=maxitn)) #row06

printf("itn %4d f %14.6e\n",itn,f); #row07

endif #row08

if(r*dg<epsf) ist=1; return; endif #row09

xi=(1.d0/dg)*g; dx=B*xi; #row10

hs=r/(dn+1.d0); x-=hs*dx; #row11

B+=(beta-1.d0)*B*xi*xi’; #row12

r=r/sqrt(1.d0-1.d0/dn)/sqrt(1.d0+1.d0/dn); #row13

endfor #row14

ist=4; #row15

endfunction #row16

The iterative process is executed in a for-loop (rows 04–14), where Step 1 of Algorithm 3 is
implemented in rows 05–09, Step 2 in rows 10–11, and Step 3 in rows 12–13. After every intp
iterations in the for-loop intermediate results are printed (rows 06–08). The Octave code for
Algorithm 3 stops if either the termination criterion in Step 1 of the algorithm is satisfied so
that x∗ε with f (x∗ε) ≤ f ∗+ ε is found (ist=1 in row 09) or if the maximal number of iterations
maxitn is reached (rows 04 and 15).

Let us mention that an Octave implementation of Algorithm 2 (The H-form of the ellipsoid
method) can be easily derived from the above code by replacing the rows 02, 05, and 12 with:

n=length(x0); x=x0; H=eye(n); r=r0; #row02

[f,g1]=calcfg(x); g=H*g1; dg=sqrt(g1’*g); #row05

H+=(beta*beta-1.d0)*xi*xi’; #row12

8 A. FISCHER, O. KHOMYAK, P. STETSYUK

3.2. Computational experiments for ravine function. We will demonstrate the work of Al-
gorithm 3 (Algorithm emshor) by means of its Octave code provided above. To this end, the
code is applied to the minimization of two ravine quadratic and piecewise linear convex func-
tions f1, f2 : Rn→ R with

f1(x) =
n

∑
i=1

t i−1 (xi−1)2 , f2(x) =
n

∑
i=1

t i−1 |xi−1| (3.4)

for fixed t ∈ {1.2, 2.0}. Obviously, the unique minimizers of both functions f1 and f2 are equal
to x∗ = (1,1, . . . ,1)> ∈ Rn with the same optimal values f ∗1 = f1(x∗) = f ∗2 = f2(x∗) = 0. The
ratio of the largest and smallest summands in f1 and f2 depends on the ratio of the coefficients
tn−1 and t0 = 1. For example, for t = 1.2 and n = 100, the ratio of coefficients is about 6.9e+07,
whereas for t = 2 and n between 20 and 100, the ratio ranges approximately from 5.2e+05 to
6.3e+29.

Table 1 provides results obtained by the Octave code for Algorithm emshor for the smooth
function f1 with t = 2, where x0 = 0 ∈ R10, r0 = 5, and different ε-values were used. For the
nonsmooth function f2 with t = 2, the calculations were done for x0 = 0 ∈ R10, r0 = 5, and
again with different values for ε , see Table 2. Results for f1 and f2 with t = 1.2 are shown in
Table 3 for n up to 100, where x0 = 0, r0 = 10, ε = 1.0e-16 for f1 and ε = 1.0e-08 for f2 were
used. These three tables show the number of iterations k∗, the function value f (x∗ε) at the last
iteration, and the distance ‖x∗ε − x∗‖ from the solution.

TABLE 1. Results for minimizing the smooth function f1 by Algorithm emshor

ε k∗ f (x∗ε) ‖x∗ε − x∗‖ ε k∗ f (x∗ε) ‖x∗ε − x∗‖
1.0e-02 685 3.1e-05 2.0e-03 1.0e-12 2938 2.9e-15 2.7e-08
1.0e-04 1137 4.2e-07 2.5e-04 1.0e-14 3452 4.2e-17 2.3e-09
1.0e-06 1580 2.3e-09 1.5e-05 1.0e-16 3926 8.9e-19 4.2e-10
1.0e-08 2055 1.8e-11 1.4e-06 1.0e-18 4463 1.4e-20 3.5e-11
1.0e-10 2502 5.3e-13 3.8e-07 1.0e-20 4889 6.4e-23 4.8e-12

TABLE 2. Results for minimizing the non-smooth function f2 by Algorithm emshor

ε k∗ f (x∗ε) ‖x∗ε − x∗‖ ε k∗ f (x∗ε) ‖x∗ε − x∗‖
1.0e-02 2057 2.5e-04 1.4e-05 1.0e-10 5750 2.1e-12 8.6e-14
1.0e-04 2957 2.9e-07 3.4e-08 1.0e-12 6485 4.9e-14 7.4e-15
1.0e-06 3829 7.2e-08 1.1e-08 1.0e-14 6765 4.4e-16 4.4e-16
1.0e-08 4795 7.5e-10 1.3e-10 1.0e-16 6780 0.0e+00 0.0e+00

From Tables 1 and 2, it can be seen that Algorithm emshor finds very precise approximations
to the minimizer of the ravine convex function. It can be observed from Table 3 that the number
of iterations grows slightly faster than n2 for the given initial data.

In practice, Algorithm 2 (The H-form of the ellipsoid method) is not able to approximate
the minimum point of the ravine function f2 with a reasonable accuracy. This is confirmed
by numerical experiments with the modification of the Octave code for Algorithm emshor, in
which the operations with the matrix B (in rows 5, 10 and 12) are replaced by the corresponding

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 9

TABLE 3. Results for minimizing f1, f2 by Algorithm emshor

smooth function f1 non-smooth function f2
n k∗ f (x∗ε) ‖x∗ε − x∗‖ k∗ f (x∗ε) ‖x∗ε − x∗‖

10 3808 3.4e-19 3.9e-10 4484 8.2e-10 1.3e-10
20 15883 1.0e-18 4.3e-10 19044 4.7e-10 5.2e-11
50 104771 5.0e-19 3.1e-10 135113 6.9e-11 5.9e-13
100 454650 1.8e-19 6.9e-11 563705 5.3e-11 2.2e-12

operations with the symmetric matrix H = BB>. Results for applying this modified code to
the minimization of function f2 with t = 2, ε = 1.0e-3, x0 = 0, and r0 ∈ {5,500} are given in
Table 4. In contrast to the other tables, itn denotes the total number of iterations performed,
whereas itr (with itr≤itn) is the index, where the smallest value of f2 was observed during
the iteration process.

TABLE 4. Results for applying the H-form of Algorithm emshor to f2

r0 = 5 r0 = 500
n itn f (xitn) itr f (xitr) itn f (itn) itr f (xitr)
5 461 1.3e-03 446 1.0e-05 453 2.1e-01 443 2.0e-03

10 1664 3.1e-02 1467 8.3e-05 1767 2.4e+00 1690 2.0e-03
15 6541 6.5e-05 6528 2.9e-07 8615 5.6e-05 7804 3.1e-07
20 5627 5.7e+00 5356 2.4e-03 5434 1.1e+04 4980 2.1e-01

From Table 4, it can be seen that the achieved accuracies are insufficient since f2(xitn) ≤
1.0e-03 or f2(xitnr) ≤ 1.0e-03 could only be obtained for n = 15. In all cases, the function
values increased before stopping. This bad behavior appears because the norm of the matrices
H converges to zero much faster than the norm of the matrices B and due to the accumulation
of rounding errors when updating the symmetric matrix H (see also the example at the end of
Section 2).

3.3. A unified presentation. Here, we would like to introduce a parametrized version of Algo-
rithm 3, see [14]. The additional parameter λ allows to obtain different versions of the ellipsoid
methods by just adapting this λ .

Algorithm 4

Step 0. Choose λ > 0, x0 ∈ Rn, r0 > 0, ε > 0 such that ‖x0− x∗‖ ≤ r0.
Set B0 := In ∈ Rn×n and k := 0.

Step 1. If
∥∥B>k g f (xk)

∥∥rk ≤ ε , then set k∗ := k, x∗ε := xk, and STOP.

Step 2. Calculate

xk+1 := xk−hkBkξk, where ξk :=
B>k g f (xk)∥∥B>k g f (xk)

∥∥ , hk =
1

n+1
rk.

10 A. FISCHER, O. KHOMYAK, P. STETSYUK

Step 3. Update

Bk+1 := λ

(
Bk +

(√
n−1
n+1

−1

)
(Bkξk)ξ

>
k

)
and rk+1 :=

1
λ

n√
n2−1

rk.

Step 4. Set k := k+1 and go to Step 1.

For Algorithm 4, Theorem 2.2 (for k = 0, . . . ,k∗) and Theorem 3.1 hold for any parameter
λ ∈ (0,∞). The proofs can be carried out similar to [1, Theorems 1 and 2].

For certain values of λ , existing variants of the ellipsoid method are obtained, namely those
by Shor [7], Nemirovsky and Yudin [3, page 76]), and Khachiyan [2, Lemma 4]. A fourth
almost unknown variant is given in [7] and denoted by [7]* in Tables 5 and 6. Details of these
variants can be found in Table 5. All variants (with different λ) are theoretically equivalent,
though slight differences could be observed due to the accumulation of numerical errors. For
example, using an Octave code for Algorithm 4 for the minimization of the non-smooth function
f2 defined in (3.4) with t = 2, x = 0 ∈ R10, r0 = 5, and ε = 1.0e-08, the results in Table 6 are
obtained.

TABLE 5. Characteristics of four variants of the ellipsoid method

λ Update of the B-matrix Multiplications Updated radius Reference

1 B1 = B+
(√

n−1
n+1 −1

)
(Bξ)ξ> 3n2 +n r1 =

n√
n2−1

r [7]
n√

n2−1
B2 =

n√
n2−1

B1 4n2 +n r2 = r [2]

n
√

n+1
n−1 B3 =

(n+1
n−1

) 1
2n B1 4n2 +n r3 =

(n−1
n+1

) 1
2n r1 [3](

n√
n2−1

) 3
2

B4 =
(

n√
n2−1

) 3
2

B1 4n2 +n r4 =
(√

n2−1
n

) 1
2

r [7]*

TABLE 6. Results for Algorithm 4 applied to f2 for different values of λ

ε λ according to k∗ f (x∗ε) ‖x∗ε − x∗‖ ‖Bk∗‖ rk∗

1.0e-07 Shor [7] 4351 9.2e-09 9.2e-10 2.6e-18 1.6e+10
1.0e-07 Khachiyan [2] 4351 9.2e-09 9.2e-10 8.2e-09 5.0e+00
1.0e-07 Nemirovski and Yudin [3] 4351 9.2e-09 9.2e-10 2.4e+01 1.7e-09
1.0e-07 Shor [7]* 4351 9.2e-09 9.2e-10 4.6e-04 8.9e-05
1.0e-08 Shor [7] 4821 9.0e-10 1.1e-10 2.3e-20 1.7e+11
1.0e-08 Khachiyan [2] 4807 9.2e-10 1.8e-10 7.9e-10 5.0e+00
1.0e-08 Nemirovski and Yudin [3] 4811 9.3e-10 9.0e-11 2.5e+01 1.7e-10
1.0e-08 Shor [7]* 4819 9.0e-10 1.6e-10 1.4e-04 2.8e-05
1.0e-14 Shor [7] 6716 0.0e+00 0.0e+00 2.0e-29 2.3e+15
1.0e-14 Khachiyan [2] 6724 2.2e-16 2.2e-16 2.4e-14 5.0e+00
1.0e-14 Nemirovski and Yudin [3] 6741 1.1e-16 1.1e-16 4.0e+00 1.1e-14
1.0e-14 Shor [7]* 6738 6.7e-16 6.7e-16 3.1e-07 2.2e-07

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 11

4. FURTHER APPLICATIONS OF THE ELLIPSOID METHOD

In this section, we briefly review how the ellipsoid method can be applied to convex programs
and saddle point problems for convex-concave functions.

4.1. Constrained convex programming. Let us consider the constrained program

minimize
x

f0(x) subject to fi(x)≤ 0 i = 1,2, . . . ,m (4.1)

where, for i = 0,1, . . . ,m, the functions fi : Rn → R are convex and gi : Rn → Rn denotes a
mapping so that gi(x) is a subgradient of fi at x. Let us assume that problem (4.1) has the unique
solution x∗ and that the Slater condition is satisfied. Moreover, let the mapping g : Rn→ Rn be
defined by

g(x) = gi(x)(x),

where the mapping x 7→ i(x) satisfies the conditions

i(x) = 0, if f1(x)≤ 0, . . . , fm(x)≤ 0,
i(x) ∈ {i | fi(x)> 0}, if max{ f1(x), . . . , fm(x)}> 0.

(4.2)

Then, it can be seen that (x− x∗)>g(x) ≥ 0 holds for all x ∈ Rn. For this purpose, let us
first consider the case that x satisfies max{ f1(x), . . . , fm(x)} ≤ 0. According to (4.2), we have
g(x) = g0(x). Moreover, by f0(x)≥ f0(x∗) and the convexity of f , we have

(x− x∗)>g(x) = (x− x∗)>g0(x)≥ f0(x)− f0(x∗)≥ 0.

If, otherwise, max{ f1(x), . . . , fm(x)} > 0, then (4.2) implies f j(x) > 0 for j := i(x). By the
convexity of f j and by f j(x∗)≤ 0, we get

(x− x∗)>g(x) = (x− x∗)>g j(x)≥ f j(x)− f j(x∗)≥ 0.

Thus, (x− x∗)>g(x)≥ 0 holds for all x ∈ Rn.
Hence, to approximate x∗ we can apply one of the previous algorithms. In particular, we

may use the same stopping criterion as in Algorithm 3, see (3.3) as well. At the end of this
subsection, we would like to mention the possibility of equivalently reformulating (4.1) as con-
vex unconstrained minimization problem by penalizing the constraints if a sufficiently large
penalty parameter is known. This enables the application of Algorithm emshor or of an other
appropriate algorithm to the resulting convex unconstrained program. In [15], this approach is
studied for the reformulation of linear programs and the use of an r-algorithm, for the latter see
[8, 9, 11].

4.2. Saddle point problems of convex-concave functions. Let f : Rn×Rm→R be a convex-
concave function, i.e., f (·,y) : Rn → R is convex for each y ∈ Rm and f (x, ·) : Rm → R is
concave for each x ∈ Rn. A pair z∗ := (x∗,y∗) ∈ Rn×Rm is called saddle point of f if

f (x∗,y)≤ f (x∗,y∗)≤ f (x,y∗) for all (x,y) ∈ Rn×Rm.

Moreover, with z := (x,y), let the set Gx(z)⊂Rn contain all subgradients of f (·,y) with respect
to x, whereas Gy(z)⊂ Rm contains all supergradients of f (x, ·) with respect to y. Based on this,
we can define the mapping g : Rn×Rm→ Rn×Rm by

g(z) :=
(

gx(z)
−gy(z)

)
with (gx(z),gy(z)) ∈ Gx(z)×Gy(z).

12 A. FISCHER, O. KHOMYAK, P. STETSYUK

By the above definition of a saddle point and by the convexity of the functions f (·,y) and
− f (x, ·) for each fixed y and x, respectively, it follows that

0 ≤ f (x,y∗)− f (x∗,y)
= f (x,y∗)− f (x,y)+ f (x,y)− f (x∗,y)
≤ −gy(z)>(y− y∗)+gx(z)>(x− x∗)
= g(z)>(z− z∗).

Thus, g(z)>(z− z∗) ≥ 0 holds for all z ∈ Rn×Rm so that the ellipsoid method can be used to
approximate the saddle point z∗.

There are several other cases, where the ellipsoid method can be applied. For example, for
solving non-smooth problems of small dimensions that occur in decomposition schemes (by
constraints, by variables), for special convex problems with a small number of variables with
a parametrically given family of constraints. The main questions are always to determine a
rule for constructing cutting hyperplanes, which localize the point to find, and to develop an
appropriate stopping criterion.

5. ACCELERATING THE ELLIPSOID METHOD

As it was explained in Section 2, the ellipsoid method can be described by means of the space
dilation operator

Rα(ξ)=I+(α−1)ξ ξ
>.

It transforms the ellipsoid, containing the half-ball in Rn, into a new ball after one space dilation.
Instead of this, we consider the case of receiving a new ball after two space dilations.

The key feature of this technique is the transformation of the ellipsoid Ell(x0,a,b,r) into a
ball. The minimum volume ellipsoid Ell(x0,a,b,r) is centered at x0 and contains the convex set
W ⊂ Rn resulting from the intersection of the ball S(x0, r) := {x ∈ Rn | ‖x− x0‖ ≤ r} with the
two half-spaces

P(x0,ξ) := {x ∈ Rn | (x− x0)
>ξ ≤ 0},

P(x0,η) := {x ∈ Rn | (x− x0)
>η ≤ 0},

where −1 < ξ>η < 0, ‖ξ‖=1, ‖η‖=1 holds. The ellipsoid Ell(x0,a,b,r) has the following

FIGURE 2. Projections of the set W and the 2d-ellipsoid Ell(x0,a,b,r).

parameters: the length of the semi-axis in the direction (ξ−η) is equal to a= r
√

1+(ξ ,η)< r;
the length of the semi-axis in the direction (ξ +η) is b = r

√
1− (ξ ,η)> r; in the other (n−2)

THE ELLIPSOID METHOD AND COMPUTATIONAL ASPECTS 13

directions orthogonal to ξ and η , the lengths of the semi-axes are equal to r. The ratio of the
volume of Ell(x0,a,b,r) and the ball volume is equal to q := (a/r)(b/r) =

√
1− (ξ>η)2 < 1.

The ratio decreases when the angle between ξ and η approaches 180◦.

Lemma 5.1 ([11]). Let Bk ∈ Rn×n, r > 0, xk,x∗ ∈ Rn, and g1,g2 ∈ Rn be given such that
‖B−1

k (xk− x∗)‖ ≤ r, (xk− x∗)>g1 ≥ 0, (xk− x∗)>g2 ≥ 0, and g>1 BkB>k g2 < 0 holds. Then, the
updated matrix

Bk+1 := BkRβ1

(
ξ −η

‖ξ −η‖

)
Rβ2

(
ξ +η

‖ξ +η‖

)
with

β1 :=
√

1+ξ>η , β2 :=
√

1−ξ>η , ξ :=
B>k g1

‖B>k g1‖
, η :=

B>k g2

‖B>k g2‖
has the following properties:

(i) ‖B−1
k+1(xk− x∗)‖ ≤ r,

(ii) det(Bk+1) = detBk
√

1− (ξ>η)2, and
(iii) g>1 Bk+1B>k+1g2 = 0.

Lemma 5.1 can be interpreted as follows. Property (i) means that y∗ := B−1
k+1x∗ belongs to the

ball S(yk,r) in the transformed space Y := B−1
k+1X , where yk := B−1

k+1xk. Property (ii) shows that
the volume of ellipsoid Ell(yk,a,b,r) decreases in comparison to the volume of the ball S(yk,r)
and this decrease will be the bigger the larger the obtuse angle between ξ and η is. Property (iii)
provides the basis for the anti-ravine technique, similar to that used in Shor’s r-algorithm [8, 9].
Subgradients with an obtuse angle in the original space of variables become orthogonal in the
transformed space. This yields a less strong ravine-type shape. In this case, coefficients of space
dilation in the direction of the difference of the normalized subgradients and in the direction of
the sum of normalized subgradients are determined by the angle between subgradients. A more
obtuse angle leads to a larger value of the coefficient of space dilation in the direction of the
difference between the two normalized subgradients.

The ellipsoid Ell(x0,a,b,r) (see Fig. 2) can be used to develop accelerated variants of el-
lipsoid methods for solving convex programs and saddle point problems of convex-concave
functions. For such accelerated methods, we can expect a convergence rate close to that of
r-algorithms. This is confirmed by numerical experiments for subgradient methods with trans-
formation of space for finding the minimizer of a convex function with a priori knowledge of
the minimal function value. In particular, these methods turned out to be quite useful for dealing
with ravine functions.

6. CONCLUSION

In this paper, we reviewed the ellipsoid method and the properties of two theoretically equiv-
alent versions. The first one relies on updating a not necessarily symmetric matrix B, as in the
ellipsoid method of Shor [7]. For the second version, a symmetric matrix H = BB> is updated,
as proposed in Skokov [10]. Based on the ellipsoid method in B-form, an Octave implemen-
tation for the problem of unconstrained minimization of a convex function allows the user to
find a very accurate approximation of the minimizer of a convex ravine function in a reasonable
amount of time. Further computational aspects of the application of the ellipsoid method are

14 A. FISCHER, O. KHOMYAK, P. STETSYUK

dealt with as well. We also took into account a unified way of presenting the ellipsoid method,
so that the description and implementation of the (theoretically equivalent) ellipsoid methods
by Shor [7], by Khachiyan [2], and by Nemirovski and Yudin [3] is possible. In addition, further
possible applications of ellipsoid methods were discussed as well as a technique for accelerating
ellipsoid methods.

Acknowledgements
The authors are pleased to acknowledge the support by the Volkswagen Foundation under
grant number 97 775 and by the National Research Foundation of Ukraine under grant number
2021.01/0136. Moreover, we would like to thank an anonymous reviewer for helpful comments.

REFERENCES

[1] A.F. Izmailov, P.I. Stetsyuk, A. Fischer, Emshor algoritm and its octave implementation, Computer Mathe-
matics, 1 (2019) 132-142.

[2] L.G. Khachiyan, Polynomial algorithms in linear programming, USSR Comput. Math. Math. Phys. 20 (1)
(1980) 53-72.

[3] A.S. Nemirovsky, D.B. Yudin, Problem Complexity and Method Efficiency in Optimization, John Wiley,
New York, 1983, translated from book published by Nauka, Moscow, 1979.

[4] Octave, http://www.octave.org.
[5] N.Z. Shor, Methods of minimization of nondifferentiable functions and their applications (in Russian), Ph.D.

thesis, Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR, Kyiv, 1970.
[6] N.Z. Shor, Convergence rate of the gradient descent method with dilatation of the space, Cybernetics 6 (1970)

102–108.
[7] N.Z. Shor, Cut-off method with space extension in convex programming problems, Cybernetics 13 (1977)

94-96.
[8] N.Z. Shor, Minimization Methods for Non-Differentiable Functions, Springer, Berlin, 1985.
[9] N.Z. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer, Amsterdam, 1998.

[10] V.A. Skokov, Note on minimization methods employing space stretching, Cybernetics 10 (1974) 689-692.
[11] P.I. Stetsyuk, r-Algorithms and ellipsoids. Cybern. Syst. Anal. 32 (1996) 93-110.
[12] P.I. Stetsyuk, O.V. Fesiuk, O.N. Khomyak, The generalized ellipsoid method. Cybern. Syst. Anal. 54 (2018)

576-584.
[13] P.I. Stetsyuk, A. Fischer, O. Khomyak, The generalized ellipsoid method and its implementation, In: M.

Jaćimović, M. Khachay, V. Malkova, M. Posypkin (Eds.) Optimization and Applications. OPTIMA 2019.
Communications in Computer and Information Science, vol 1145, pp. 355-370, Springer, Cham, 2020.

[14] P.I. Stetsyuk, A. Fischer, O.M. Khomiak, Ellipsoid methods with space scaling. In: F. Aliev, T. Başar (Eds.)
Proceedings of the 8th International Conference on Control and Optimization with Industrial Applications,
Volume I, pp. 402-404, Baku, 2020.

[15] P. Stetsyuk, A. Fischer, O. Pichugina, A penalty approach to linear programs with many two-sided constraints,
In: P. Pardalos, M. Khachay, A. Kazakov (Eds.) Mathematical Optimization Theory and Operations Research.
MOTOR 2021. pp. 206-217, Lecture Notes in Computer Science, vol 12755, Springer, Cham, 2021.

[16] D.B. Yudin, A.S. Nemirovskii, Informational complexity and efficient methods for the solution of convex
extremal problems, Matekon 13 (1976) 25-45.

http://www.octave.org

	1. Introduction
	2. The ellipsoid method and its properties
	2.1. The B-form of the ellipsoid method
	2.2. The H-form of the ellipsoid method

	3. Ellipsoid algorithms for minimizing convex functions
	3.1. Octave implementation of Algorithm emshor
	3.2. Computational experiments for ravine function
	3.3. A unified presentation

	4. Further applications of the ellipsoid method
	4.1. Constrained convex programming
	4.2. Saddle point problems of convex-concave functions

	5. Accelerating the ellipsoid method
	6. Conclusion
	References

