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Abstract. Within the context of mixture theory, we consider a linearized model for the flow of a fluid though a
deformable porous elastic solid, where with respect to the fluid, the solid is undergoing small but not negligible
velocity. Albeit linear, the corresponding system of equations is fairly complex, because it is coupled by the solid
and fluid velocities. The theoretical analysis (existence and uniqueness of solutions) of the system as well as the
numerical analysis (uniform stability of the discrete solution) of its discretized version are done by superposition:
splitting the solid’s displacement into a part that depends only on the data and a part that depends on the velocity
of the fluid. A simple time lagging decoupling algorithm is studied and a sharper iterative algorithm proposed at
the end. Numerical experiments confirm the performance of the numerical scheme and the validity of the model.
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1. INTRODUCTION

The success achieved by the equations developed by Darcy [10], to study the flow of fluids
through porous solids, has unfortunately led to its use where it is not appropriate. Darcy’s
equations are valid for a very specific class of flows through porous media. It holds when
the solid through which the fluid is flowing is rigid, the fluid under consideration being an
incompressible Navier-Stokes fluid. It also presumes that the flows are slow so that inertial
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effects may be neglected. These equations do not apply if the flows are not slow or if the solid
under question undergoes deformation. Another serious drawback of Darcy’s equation is that it
is silent with respect to the states of stress and strain in the solid. In important applications like
hydraulic fracturing, one needs to know the stresses that develop in the solid. Modifications or
generalizations of Darcy’s equation due to Brinkman [7, 8] and Forchheimer [12] only address
the flow of the fluid and have nothing to say about the deformation of the solid or the stresses
and strains that develop in the solid. An approach that will allow us to determine kinematical
quantities as well as the stresses in both the fluid and the porous solid is the theory of mixtures,
an approach that was given a formal mathematical structure by Truesdell [30, 31].

The basic assumption of mixture theory is that each point in the mixture is occupied, in a ho-
mogenized sense, by a particle belonging to each constituent of the mixture. Then, balance laws
are postulated for each constituent with the possibility of conversion of mass and interactions
such as momentum transfer between the constituents (see Bowen [5], Atkin and Craine [2],
Samohyl [25], Rajagopal and Tao [24]). Darcy’s equation and Fick’s equation (see Fick [11])
are very special cases that stem as approximations from the theory of mixtures. Based on the
assumptions that are made concerning the constituents, the kinematics associated with the con-
stituents, and the constraints imposed, one obtains the governing equations for the problem
under consideration. For instance, one may suppose the solid is rigid, a linearized elastic solid,
a nonlinear elastic solid, viscoelastic solid, etc., and that the fluid is a Navier-Stokes fluid, a
non-Newtonian fluid, etc., and furthermore, we can make additional assumptions concerning
the kinematics that the fluid is flowing slowly, the solid is undergoing small deformations, etc.
We could also enforce constraints that the fluid is incompressible, the volume of the constituents
is additive (see Mills [20]), and the like. In general, we could have reacting mixtures, in which
case we will have to also provide the equations governing the reactions, constitutive relations
for the mass production of the constituents, the momentum supply to the constituents, etc., but
in our study, we do not consider the interconversion of mass of the constituents. We will have
interactions between the constituents that contributes to the momentum and energy of each con-
stituent. Some of the interactions that come into play in the balance of linear momentum are
the drag force (due to differences in velocity of the constituents), virtual mass force (due to dif-
ferences in acceleration of the constituents), Magnus effect (due to differences in spin), Basset
forces (due to differences in the histories of the motion), and numerous other interaction terms
due to differences in densities, density gradients, lift forces, etc. (see Johnson et al. [18] for a
detailed discussion of the interaction forces that arise in mixture theory). Once specific assump-
tions have been made concerning all the above issues, we can derive the appropriate governing
equations for each of the constituents from the balance laws for the constituents.

A serious difficulty in the use of mixture theory wherein we use balance equations for each of
the constituents arises from the assumption that the constituents of the mixture co-occupy every
point belonging to the mixture, albeit in a homogenized sense. Invariably we only know the
boundary and initial conditions associated with the mixture as a whole, we do not know how this
condition is to be apportioned to each constituent. There are several approaches suggested to
generate these boundary conditions (see Rajagopal and Tao [24], and the recent study appealing
to thermodynamics by Soucek et al. [28]). The Flory-Huggins equation (see Treloar [29]),
obtained using thermodynamic arguments concerning saturated swollen state of polymers has
been used at the boundary of a porous solid through which a fluid is flowing, to study the



A MODEL FOR FLOW IN DEFORMABLE POROUS MEDIA 3

diffusion of fluids through polymeric solids (see Shi et al. [26]). Given the variety of boundary
conditions being used, Prasad and Rajagopal [22] employed several of them to study the flow
of fluids through polymeric solids undergoing large deformations and found that for global
quantities such as the flow rate, the results were nearly the same for all of them. We discuss the
issue of boundary and initial conditions relevant to our problem in Sections 2.1 and 2.3. The
same difficulties are associated with the specification of initial conditions.

In reference [23], Rajagopal developed a hierarchy of equations for the flow of fluids through
porous elastic solids, depending on the nature of the porous solid and the fluid flowing through
it, kinematical considerations for both the constituents, and the type of interaction mechanisms
that come into play. In this study, we assume that the partial stress in each constituent is com-
pletely determined by only properties and kinematics associated with that constituent, and that
one of the constituents is a Navier-Stokes fluid and the other an isotropic and homogeneous
linearized elastic solid. Furthermore, we assume that the only interaction is drag that depends
on the relative velocities of the fluid and solid. Thus, if the velocity of the solid is ignored, there
would be no coupling between the equations governing the fluid and the solid1, and the problem
governing the fluid motion would reduce to Darcy’s or Brinkman’s equation and having deter-
mined the velocity for the fluid, the governing equation for the solid can be solved. There are
however practical situations involving unsteady motions of flow through porous media wherein
the solid is undergoing small but not negligible velocity, and in such problems, one obtains the
following equations governing the deformation of the solid and fluid, respectively:

(λ s +µ
s)∇(∇ ·us)+µ

s
∆us +ρ

sbe +α(v f −vs) = 0, (1.1)

−∇ p f +µ
f
∆v f +ρ

f be−α(v f −vs) = ρ
f ∂v f

∂ t
, (1.2)

with the incompressibility condition

∇ ·v f = 0 . (1.3)

In the above equation, us is the displacement of the solid, and vs and v f are the velocity of the
solid and fluid, respectively, p f is the fluid pressure, λ s and µs are the Lamé parameters, ρs

and ρ f denote the solid and fluid density, respectively, µ f is the dynamic viscosity of the fluid,
be is the external volume force, and α is the interaction parameter between the fluid and solid.
Also, while we have assumed that the velocity of the solid cannot be neglected, its acceleration
is negligible and hence ignored. The above equations are all written almost everywhere in a
region of space and time that will be specified below.

This article is divided into six sections, including the introduction. The theoretical analysis
of the problem is carried out in Sections 2 and 3. The numerical discretization and analysis is
done in Section 4. Section 5 is devoted to the analysis of a simple decoupling algorithm, and
a more elaborated algorithm is proposed at the end. Numerical simulations are described in
Section 6.

1If we allow the kinematical quantities of both the constituents to play a role in determining the stresses in both
the constituents, even when the velocity of the solid is ignored, the governing equations would be coupled (see Shi
et al. [26]).
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1.1. Notation. In this work, we shall use the following notation for a bounded connected open
set Ω⊂ Rd , d = 2,3. The scalar product of L2(Ω) is denoted by (·, ·)Ω

∀ f ,g ∈ L2(Ω), ( f ,g)Ω =
∫

Ω

f (x)g(x)dx,

and the index Ω is omitted when the domain of integration is clear from the context. For any
non-negative integer m, the classical Sobolev space Hm(Ω) is defined by (cf. [1] or [21]),

Hm(Ω) = {v ∈ L2(Ω) ; ∂
kv ∈ L2(Ω)∀|k| ≤ m},

where k is a multi index, e.g. when d = 3, k = (k1,k2,k3), ki ≥ 0, |k|= k1 + k2 + k3,

∂
kv =

∂ |k|v

∂xk1
1 ∂xk2

2 ∂xk3
3

,

equipped with the following seminorm and norm for which it is a Hilbert space:

|v|Hm(Ω) =

[
∑
|k|=m

∫
Ω

|∂ kv(x)|2 dx

] 1
2

, ‖v‖Hm(Ω) =

[
∑

0≤|k|≤m
|v|2Hk(Ω)

] 1
2

.

This definition is extended to any real number s = m+ s′ for an integer m≥ 0 and 0 < s′ < 1 by
defining in dimension d the fractional semi-norm and norm, see [19] and [15],

|v|Hs(Ω) =

(
∑
|k|=m

∫
Ω

∫
Ω

|∂ kv(x)−∂ kv(y)|2

|x−y|d+2s′ dxdy

) 1
2

, ‖v‖Hs(Ω) =
(
‖v‖2

Hm(Ω)+ |v|
2
Hs(Ω)

) 1
2
.

These fractional order spaces are often used for traces. The following trace property holds in a
domain Ω with a Lipschitz continuous boundary ∂Ω: If v belongs to Hs(Ω) for some s ∈]1

2 ,1],
then its trace on ∂Ω belongs to Hs− 1

2 (∂Ω) and there exists a constant Cs such that

∀v ∈ Hs(Ω) , ‖v‖
Hs− 1

2 (∂Ω)
≤Cs‖v‖Hs(Ω). (1.4)

In particular, H
1
2 (∂Ω) is the trace space of H1(Ω), with norm

|v|
H

1
2 (∂Ω)

=
(∫

∂Ω

∫
∂Ω

|v(x)− v(y)|2

|x−y|d
dxdy

) 1
2
,

(here d refers to the dimension of Ω) and H−
1
2 (∂Ω) is the dual space of H

1
2 (∂Ω). Finally, if

Γ is a subset of ∂Ω with positive measure, |Γ| > 0, we say that a function g in H
1
2 (Γ) belongs

to H
1
2

00(Γ) if its extension by zero to ∂Ω belongs to H
1
2 (∂Ω). It is a proper subspace of H

1
2 (Γ),

and is normed by

‖v‖
H

1
2

00(Γ)
=
(
|v|2

H
1
2 (Γ)

+
∫

Γ

|v(x)|2 dx
d(x,Γ)

) 1
2
, (1.5)

where d(x,Γ) denotes the distance from x to the boundary of Γ. We also recall Poincaré’s
inequality valid for all functions v in H1(Ω)d that vanish on a portion Γ of ∂Ω with positive
measure:

‖v‖L2(Ω) ≤P|v|H1(Ω), (1.6)
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where P is a constant depending only on Ω and Γ. We also recall a trace inequality on the
complement of Γ on ∂Ω, say Γ̃, assuming that Γ̃ has also positive measure:

‖v‖
H

1
2

00(Γ̃)
≤CN |v|H1(Ω). (1.7)

To understand this last inequality, recall that if v in H1(Ω) vanishes on Γ, then its trace on Γ̃

belongs to H
1
2

00(Γ̃), owing that its extension by zero to ∂Ω belongs to H
1
2 (∂Ω).

The space H(div,Ω) is the Hilbert space

H(div,Ω) = {v ∈ L2(Ω)d ; ∇ ·v ∈ L2(Ω)}, (1.8)

equipped with the graph norm. Let n denote the exterior unit normal vector to ∂Ω. The normal
trace v ·n of a function v of H(div,Ω) on ∂Ω belongs to H−

1
2 (∂Ω), the dual space of H

1
2 (∂Ω),

see for instance [13]. Recall also the spaces

W = {v ∈ H1(Ω)d ; ∇ ·v = 0}, V =W ∩H1
0 (Ω)d, (1.9)

and

L2
0(Ω) = { f ∈ L2(Ω) ;

∫
Ω

f (x)dx = 0}. (1.10)

As usual, for handling time-dependent problems, it is convenient to consider measurable
functions defined on a time interval ]a,b[ with values in a functional space, say X (cf. [19]).
More precisely, let ‖ · ‖X denote the norm of X ; then for any number r, 1≤ r ≤ ∞, we define

Lr(a,b;X) = { f measurable in ]a,b[ ;
∫ b

a
‖ f (t)‖r

X dt < ∞},

equipped with the norm

‖ f‖Lr(a,b;X) =

(∫ b

a
‖ f (t)‖r

X dt
) 1

r

,

with the usual modification if r = ∞. It is a Banach space if X is a Banach space, and for r = 2,
it is a Hilbert space if X is a Hilbert space. In particular,

L2(a,b;L2(Ω)) = L2(Ω× ]a,b[).

Derivatives with respect to time are denoted by ∂t and we define for instance

H1(a,b;X) = { f ∈ L2(a,b;X) ; ∂t f ∈ L2(a,b;X)}.

In the sequel, if there is no ambiguity, the differential notation in integrals will be omitted.

2. SETTINGS AND SPLITTING STRATEGY

To write rigorously the system (1.1)–(1.3), we first complement it with boundary and ini-
tial conditions, but rather than setting it right away into a coupled variational formulation, to
facilitate its theoretical analysis, it will be useful to split it into simpler subproblems.
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2.1. Boundary and initial conditions. Let Ω be a bounded, connected, Lipschitz domain in
Rd , with boundary ∂Ω and unit exterior normal n, let T > 0 be the final time, Q = Ω×]0,T [
and let

∂Ω = Γ
s
D∪Γ

s
N ,

where Γs
D∩Γs

N = /0, Γs
D and Γs

N are both Lipschitz-continuous, and |Γs
D|> 0. The system (1.1)–

(1.3) must be complemented with boundary and initial conditions. Here we consider mixed
boundary conditions for the displacement and Dirichlet boundary conditions for the flow. More
precisely, us has a non homogeneous Dirichlet boundary condition on Γs

D a.e. on ]0,T[,

us|Γs
D
= us

D, (2.1)

and a non homogeneous natural boundary condition on Γs
N a.e. on ]0,T[,((

µ
s
∇us +(λ s +µ

s)(∇ ·us)I
)
n
)
|Γs

N
= gs

N . (2.2)

The flow velocity v f has a non homogeneous Dirichlet boundary condition on ∂Ω a.e. on ]0,T[,

v f |∂Ω = v f
D, (2.3)

satisfying the necessary compatibility condition∫
∂Ω

v f
D ·n = 0. (2.4)

Regarding initial conditions, we assume that v f (0) is given, and because of the presence of
vs in (1.1), we assume that us(0) is also given,

us(0) = given with us(0)|Γs
D
= us

D(0), (2.5)

v f (0) = given in W with v f (0)|∂Ω = v f
D(0), (2.6)

i.e., satisfying ∇ ·v f (0) = 0 with the necessary condition (2.4), i.e.∫
∂Ω

v f
D(0) ·n = 0.

2.2. Spaces. Let
H1

0,Γs
D
(Ω) = {v ∈ H1(Ω) ; v|Γs

D
= 0}. (2.7)

The assumptions in space on the data are fairly straightforward, with the possible exception of
the natural boundary condition (2.2). The above observation that the trace on Γs

N of functions

of H1
0,Γs

D
(Ω) belongs to H

1
2

00(Γ
s
N) suggests to take each component of gs

N(t) in the dual space

H
1
2

00(Γ
s
N)
′ of H

1
2

00(Γ
s
N) . Then the complete assumptions on the data of the displacement equation

are

be ∈ L2(Q)d, us
D ∈ H1(0,T ;H

1
2 (Γs

D)
d), gs

N ∈ H1(0,T ;
(
H

1
2

00(Γ
s
N)
′)d

),us(0) ∈ H1(Ω)d. (2.8)

Owing to the simpler boundary conditions on the velocity, the assumptions on the data for the
flow equation are simpler

be ∈ L2(Q)d, v f
D ∈ H1(0,T ;H

1
2 (∂Ω)d), v f (0) ∈W, (2.9)

with the restriction (2.4) satisfied at all time t in [0,T ].
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For a given reasonably smooth vs, the system (1.2), (1.3), (2.3), (2.6) is a classical time
dependent Stokes-like system with a non homogeneous Dirichlet boundary condition. There-
fore, it is easily set into an equivalent variational form with solution v f in L∞(0,T ;L2(Ω)d)∩
L2(0,T ;H1(Ω)d). The displacement system (1.1), which is a standard elasticity-like equa-
tion given a reasonably smooth v f , has also an equivalent variational form with solution us in
L∞(0,T ;L2(Ω)d)∩L2(0,T ;H1(Ω)d), but this is a little less straightforward because of its mixed
boundary conditions, as discussed in the next subsection.

2.3. Meaning of the natural boundary conditions, case d = 3. When the problem does
not depend on time, the natural boundary conditions are defined by setting the problem in
divergence form in Ω and using the properties of H(div,Ω). The idea, which is similar when
the problem depends on time, is to write (1.1) in divergence form in the space-time cylinder
Qt = Ω×]0, t[; with the notation, Q = QT . Take the case d = 3 and consider the first line of
the left-hand side of (1.1), set X = (x, t)∈ R4 and define the following three vectors, each with
four components,

U1 = (−(λ s +µ
s)(∇ ·us)−µ

s
∂x1us

1,−µ
s
∂x2us

1,−µ
s
∂x3us

1,αus
1),

U2 = (−µ
s
∂x1us

2,−(λ s +µ
s)(∇ ·us)−µ

s
∂x2us

2,−µ
s
∂x3us

2,αus
2),

U3 = (−µ
s
∂x1us

3,−µ
s
∂x2us

3,−(λ s +µ
s)(∇ ·us)−µ

s
∂x3us

3,αus
3).

It is easy to check that, with this notation, the line i of (1.1) reads

∇X ·Ui = ρ
sbe,i +αv f

i , i = 1,2,3 ,

where the divergence is taken with respect to X = (x, t) and the right-hand side belongs to
L2(Q), assuming that v f

i belongs to L2(Q). Thus, the reasonable space for each Ui is L2(Q)4

with ∇ ·Ui in L2(Q), i.e. Ui belongs to H(div,Q). This gives a meaning to the normal trace Ui ·n
in H−

1
2 (∂Q), where n denotes the exterior normal vector to Q. As x and t are orthogonal, the

exterior normal n to Ω at each time t coincides with the exterior normal vector to Q. Hence this
gives meaning to

(
µs∇us +(λ s +µs)(∇ ·us)I

)
n as a vector valued distribution on Γs

N×]0,T [,
without prescribing from the onset that ∂tus is in L2(Ω)3, although this regularity will be derived
further on.

2.4. Splitting the displacement equation. As the problem is linear, it is convenient to split
(1.1) into a system embodying all its data, but without v f , and a system with only v f and all
zero data. To be specific, us is split as follows:

us = ǔs + ûs(v f ),

where ǔs solves

α∂t ǔs−µ
s
∆ ǔs− (λ s +µ

s)∇(∇ · ǔs) = ρ
sbe, a.e. in Q,

ǔs = us
D, a.e. on Γ

s
D×]0,T [,(

µ
s
∇ ǔs +(λ s +µ

s)(∇ · ǔs)I
)
n = gs

N , a.e. on Γ
s
N×]0,T [,

ǔs(0) = us(0), a.e. in Ω,

(2.10)
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and ûs(v f ) solves

α∂t ûs(v f )−µ
s
∆ ûs(v f )− (λ s +µ

s)∇(∇ · ûs(v f )) = αv f , a.e. in Q,

ûs(v f ) = 0, a.e. on Γ
s
D×]0,T [,(

µ
s
∇ ûs(v f )+(λ s +µ

s)(∇ · ûs(v f ))I
)
n = 0, a.e. on Γ

s
N×]0,T [,

ûs(v f )(0) = 0, a.e. in Ω.

(2.11)

We shall see below that the system (2.10) has a unique solution ǔs ∈ L∞(0,T ;L2(Ω)d)∩L2(0,T ;
H1(Ω)d), ∂t ǔs ∈ L2(Q)d , and the system (2.11) has a unique solution ûs(v f )∈ L∞(0,T ;L2(Ω)d)
∩L2(0,T ;H1(Ω)d), ∂t ûs(v f ) ∈ L2(Q)d for any v f ∈ L2(Q)d .

2.5. Splitting the flow equation. Now, the unknown in the left-hand side of (1.2) can be split
as

α∂tus = α∂t ǔs +α∂t ûs(v f ).

Since ǔs depends only on the data, by proceeding as above, we split v f into

v f = v̌ f +v f
0 ,

where v̌ f solves the non homogeneous Stokes system depending only on the data

ρ
f
∂t v̌ f −µ

f
∆ v̌ f +∇ p̌ f +α v̌ f = ρ

f be +α∂t ǔs, a.e. in Q,

∇ · v̌ f = 0, a.e. in Q,

v̌ f = v f
D, a.e. on ∂Ω×]0,T [,

v̌ f (0) = v f (0), a.e. in Ω,

(2.12)

and v f
0 solves the homogeneous implicit problem,

ρ
f
∂tv

f
0 −µ

f
∆v f

0 +∇ p f
0 +αv f

0 = α∂t ûs(v̌ f )+α∂t ûs(v f
0), a.e. in Q,

∇ ·v f
0 = 0, a.e. in Q,

v f
0 = 0, a.e. on ∂Ω×]0,T [,

v f
0(0) = 0, a.e. in Ω.

(2.13)

We shall see below that, on the one hand, the system (2.12) has a unique solution v̌ f in the
space L∞(0,T ;L2(Ω)d)∩L2(0,T ;H1(Ω)d); hence according to the results announced in Section
2.4, ∂t ûs(v̌ f ) belongs to L2(Q)d . On the other hand, the system (2.13) is implicit and a direct
proof of existence of its solution is not so clear. However, for any given v f

0 ∈ L2(Q)d in the
right-hand side of the first equation of (2.13), we shall see that the system (2.13) has a unique
solution v f

0 ∈ L∞(0,T ;L2(Ω)d)∩L2(0,T ;H1(Ω)d) and ∂t ûs(v f
0)∈ L2(Q)d . Therefore (2.13) has

a regularizing effect and thus Schauder’s fixed-point theorem will be used to prove existence of
its solution.
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3. EXISTENCE

First, problems (2.10)–(2.13) are set into equivalent variational form; equivalence following
easily from the material of Section 2. Next, the displacement and flow involve the solution of
non homogeneous problems, namely (2.10) and (2.12), that depend only on the data; each is
easily solved. Moreover, the displacement of the solid can be expressed in terms of the velocity
of the fluid, and this problem, namely (2.11), is also readily solved. Finally, there remains
(2.13), an implicit equation for the velocity, that will be solved by a fixed-point argument.

3.1. The solution of Problem (2.10). To begin with, it is easy to check that Problem (2.10)
cannot have more than one solution in L∞(0,T ;L2(Ω)d)∩L2(0,T ;H1(Ω)d).

To establish existence, as usual, the non homogenous essential Dirichlet boundary condition
is lifted so that the problem analyzed is homogeneous. Let ũs

D ∈ H1(0,T ;H1(Ω)d) be a lifting
of us

D for all t ∈ [0,T ]:

ũs
D|Γs

D
= us

D, ‖ũs
D‖H1(0,T ;H1(Ω)d) ≤C‖us

D‖H1(0,T ;H
1
2 (Γs

D)
d)
. (3.1)

Let us set
ū0 = ǔs− ũs

D. (3.2)

Then ū0 solves the problem: Find ū0 ∈H1(0,T ;L2(Ω)d)∩L2(0,T ;H1
0,Γs

D
(Ω)d) such that for all

w ∈ H1
0,Γs

D
(Ω)d and a.e. in ]0,T [,

α(∂t ū0,w)+µ
s(∇ ū0,∇w)+(λ s +µ

s)(∇ · ū0,∇ ·w) = ρ
s(be,w)+ 〈gs

N ,w〉Γs
N

−α(∂t ũs
D,w)−µ

s(∇ ũs
D,∇w)− (λ s +µ

s)(∇ · ũs
D,∇ ·w),

(3.3)

with the initial condition in Ω

ū0(0) = us(0)− ũs
D(0). (3.4)

It is easily established that ū0 satisfies a variational formulation equivalent to (2.10) in the
spaces chosen above. Regarding uniqueness of ū0, since problem (3.3)–(3.4) is linear, an im-
mediate calculation shows that when its right-hand sides are zero, then its only solution in
L∞(0,T ;L2(Ω)d)∩L2(0,T ;H1

0,Γs
D
(Ω)d) is necessarily zero.

Existence of the solution of Problem (3.3)–(3.4) follows readily by Galerkin’s construction.
Let {wi}i≥1 be a basis of H1

0,Γs
D
(Ω)d , let Wm be the space spanned by wi, 1≤ i≤m, and consider

the function

ū0
m(x, t) =

m

∑
k=1

gk(t)wk(x),

where gi ∈ H1(0,T ), 1≤ i≤ m, solves

α(∂t ū0
m,w j)+µ

s(∇ ū0
m,∇w j)+(λ s +µ

s)(∇ · ū0
m,∇ ·w j) = ρ

s(be,w j)+ 〈gs
N ,w j〉Γs

N

−α(∂t ũs
D,w j)−µ

s(∇ ũs
D,∇w j)− (λ s +µ

s)(∇ · ũs
D,∇ ·w j), 1≤ j ≤ m,

(3.5)

with initial condition

(∇ ū0
m(0),∇w j) = (∇us(0),∇w j)− (∇ ũs

D(0),∇w j), 1≤ j ≤ m. (3.6)

Problem (3.5) is a square system of m linear ODEs of order one in time with initial condition
(3.6). The matrix of the time derivative is invertible with constant coefficients and its other
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coefficients belong to L2(0,T ) since both (be,w j) and (∂t ũs
D,w j) belong to L2(0,T ) and the

other terms are smoother. Therefore, it has a unique solution in H1(0,T ) bounded as follows:

Proposition 3.1. Under the assumptions (2.5) and (2.8), the solution ū0
m of (3.5)–(3.6) satisfies

the estimates, with constants Ci independent of m, for all 0 < t ≤ T ,

α‖ū0
m(t)‖2

L2(Ω)
+µs‖∇ ū0

m‖2
L2(Qt)

+(λ s +µs)‖∇ · ū0
m‖2

L2(Qt)
≤

≤ α‖ū0
m(0)‖2

L2(Ω)
+C1 +C2‖be‖2

L2(Qt)
,

‖∇ ū0
m(0)‖L2(Ω) ≤ ‖∇us(0)‖L2(Ω)+‖∇ ũs

D(0)‖L2(Ω) ≤C3.

(3.7)

Proof. By testing (3.5) with ū0
m, we derive

α

2
d
dt
‖ū0

m‖2
L2(Ω)+µ

s‖∇ ū0
m‖2

L2(Ω)+(λ s +µ
s)‖∇ · ū0

m‖2
L2(Ω) ≤ ρ

s‖be‖L2(Ω)‖ū0
m‖L2(Ω)

+‖gs
N‖

H
1
2

00(Γ
s
N)
′
‖ū0

m‖
H

1
2

00(Γ
s
N)
+α‖∂t ũs

D‖L2(Ω)‖ū0
m‖L2(Ω)

+µs‖∇ ũs
D‖L2(Ω)‖∇ ū0

m‖L2(Ω)+(λ s +µs)‖∇ · ũs
D‖L2(Ω)‖∇ · ū0

m‖L2(Ω).

Here we can use Poincaré’s inequality (1.6) and the trace inequality (1.7) since ū0
m vanishes on

Γs
D. Thus, we bound ‖ū0

m‖L2(Ω) and ‖ū0
m‖

H
1
2

00(Γ
s
N)

and apply suitably Young’s inequality. Then,

by integrating in time from 0 to t, we immediately derive the first part of (3.7) with a constant
C2 that depends only on ρs and µs, and a constant C1 that depends only on λ s, µs, ‖∂t ũs

D‖L2(Qt)
,

‖gs
N‖

L2(0,t;(H
1
2

00(Γ
s
N))
′)

, ‖∇ · ũs
D‖L2(Qt)

, and ‖∇ ũs
D‖L2(Qt)

. Finally, the second part of (3.7) follows

from (3.6). �

Note that the first part of (3.7) does not require the second part; an L2 bound of the initial
data is sufficient. The H1 bound will be used in deriving the additional estimate below.

Lemma 3.2. Under the assumptions (2.5) and (2.8), the solution ū0
m of (3.5)–(3.6) satisfies the

following estimate, with constants C1 and C2 independent of m, for all 0 < t ≤ T :

α‖∂t ū0
m‖2

L2(Qt)
+

µs

2
‖∇ ū0

m(t)‖2
L2(Ω)+(λ s +µ

s)
1
2
‖∇ · ū0

m(t)‖2
L2(Ω) ≤C1 +C2‖be‖2

L2(Qt)
. (3.8)

Proof. Here, (3.5) is tested with ∂t ū0
m, which is allowable since the coefficients gk belong to

H1(0,T ). This leads to

α‖∂t ū0
m‖2

L2(Ω)+
µs

2
d
dt
‖∇ ū0

m‖2
L2(Ω)+(λ s +µ

s)
1
2

d
dt
‖∇ · ū0

m‖2
L2(Ω)

≤ ρ
s‖be‖L2(Ω)‖∂t ū0

m‖L2(Ω)+α‖∂t ũs
D‖L2(Ω)‖∂t ū0

m‖L2(Ω)

+ 〈gs
N ,∂t ū0

m〉Γs
N
− (λ s +µ

s)(∇ · ũs
D,∇ ·∂t ū0

m)−µ
s(∇ ũs

D,∇∂t ū0
m).
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This inequality is integrated in time from 0 to t, but its last line must be integrated by parts
because the left-hand side cannot control ∂t∇ ū0

m. For instance,∫ t

0
〈gs

N ,∂t ū0
m〉Γs

N
=−

∫ t

0
〈∂tgs

N , ū
0
m〉Γs

N
+ 〈gs

N(t), ū
0
m(t)〉Γs

N
−〈gs

N(0), ū
0
m(0)〉Γs

N

≤CN

(
‖∂tgs

N‖
L2(0,t;(H

1
2

00(Γ
s
N)
′)
‖∇ ū0

m‖L2(Qt)
+‖gs

N(t)‖
H

1
2

00(Γ
s
N)
′
‖∇ ū0

m(t)‖L2(Ω)

+‖gs
N(0)‖

H
1
2

00(Γ
s
N)
′
‖∇ ū0

m(0)‖L2(Ω)

)
.

The remaining two terms are treated similarly. Then, (3.8) follows by suitably applying Young’s
inequality and using the bounds of Proposition 3.1. The constant C2 depends only on ρs, µs, and
α , and the constant C1 depends only on α , µs, λ s, ‖us

D‖H1(0,t;H
1
2 (Γs

D)
d)

, ‖gs
N‖

H1(0,t;(H
1
2

00(Γ
s
N)
′)d)

,

and |us(0)|H1(Ω). �

3.1.1. Passing to the limit in (3.5)–(3.6). Proposition 3.1 and Lemma 3.2 yield the uniform
estimates,

∀m≥ 1, ‖ū0
m‖H1(0,T ;L2(Ω)d) ≤C, ‖ū0

m‖L∞(0,T ;H1(Ω)d) ≤C.

Therefore, there exists a function z̄ ∈H1(0,T ;L2(Ω)d)∩L∞(0,T ;H1
0,Γs

D
(Ω)d) such that, up to a

subsequence,

ū0
m→ z̄, weakly in H1(0,T ;L2(Ω)d) and weakly* in L∞(0,T ;H1

0,Γs
D
(Ω)d). (3.9)

Considering that the set of functions of the form
m

∑
i=1

fi(t)wi(x),

with fi ∈H1(0,T ), is dense in H1(0,T ;H1
0,Γs

D
(Ω)d), we can pass to the limit in (3.5) and obtain

that z̄ satisfies for all ϕ ∈ H1(0,T ;H1
0,Γs

D
(Ω)d),

α

∫ T

0
(∂t z̄,ϕ)+µ

s
∫ T

0
(∇ z̄,∇ϕ)+(λ s +µ

s)
∫ T

0
(∇ · z̄,∇ ·ϕ)

= ρ
s
∫ T

0
(be,ϕ)+

∫ T

0
〈gs

N ,ϕ〉Γs
N
−α

∫ T

0
(∂t ũs

D,ϕ)

−µ
s
∫ T

0
(∇ ũs

D,∇ϕ)− (λ s +µ
s)
∫ T

0
(∇ · ũs

D,∇ ·ϕ).

(3.10)

This yields (3.3) in L2(0,T ). To recover the initial condition, observe that, owing to equation
(3.6) and to the uniform bound in the second part of (3.7), ū0

m(0) converges, up to a subsequence,
to us(0)− ũs

D(0) weakly in H1
0,Γs

D
(Ω)d . Thus we deduce from (3.5) after an integration by parts

and passing to the limit, that for all ϕ ∈ H1(0,T ;H1
0,Γs

D
(Ω)d) with ϕ(T ) = 0,

−α

∫ T

0
(z̄,∂tϕ)−α(us(0)− ũs

D(0),ϕ(0))+µ
s
∫ T

0
(∇ z̄,∇ϕ)+(λ s +µ

s)
∫ T

0
(∇ · z̄,∇ ·ϕ)

= ρ
s
∫ T

0
(be,ϕ)+

∫ T

0
〈gs

N ,ϕ〉Γs
N
−α

∫ T

0
(∂t ũs

D,ϕ)

−µ
s
∫ T

0
(∇ ũs

D,∇ϕ)− (λ s +µ
s)
∫ T

0
(∇ · ũs

D,∇ ·ϕ).
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Then another integration by parts shows that z̄(0) = us(0)− ũs
D(0). Hence Problem (3.3)–(3.4)

has a solution and since this solution is unique, the full sequence ū0
m converges to ū0. This is

summarized in the next theorem.

Theorem 3.3. Under the assumptions (2.5) and (2.8), Problem (2.10) has a unique solution
ǔs ∈ H1(0,T ;L2(Ω)d)∩L∞(0,T ;H1(Ω)d).

3.2. The solution of Problem (2.11). Problem (2.11) is a simplified version of Problem (2.10)
with αv f instead of ρsbe, simpler owing that its boundary and initial conditions are all homo-
geneous. Hence, it has a unique solution as long as v f belongs to L2(Q)d , and we have the
following corollary:

Corollary 3.4. In addition to the assumptions (2.5) and (2.8), suppose that v f ∈ L2(Q)d . Then
Problem (2.11) has a unique solution ûs(v f ) ∈ H1(0,T ;L2(Ω)d)∩L∞(0,T ;H1

0,Γs
D
(Ω)d). It de-

pends linearly on v f and satisfies the bounds for all t ∈ ]0,T [

α‖ûs(v f )(t)‖2
L2(Ω)+µ

s‖∇ ûs(v f )‖2
L2(Qt)

+2(λ s +µ
s)‖∇ · ûs(v f )‖2

L2(Qt)
≤ α2P2

µs ‖v
f ‖2

L2(Qt)
,

α‖∂t ûs(v f )‖2
L2(Qt)

+µ
s‖∇ ûs(v f )(t)‖2

L2(Ω)+(λ s +µ
s)‖∇ · ûs(v f )(t)‖2

L2(Ω) ≤ α‖v f ‖2
L2(Qt)

.

(3.11)

3.3. The solution of Problem (2.12). Problem (2.12) is treated much like Problem (2.10) but
requires somewhat more care on account of the divergence condition. As far as uniqueness is
concerned, it cannot have more than one velocity solution in L∞(0,T ;L2(Ω)d)∩L2(0,T ;W ) and
this velocity determines a unique pressure, provided it has mean value zero in Ω.

For existence, let ṽ f
D ∈ H1(0,T ;H1(Ω)d) be a divergence-free lifting of v f

D for all t ∈ [0,T ]:

ṽ f
D|∂Ω = v f

D, ∇ · ṽ f
D = 0, ‖ṽ f

D‖H1(0,T ;H1(Ω)d) ≤C‖v f
D‖H1(0,T ;H

1
2 (∂Ω)d)

; (3.12)

the divergence zero condition is possible owing to the compatibility condition (2.4). Proceeding
as in Section 3.1, we set

v̄ f = v̌ f − ṽ f
D;

note that a.e. in ]0,T [, v̄ f belongs to V , defined by (1.9). Then v̄ f solves the following varia-
tional formulation: Find v̄ f ∈ H1(0,T ;L2(Ω)d)∩L2(0,T ;V ) such that for all w ∈ H1

0 (Ω)d and
a.e. in ]0,T [,

ρ
f (∂t v̄ f ,w)+µ

f (∇ v̄ f ,∇w)− (p̄ f ,∇ ·w)+α(v̄ f ,w) = ρ
f (be,w)+α(∂t ǔs,w)

−ρ
f (∂t ṽ

f
D,w)−µ

f (∇ ṽ f
D,∇w)−α(ṽ f

D,w),
(3.13)

with the initial condition in Ω

v̄ f (0) = v f (0)− ṽ f
D(0), (3.14)

where ǔs solves (2.10), see Theorem 3.3. Regarding uniqueness, since problem (3.13)–(3.14) is
linear, we readily deduce that when its right-hand sides are zero, then its only velocity solution
in L∞(0,T ;L2(Ω)d)∩L2(0,T ;V ) is necessarily zero, and the pressure is uniquely determined
by the velocity, provided it has mean value zero in space.
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Existence of the solution of Problem (3.13)–(3.14), with the zero divergence condition, can
also be deduced by Galerkin’s construction. As the space V is separable, let {wi}i≥1 be a basis
of V , and let Vm be the space spanned by wi, 1≤ i≤ m. Consider the function

v̄ f
m(x, t) =

m

∑
k=1

gk(t)wk(x),

and the discrete problem: Find gi ∈ H1(0,T ), 1≤ i≤ m, solution of

ρ
f (∂t v̄ f

m,w j)+µ
f (∇ v̄ f

m,∇w j)+α(v̄ f
m,w j) = ρ

f (be,w j)+α(∂t ǔs,w j)

−ρ
f (∂t ṽ

f
D,w j)−µ

f (∇ ṽ f
D,∇w j)−α(ṽ f

D,w j), 1≤ j ≤ m,
(3.15)

with initial condition

(∇ v̄ f
m(0),∇w j) = (∇v f (0),∇w j)− (∇ ṽ f

D(0),∇w j), 1≤ j ≤ m. (3.16)

Problem (3.15)–(3.16) is a square system of m linear ODEs with constant coefficients on the
left-hand side and coefficients in the right-hand side in L2(0,T ). It has a unique solution in
H1(0,T ), bounded as follows:

Proposition 3.5. In addition to the assumptions of Proposition 3.1, suppose that (2.6) and (2.9)
hold. Then the solution v̄ f

m of (3.15)–(3.16) satisfies the estimate for 0 < t ≤ T ,

ρ f ‖v̄ f
m(t)‖2

L2(Ω)
+µ f ‖∇ v̄ f

m‖2
L2(Qt)

≤ ρ f ‖v̄ f
m(0)‖2

L2(Ω)
+µ f ‖∇ ṽ f

D‖2
L2(Qt)

+
2
α

((
ρ

f )2(‖be‖2
L2(Qt)

+‖∂t ṽ
f
D‖

2
L2(Qt)

)
+α

2(‖∂t ǔs‖2
L2(Qt)

+‖ṽ f
D‖

2
L2(Qt)

))
,

(3.17)

and
‖∇ v̄ f

m(0)‖L2(Ω) ≤ ‖∇v f (0)‖L2(Ω)+‖∇ ṽ f
D(0)‖L2(Ω). (3.18)

Proof. By testing (3.15) with v̄ f
m, we obtain a.e. in ]0,T [

1
2

ρ
f d
dt
‖v̄ f

m‖2
L2(Ω)+µ

f ‖∇ v̄ f
m‖2

L2(Ω)+α‖v̄ f
m‖2

L2(Ω) ≤ µ
f ‖∇ ṽ f

D‖L2(Ω)‖∇ v̄ f
m‖L2(Ω)

+
(

ρ
f (‖be‖L2(Ω)+‖∂t ṽ

f
D‖L2(Ω)

)
+α‖∂t ǔs‖L2(Ω)+α‖ṽ f

D‖L2(Ω)

)
‖v̄ f

m‖L2(Ω).

Then Young’s inequality gives a.e. in ]0,T [

ρ f

2
d
dt
‖v̄ f

m‖2
L2(Ω)+

µ f

2
‖∇ v̄ f

m‖2
L2(Ω) ≤

µ f

2
‖∇ ṽ f

D‖
2
L2(Ω)

+
1

4α

(
ρ

f (‖be‖L2(Ω)+‖∂t ṽ
f
D‖L2(Ω)

)
+α

(
‖∂t ǔs‖L2(Ω)+‖ṽ

f
D‖L2(Ω)

))2
,

(3.19)

and (3.17) follows by integrating over ]0, t[ and (3.18) follows by using (3.16). �

Again, (3.17) does not require the gradient of the initial data. The H1 bound will be used in
estimating the time derivative of v̄ f

m. To simplify, the constants will not be specified.

Lemma 3.6. Under the assumptions of Proposition 3.5, the solution v̄ f
m of (3.15)–(3.16) satis-

fies the following estimate, with constants C1 and C2 independent of m, for all 0 < t ≤ T :

ρ
f ‖∂t v̄ f

m‖2
L2(Qt)

+
µ f

2
‖∇ v̄ f

m(t)‖2
L2(Ω)+α‖v̄ f

m(t)‖2
L2(Ω) ≤C1 +C2‖be‖2

L2(Qt)
. (3.20)
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Proof. For the time derivative, (3.15) is tested with ∂t v̄
f
m:

ρ
f ‖∂t v̄ f

m‖2
L2(Ω)+

µ f

2
d
dt
‖∇ v̄ f

m‖2
L2(Ω)+

α

2
d
dt
‖v̄ f

m‖2
L2(Ω) = ρ

f (be,∂t v̄ f
m)+α(∂t ǔs,∂t v̄ f

m)

−ρ
f (∂t ṽ

f
D,∂t v̄ f

m)−µ
f (∇ ṽ f

D,∂t∇ v̄ f
m)−α(ṽ f

D,∂t v̄ f
m).

This is integrated in time over ]0, t[, but again the factor of µ f on the right-hand side must be
integrated by parts because the left-hand side cannot control ∂t∇ v̄ f

m. This gives

ρ
f ‖∂t v̄ f

m‖2
L2(Qt)

+
µ f

2
‖∇ v̄ f

m(t)‖2
L2(Ω)+

α

2
‖v̄ f

m(t)‖2
L2(Ω)

≤
(

ρ
f ‖be‖L2(Qt)

+α‖∂t ǔs‖L2(Qt)
+ρ

f ‖∂t ṽ
f
D‖L2(Qt)

+α‖ṽ f
D‖L2(Qt)

)
‖∂t v̄ f

m‖L2(Qt)

+
µ f

2
‖∇ v̄ f

m(0)‖2
L2(Ω)+

α

2
‖v̄ f

m(0)‖2
L2(Ω)

+µ
f
∫ t

0
(∂t∇ ṽ f

D,∇ v̄ f
m)−µ

f (∇ ṽ f
D(t),∇ v̄ f

m(t))+µ
f (∇ ṽ f

D(0),∇ v̄ f
m(0)).

With Young’s inequality and (3.17), we easily recover (3.20) with constants C1 and C2, inde-
pendent of m. The constant C2 depends only on α , ρ f , ρs, µ f , and µs. �

3.3.1. Passing to the limit in (3.15). The uniform estimates (3.17) and (3.20) imply that there
exists a function z̄ ∈ H1(0,T ;L2(Ω)d)∩L∞(0,T ;V ) such that, up to a subsequence,

v̄ f
m→ z̄, weakly in H1(0,T ;L2(Ω)d) and weakly* in L∞(0,T ;V ). (3.21)

Since the set of functions of the form
m

∑
i=1

fi(t)wi(x),

with fi ∈ H1(0,T ), is dense in H1(0,T ;V ), we can pass to the limit in (3.15) and obtain that z̄
satisfies for all ϕ ∈ H1(0,T ;V ),

ρ
f
∫ T

0
(∂t z̄,ϕ)+µ

f
∫ T

0
(∇ z̄,∇ϕ)+α

∫ T

0
(z̄,ϕ) = ρ

f
∫ T

0
(be,ϕ)

+α

∫ T

0
(∂t ǔs,ϕ)−ρ

f
∫ T

0
(∂t ṽ

f
D,ϕ)−µ

f
∫ T

0
(∇ ṽ f

D,∇ϕ)−α

∫ T

0
(ṽ f

D,ϕ).

(3.22)

As all terms above are well-defined when ϕ ∈ L2(0,T ;V ), (3.22) implies that in L2(0,T ), for
all ϕ ∈V

〈ρ f
∂t z̄−µ

f
∆ z̄+α z̄−ρ

f be−α∂t ǔs +ρ
f
∂t ṽ

f
D−µ

f
∆ ṽ f

D +α ṽ f
D,ϕ〉= 0,

where the duality is taken between V ′ and V . But, as the first argument of the duality belongs to
H−1(Ω)d for almost every time, De Rham’s Lemma implies that there exists a function p, a.e.
in time, unique in L2

0(Ω) such that

ρ
f
∂t z̄−µ

f
∆ z̄+α z̄−ρ

f be−α∂t ǔs +ρ
f
∂t ṽ

f
D−µ

f
∆ ṽ f

D +α ṽ f
D = ∇ p, (3.23)

and, see for instance [13] ,

‖p‖L2(Ω) ≤
1
β
‖ρ f

∂t z̄−µ
f
∆ z̄+α z̄−ρ

f be−α∂t ǔs +ρ
f
∂t ṽ

f
D−µ

f
∆ ṽ f

D +α ṽ f
D‖H−1(Ω).
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The constant β > 0 depends only on the domain. The above inequality holds a.e. in time and
since its right-hand side belongs to L2(0,T ), we have

‖p‖L2(Q) ≤
1
β
‖ρ f

∂t z̄−µ
f
∆ z̄+α z̄−ρ

f be−α∂t ǔs +ρ
f
∂t ṽ

f
D−µ

f
∆ ṽ f

D +α ṽ f
D‖L2(0,T ;H−1(Ω)d).

(3.24)
Thus z̄ and p satisfy (3.13). To recover the initial data, we infer from (3.16) that v̄ f

m(0) converges
weakly to some function ζ in V and ζ satisfies

∀ϕ ∈V, (∇ζ ,∇ϕ) = (∇(v f (0)− ṽ f
D(0)),∇ϕ).

As both ζ and v f (0)− ṽ f
D(0) belong to V , this implies that

ζ = v f (0)− ṽ f
D(0).

From here, by proceeding as above, we deduce that z̄(0) = ζ . Hence, we have the analogue of
Theorem 3.3.

Theorem 3.7. Under the assumptions of Lemma 3.6, Problem (2.12) has a unique solution
v̌ f ∈ H1(0,T ;L2(Ω)d)∩L∞(0,T ;W ) and p̌ f in L2(0,T ;L2

0(Ω)).

3.4. The solution of Problem (2.13). As Problem (2.13) is an implicit system, it can be easily
solved by using the following form of Schauder’s Fixed Point Theorem, see for instance [6]:

Theorem 3.8. Let H be a Banach space and E a non empty closed convex set in H. Let F be
a continuous mapping from E into E such that F(E) is contained in a compact subset K of E.
Then F has at least one fixed point in K .

Regarding compactness, we shall use the following form of the Aubin–Lions–Simon Theo-
rem, see [3, 27, 6]:

Theorem 3.9. Let B0⊂ B1⊂ B2 be three Banach spaces with continuous embeddings, such that
the embedding of B0 into B1 is compact. Let p,r be two numbers such that 1≤ p,r ≤ ∞ and let
T > 0. Then the space {

v ∈ Lp(0,T ;B0) ;
dv
dt
∈ Lr(0,T ;B2)

}
,

is compactly embedded into Lp(0,T ;B1).

According to Corollary 3.4, the fact that ûs(v f
0) is well-defined for v f

0 in L2(Q)d suggests
to take H = L2(Q)d . To define the mapping F , let ψ be given in L2(Q)d and consider the
homogeneous problem

ρ
f
∂tv

f
0 −µ

f
∆v f

0 +∇ p f
0 +αv f

0 = α∂t ûs(v̌ f )+α∂t ûs(ψ), a.e. in Q,

∇ ·v f
0 = 0, a.e. in Q,

v f
0 = 0, a.e. on ∂Ω×]0,T [,

v f
0(0) = 0, a.e. in Ω.

(3.25)

This is a time dependent Stokes system, similar to Problem (2.12), but simpler because it is
homogeneous. According to Theorem 3.7, it has a unique solution v f

0 in H1(0,T ;L2(Ω)d)∩
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L∞(0,T ;V ) and p f
0 in L2(0,T ;L2

0(Ω)). Furthermore, v f
0 satisfies the following estimate a.e. in

]0,T [:
1
2

ρ
f ‖v f

0(t)‖
2
L2(Ω)+µ

f ‖∇v f
0‖

2
L2(Qt)

≤ α

2

(
‖∂t ûs(ψ)‖2

L2(Qt)
+‖∂t ûs(v̌ f )‖2

L2(Qt)

)
≤ α

2

(
‖ψ‖2

L2(Qt)
+‖v̌ f ‖2

L2(Qt)

)
.

(3.26)

The first inequality is standard and the second inequality follows from (3.11). Similarly, ∂tv
f
0 is

bounded as follows a.e. in ]0,T [:

1
2

ρ
f ‖∂tv

f
0‖

2
L2(Qt)

+
µ f

2
‖∇v f

0(t)‖
2
L2(Ω)+

α

2
‖v f

0(t)‖
2
L2(Ω)

≤ α2

ρ f

(
‖∂t ûs(ψ)‖2

L2(Qt)
+‖∂t ûs(v̌ f )‖2

L2(Qt)

)
≤ α2

ρ f

(
‖ψ‖2

L2(Qt)
+‖v̌ f ‖2

L2(Qt)

)
.

(3.27)

These bounds lead to the main results of this section.

Theorem 3.10. Under the assumptions of Lemma 3.6, for d = 2,3, Problem (2.13) has a
unique solution v f

0 ∈ H1(0,T ;L2(Ω)d)∩L∞(0,T ;V ) and p f
0 ∈ L2(0,T ;L2

0(Ω)).

Proof. Let F be the mapping ψ ∈ L2(Q)d 7→ v f
0 ∈ L2(Q)d , where v f

0 is the unique solution
of (3.25). This mapping is affine, Lipschitz-continuous, and according to (3.26) and (3.27),
the range space of F is contained in H1(0,T ;L2(Ω)d)∩ L∞(0,T ;V ). Here we can take E =
H = L2(Q)d and F(E) ⊂ H1(0,T ;L2(Ω)d)∩ L∞(0,T ;V ) which is compactly embedded into
L2(Q)d , owing to Theorem 3.9. Therefore Theorem 3.8 guarantees that F has at least one
fixed point in H1(0,T ;L2(Ω)d)∩L∞(0,T ;V ). This yields existence of a velocity solution v f

0 of
(2.13); uniqueness is easily established. By using the above argument, this velocity determines
a unique pressure p f

0 in L2(0,T ;L2
0(Ω)). �

Corollary 3.11. Under the assumptions (2.5), (2.8), (2.6), and (2.9), for d = 2,3, the coupled
problem (1.1)–(1.3) with the above initial and boundary conditions has a unique solution us

and v f both in H1(0,T ;L2(Ω)d)∩L∞(0,T ;H1(Ω)d) and p f in L2(0,T ;L2
0(Ω)).

4. DISCRETIZATION OF PROBLEM (1.1)–(1.3)

To simplify, we discretize the problem where the Dirichlet boundary conditions are all ho-
mogeneous. In addition, for discretizing in time, it is simpler, but not fundamental, to suppose
that be belongs to C 0([0,T ];L2(Ω)3), see Remark 4.1 below.

Let us consider a uniform refinement of the interval [0,T ] by N subintervals, [tn−1, tn], with
step size ∆t = tn− tn−1 for n = 1, . . . ,N. We discretize the time derivatives by means of the
backward Euler method, that is, we approximate

∂v f

∂ t
(tn)'

v f ,n−v f ,n−1

∆t
,

∂us

∂ t
(tn)'

us,n−us,n−1

∆t
,

where we denote v f ,n the approximate value of v f (tn), for n = 1, . . . ,N, and v f ,0 = v f (0); sim-
ilarly, us,n denotes the approximate value of us(tn), for n = 1, . . . ,N, and us,0 = us(0). Finally,
we denote by p f ,n the approximate value of p f (tn), for n = 1, . . . ,N.
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Recall that d = 2,3. As usual, we denote by {Th}h a regular family of simplicial meshes
of Ω, in the sense of Ciarlet [9]. For the discretization of the fluid and pressure, we introduce a
pair of finite element spaces (Vh,Qh) with Vh ⊂ H1

0 (Ω)d and Qh ⊂ L2
0(Ω), and we define

V 0
h = {wh ∈Vh ; ∀qh ∈ Qh,

∫
Ω

qh∇ ·wh = 0}.

For the discretization of the solid part, we consider a finite element space Uh such that Uh ⊂
H1

0,Γs
D
(Ω)d . Additional properties of these spaces will be prescribed when needed. An example

is the classical Hood–Taylor finite element pair of order two for the fluid, see [17, 14, 4],

Vh = {wh ∈ [C 0(Ω̄)]d ; ∀K ∈Th , wh|K ∈ [P2(K)]d}∩H1
0 (Ω)d ,

Qh = {qh ∈ C 0(Ω̄) ; ∀K ∈Th , qh|K ∈P1(K)}∩L2
0(Ω) ,

and the classical finite element space of the same order for the solid,

Uh = {zh ∈ [C 0(Ω̄)]d ; ∀K ∈Th , zh|K ∈ [P2(K)]d}∩H1
0,Γs

D
(Ω)d .

The given initial velocity is approximated by a discretization operator Πh mapping H1
0 (Ω)d into

Vh that preserves weakly the divergence, i.e., for all v ∈ H1
0 (Ω)d ,

∀qh ∈ Qh,
∫

Ω

qh∇ ·Πh(v) =
∫

Ω

qh∇ ·v. (4.1)

Then, we set
v f ,0

h = Πh(v f (0)) ∈V 0
h . (4.2)

The given initial displacement is approximated by a discretization operator Ph mapping H1
0,Γs

D
(Ω)d

into Uh,
us,0

h = Ph(us(0)). (4.3)

Then, we introduce the following fully discrete scheme: For each n = 1, . . . ,N, given v f ,n−1
h

and us,n−1
h , find (v f ,n

h , p f ,n
h ,us,n

h ) ∈Vh×Qh×Uh such that,

ρ
f 1
∆t

∫
Ω

(v f ,n
h −v f ,n−1

h ) ·wh +µ
f
∫

Ω

∇v f ,n
h : ∇wh−

∫
Ω

p f ,n
h ∇ ·wh−ρ

f
∫

Ω

be(tn) ·wh

+α

∫
Ω

v f ,n
h ·wh−α

1
∆t

∫
Ω

(us,n
h −us,n−1

h ) ·wh = 0,∫
Ω

qh∇ ·v f ,n
h = 0,

(λ s +µ
s)
∫

Ω

(∇ ·us,n
h )(∇ · zh)+µ

s
∫

Ω

∇us,n
h : ∇zh−ρ

s
∫

Ω

be(tn) · zh−〈gs,n
N ,zh〉Γs

N

−α

∫
Ω

v f ,n
h · zh +α

1
∆t

∫
Ω

(us,n
h −us,n−1

h ) · zh = 0,

(4.4)

for all (wh,qh,zh) ∈Vh×Qh×Uh, where we denoted gs,n
N := gs

N(tn), for n = 1, . . . ,N.

Remark 4.1. This scheme uses the pointwise values be(tn), whence the assumption that be
is continuous in time. This is just a matter of convenience and we could have replaced the
pointwise values by integral mean values in time, i.e., used 1

∆t
∫ tn

tn−1
be instead of be(tn), in which

case, it would have sufficed that be be in L2(Q)d .
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4.1. Existence of the discrete solution of (4.4). To begin with, let us prove that the scheme
(4.4) has exactly one solution for any choice of discrete spaces, as long as the pair (Vh,Qh)
satisfies an inf-sup condition, for a constant β ? > 0,

inf
qh∈Qh

sup
vh∈Vh

∫
Ω

qh∇ ·vh

|vh|H1(Ω)‖qh‖L2(Ω)

≥ β
?. (4.5)

This condition guarantees the existence of an approximation operator Πh satisfying (4.1), see [13].
Since us,0

h and v f ,0
h are determined by the initial data, it suffices to consider an arbitrary step n

of the scheme. As this is a square system of linear equations, we must prove that if all data are
zero, then the solution is necessarily zero, i.e., if

v f ,n−1
h = 0, be(tn) = 0, us,n−1

h = 0, gs
N(tn) = 0,

then
v f ,n

h = 0, us,n
h = 0, p f ,n

h = 0.
This homogeneous system reads

ρ f

∆t

(
v f ,n

h ,wh
)
+µ

f (
∇v f ,n

h ,∇wh
)
−
(

p f ,n
h ,∇ ·wh

)
+α

(
v f ,n

h ,wh
)
=

α

∆t

(
us,n

h ,wh
)

(
qh,∇ ·v f ,n

h

)
= 0

α

∆t

(
us,n

h ,zh
)
+(λ s +µ

s)
(
∇ ·us,n

h ,∇ · zh
)
+µ

s(
∇us,n

h ,∇zh
)
= α

(
v f ,n

h ,zh
)
.

(4.6)

Proposition 4.2. If the inf-sup condition (4.5) holds, the system (4.6) has only the zero solution.

Proof. To simplify, here the norm of L2(Ω) is denoted without subscript. Let v f ,n
h , p f ,n

h , and
us,n

h solve (4.6) and test it with wh = v f ,n
h , qh = p f ,n

h , zh = us,n
h . The first and second equation of

(4.6) and the third equation of (4.6) imply, respectively

ρ f

∆t
‖v f ,n

h ‖
2 +µ

f ‖∇v f ,n
h ‖

2 +α‖v f ,n
h ‖

2 =
α

∆t

(
us,n

h ,v f ,n
h

)
,

α

∆t
‖us,n

h ‖
2 +(λ s +µ

s)‖∇ ·us,n
h ‖

2 +µ
s‖∇us,n

h ‖
2 = α

(
v f ,n

h ,us,n
h

)
. (4.7)

By combining these two, we obtain

ρ f

∆t
‖v f ,n

h ‖
2+µ

f ‖∇v f ,n
h ‖

2+α‖v f ,n
h ‖

2 =
α

∆t2‖u
s,n
h ‖

2+
λ s +µs

∆t
‖∇ ·us,n

h ‖
2+

µs

∆t
‖∇us,n

h ‖
2. (4.8)

But (4.7) implies
α

∆t
‖us,n

h ‖
2 +(λ s +µ

s)‖∇ ·us,n
h ‖

2 +µ
s‖∇us,n

h ‖
2 ≤ α

2
(
∆t‖v f ,n

h ‖
2 +

1
∆t
‖us,n

h ‖
2). (4.9)

On the one hand, this yields
α

2∆t
‖us,n

h ‖
2 +(λ s +µ

s)‖∇ ·us,n
h ‖

2 +µ
s‖∇us,n

h ‖
2 ≤ α

2
∆t‖v f ,n

h ‖
2,

thus
α

2∆t
‖us,n

h ‖
2 ≤ α

2
∆t‖v f ,n

h ‖
2.

On the other hand, by dividing (4.9) by ∆t, and substituting this last inequality, we have
α

∆t2‖u
s,n
h ‖

2 +
λ s +µs

∆t
‖∇ ·us,n

h ‖
2 +

µs

∆t
‖∇us,n

h ‖
2 ≤ α‖v f ,n

h ‖
2.
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Thus the right-hand side of (4.8) is bounded by α‖v f ,n
h ‖

2, i.e.

ρ f

∆t
‖v f ,n

h ‖
2 +µ

f ‖∇v f ,n
h ‖

2 +α‖v f ,n
h ‖

2 ≤ α‖v f ,n
h ‖

2.

Of course, we infer from this that v f ,n
h = 0. In turn, this yields us,n

h = 0. Which in turn implies
that

(
p f ,n

h ,∇ ·wh
)
= 0. Owing to the inf-sup condition, this gives p f ,n

h = 0, see [13]. �

4.2. Stability of the fully discrete scheme (4.4). Throughout this section, we denote by capital
boldface letters the whole time sequence; for example, V f

h = (v f ,n
h )n≥0. In order to obtain a

priori estimates for the discrete solution, we follow the ideas used in proving existence of the
continuous problem and split the discrete displacement into

us,n
h = ǔs,n

h + ûs,n
h (V f

h),

where ǔs,n
h ∈Uh is the solution, for all zh ∈Uh, to

(λ s +µ
s)
∫

Ω

(∇ · ǔs,n
h )(∇ · zh) + µ

s
∫

Ω

∇ǔs,n
h : ∇zh +

α

∆t

∫
Ω

(ǔs,n
h − ǔs,n−1

h ) · zh

= ρ
s
∫

Ω

be(tn) · zh + 〈gs,n
N ,zh〉Γs

N
,

(4.10)

with ǔs,0
h = Ph(us(0)) (see (4.3)), and for any sequence Wh = (wn

h)n, ûs,n
h (Wh) ∈ Uh is the

solution, for all zh ∈Uh, of:

(λ s +µ
s)
∫

Ω

(∇ · ûs,n
h (Wh))(∇ · zh)+µ

s
∫

Ω

∇ûs,n
h (Wh) : ∇zh

+
α

∆t

∫
Ω

(ûs,n
h (Wh)− ûs,n−1

h (Wh)) · zh = α

∫
Ω

wn
h · zh ,

(4.11)

with ûs,0
h (Wh) = 0. Then, we decompose

v f ,n
h = v̌ f ,n

h +v f ,n
0,h ,

where v̌ f ,n
h ∈V 0

h satisfies for all wh ∈V 0
h :

ρ f

∆t

∫
Ω

(v̌ f ,n
h − v̌ f ,n−1

h ) ·wh + µ
f
∫

Ω

∇v̌ f ,n
h : ∇wh +α

∫
Ω

v̌ f ,n
h ·wh

= ρ
f
∫

Ω

be(tn) ·wh +
α

∆t

∫
Ω

(ǔs,n
h − ǔs,n−1

h ) ·wh ,

(4.12)

with v̌ f ,0
h := Πh(v f (0)) (see (4.2)), and v f ,n

0,h ∈V 0
h solves for all wh ∈V 0

h :

ρ f

∆t

∫
Ω

(v f ,n
0,h−v f ,n−1

0,h ) ·wh + µ
f
∫

Ω

∇v f ,n
0,h : ∇wh +

∫
Ω

αv f ,n
0,h ·wh

=
α

∆t

∫
Ω

(ûs,n
h (V̌ f

h)− ûs,n−1
h (V̌ f

h)) ·wh

+
α

∆t

∫
Ω

(ûs,n
h (V f

0,h)− ûs,n−1
h (V f

0,h)) ·wh ,

(4.13)

where v f ,0
0,h = 0, and, owing to the linearity of the problem, we can write ûs,n

h (V f
h) = ûs,n

h (V̌ f
h)+

ûs,n
h (V f

0,h).
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4.2.1. Stability of Ǔs
h. The following proposition establishes the stability of (4.10).

Proposition 4.3. Let the inf-sup condition (4.5) hold. Assume be ∈ C 0([0,T ];L2(Ω)d) and
each component of gs

N belongs to H1(0,T ;H1/2
00 (Γs

N)
′). Then, there exists a positive constant

C1, independent of h and ∆t, such that, for 1≤ m≤ N,

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ǔs,n
h ‖

2
L2(Ω)+

µs

2

m

∑
n=1

∆t‖∇ǔs,n
h ‖

2
L2(Ω)+

α

2
‖ǔs,m

h ‖
2
L2(Ω)

+
α

2

m

∑
n=1
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) ≤C1 .

(4.14)

If, in addition, ǔs,0
h = Ph(us(0)) is bounded in H1(Ω)d , there exists a positive constant C2,

independent of h and ∆t, such that, for 1≤ m≤ N,

λ s +µs

2

(
‖∇ · ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇ · (ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

µs

4

(
‖∇ ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

α

2

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) ≤C2 .

(4.15)

Proof. We start by testing (4.10) with zh = ǔs,n
h ,

(λ s +µ
s)‖∇ · ǔs,n

h ‖
2
L2(Ω)+µ

s‖∇ ǔs,n
h ‖

2
L2(Ω)

+
α

2∆t

(
‖ǔs,n

h ‖
2
L2(Ω)−‖ǔ

s,n−1
h ‖2

L2(Ω)+‖ǔ
s,n
h − ǔs,n−1

h ‖2
L2(Ω)

)
= ρ

s
∫

Ω

be(tn) · ǔs,n
h + 〈gs,n

N , ǔs,n
h 〉Γs

N
.

(4.16)

By using the Cauchy–Schwarz inequality, Poincaré inequality (1.6), the trace inequality (1.7),
and Young’s inequality, we can bound the right hand side of (4.16) as follows:

|ρs
∫

Ω

be(tn) · ǔs,n
h + 〈gs,n

N , ǔs,n
h 〉Γs

N
| ≤

≤ ρs‖be(tn)‖L2(Ω)‖ǔ
s,n
h ‖L2(Ω)+‖g

s,n
N ‖H1/2

00 (Γs
N)
′‖ǔ

s,n
h ‖H1/2

00 (Γs
N)

≤
(

ρ
sP‖be(tn)‖L2(Ω)+CN‖gs,n

N ‖H1/2
00 (Γs

N)
′

)
‖∇ ǔs,n

h ‖L2(Ω)

≤ 1
2

µ
s‖∇ ǔs,n

h ‖
2
L2(Ω)+

1
2µs

(
ρ

sP‖be(tn)‖L2(Ω)+CN‖gs,n
N ‖H1/2

00 (Γs
N)
′

)2
.

(4.17)
From (4.16) and (4.17),

(λ s +µ
s)‖∇ · ǔs,n

h ‖
2
L2(Ω)+

µs

2
‖∇ ǔs,n

h ‖
2
L2(Ω)

+
α

2∆t

(
‖ǔs,n

h ‖
2
L2(Ω)−‖ǔ

s,n−1
h ‖2

L2(Ω)+‖ǔ
s,n
h − ǔs,n−1

h ‖2
L2(Ω)

)
≤ 1

2µs

(
ρ

sP‖be(tn)‖L2(Ω)+CN‖gs,n
N ‖H1/2

00 (Γs
N)
′

)2
.
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Summing over n from n = 1 to m, and multiplying by ∆t, we obtain:

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ǔs,n
h ‖

2
L2(Ω)+

µs

2

m

∑
n=1

∆t‖∇ ǔs,n
h ‖

2
L2(Ω)

+
α

2
‖ǔs,m

h ‖
2
L2(Ω)+

α

2

m

∑
n=1
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω)

≤ 1
2µs

m

∑
n=1

∆t
(

ρ
sP‖be(tn)‖L2(Ω)+CN‖gs,n

N ‖H1/2
00 (Γs

N)
′

)2
+

α

2
‖ǔs,0

h ‖
2
L2(Ω) ,

(4.18)

and the right-hand side is bounded independently of h and ∆t provided be ∈ C 0([0,T ];L2(Ω)d)

and each component of gs
N belongs to H1(0,T ;H1/2

00 (Γs
N)
′), which proves (4.14). At this stage,

continuity in time is sufficient for gs
N , but derivability will be needed in the second part of the

proof.
Next, by testing (4.10) with zh = ǔs,n

h − ǔs,n−1
h , we obtain that:

λ s +µs

2
(‖∇ · ǔs,n

h ‖
2
L2(Ω)−‖∇ · ǔ

s,n−1
h ‖2

L2(Ω)+‖∇ · (ǔ
s,n
h − ǔs,n−1

h )‖2
L2(Ω)) +

+
µs

2
(‖∇ ǔs,n

h ‖
2
L2(Ω)−‖∇ ǔs,n−1

h ‖2
L2(Ω)+‖∇(ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)) +

+
α

∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) =

= ρ
s
∫

Ω

be(tn) · (ǔs,n
h − ǔs,n−1

h )+ 〈gs,n
N , ǔs,n

h − ǔs,n−1
h 〉Γs

N
.

(4.19)

The first term on the right-hand side of (4.19) can be bounded by using the Cauchy-Schwarz
inequality and Young’s inequality:

∣∣ρs
∫

Ω

be(tn) · (ǔs,n
h − ǔs,n−1

h )
∣∣ ≤ ρs‖be(tn)‖L2(Ω)‖ǔ

s,n
h − ǔs,n−1

h ‖L2(Ω)

≤ ∆t(ρs)2

2α
‖be(tn)‖2

L2(Ω)+
α

2∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) .

(4.20)

In order to bound the second term on the right-hand side of (4.19), we need to sum by parts:

m

∑
n=1
〈gs,n

N , ǔs,n
h − ǔs,n−1

h 〉Γs
N
= 〈gs,m

N , ǔs,m
h 〉Γs

N
−〈gs,1

N , ǔs,0
h 〉Γs

N
−

m

∑
n=2
〈gs,n

N −gs,n−1
N , ǔs,n−1

h 〉Γs
N
, (4.21)
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where the sum on the right-hand side is empty when m = 1. Then, by using (1.6), (1.7), and
Young’s inequality, we obtain

∑
m
n=1〈g

s,n
N , ǔs,n

h − ǔs,n−1
h 〉Γs

N

≤ ‖gs,m
N ‖H1/2

00 (Γs
N)
′‖ǔ

s,m
h ‖H1/2

00 (Γs
N)
+‖gs,1

N ‖H1/2
00 (Γs

N)
′‖ǔ

s,0
h ‖H1/2

00 (Γs
N)

+
m

∑
n=2
‖gs,n

N −gs,n−1
N ‖

H1/2
00 (Γs

N)
′‖ǔ

s,n−1
h ‖

H1/2
00 (Γs

N)

≤ CN

(
‖gs,m

N ‖H1/2
00 (Γs

N)
′‖∇ ǔs,m

h ‖L2(Ω)+‖g
s,1
N ‖H1/2

00 (Γs
N)
′‖∇ ǔs,0

h ‖L2(Ω)

+
m

∑
n=2
‖gs,n

N −gs,n−1
N ‖

H1/2
00 (Γs

N)
′‖∇ ǔs,n−1

h ‖L2(Ω)

)
≤

C2
N

µs ‖g
s,m
N ‖

2
H1/2

00 (Γs
N)
′+

µs

4
‖∇ ǔs,m

h ‖
2
L2(Ω)+CN‖gs,1

N ‖H1/2
00 (Γs

N)
′‖∇ ǔs,0

h ‖L2(Ω)

+
C2

N
2µs

m

∑
n=2

1
∆t
‖gs,n

N −gs,n−1
N ‖2

H1/2
00 (Γs

N)
′ +

µs

2

m

∑
n=2

∆t‖∇ ǔs,n−1
h ‖2

L2(Ω) ,

(4.22)

where the last two sums are empty when m = 1. Thus, by summing over n from n = 1 to n = m
in (4.19) and inserting (4.22), we have:

λ s +µs

2

(
‖∇ · ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇ · (ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

µs

4
‖∇ ǔs,m

h ‖
2
L2(Ω)+

µs

2

m

∑
n=1
‖∇(ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

+
α

2

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω)

≤ λ s +µs

2
‖∇ · ǔs,0

h ‖
2
L2(Ω) + µ

s‖∇ ǔs,0
h ‖

2
L2(Ω)+

(ρs)2

2α

m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)

+
C2

N
µs ‖g

s,m
N ‖

2
H1/2

00 (Γs
N)
′ +

C2
N

2µs‖g
s,1
N ‖

2
H1/2

00 (Γs
N)
′

+
C2

N
2µs

m

∑
n=2

1
∆t
‖gs,n

N −gs,n−1
N ‖2

H1/2
00 (Γs

N)
′ +

µs

2

m

∑
n=2

∆t‖∇ ǔs,n−1
h ‖2

L2(Ω) ,
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where the last two sums are empty when m = 1. Thus using (4.18) to bound the last term above,
we deduce

λ s +µs

2

(
‖∇ · ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇ · (ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

µs

4
‖∇ ǔs,m

h ‖
2
L2(Ω)+

µs

2

m

∑
n=1
‖∇(ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

+
α

2

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω)

≤ λ s +µs

2
‖∇ · ǔs,0

h ‖
2
L2(Ω) + µ

s‖∇ ǔs,0
h ‖

2
L2(Ω)+

(ρs)2

2α

m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)

+
C2

N
µs ‖g

s,m
N ‖

2
H1/2

00 (Γs
N)
′ +

C2
N

2µs‖g
s,1
N ‖

2
H1/2

00 (Γs
N)
′+

C2
N

2µs

m

∑
n=2

1
∆t
‖gs,n

N −gs,n−1
N ‖2

H1/2
00 (Γs

N)
′

+
1

2µs

m

∑
n=1

∆t
(

ρ
sP‖be(tn)‖L2(Ω)+CN‖gs,n

N ‖H1/2
00 (Γs

N)
′

)2
+

α

2
‖ǔs,0

h ‖
2
L2(Ω).

(4.23)

The right-hand side is bounded independently of h and ∆t if ǔs,0
h = Ph(us(0)) is bounded in

H1(Ω)d , be ∈ C 0([0,T ];L2(Ω)d) and each component of ∂tgs
N is in L2(0,T ;H1/2

00 (Γs
N)
′). �

4.2.2. Stability of Ûs
h(Wh). Here Wh is any sequence in Vh, in fact the arguments developed

below apply to any discrete sequence for which Ûs
h(Wh) is well defined.

Proposition 4.4. The following two inequalities hold:

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ûs,n
h (Wh)‖2

L2(Ω)+
µs

2

m

∑
n=1

∆t‖∇ûs,n
h (Wh)‖2

L2(Ω)

+
α

2
‖ûs,m

h (Wh)‖2
L2(Ω)+

α

2

m

∑
n=1
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω)

≤ (α P)2

2µs

m

∑
n=1

∆t‖wn
h‖

2
L2(Ω) ,

(4.24)

where P is the constant of (1.6),

λ s +µs

2
(
‖∇ · ûs,m

h (Wh)‖2
L2(Ω)+

m

∑
n=1
‖∇ · (ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

+
µs

2
(
‖∇ûs,m

h (Wh)‖2
L2(Ω)+

m

∑
n=1
‖∇(ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

+
α

2∆t

m

∑
n=1
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω)

≤ α

2

m

∑
n=1

∆t‖wn
h‖

2
L2(Ω) .

(4.25)
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Proof. By taking zh = ûs,n
h (Wh) in (4.11), we obtain:

(λ s +µ
s)‖∇ · ûs,n

h (Wh)‖2
L2(Ω)+µ

s‖∇ûs,n
h (Wh)‖2

L2(Ω)

+
α

2∆t

(
‖ûs,n

h (Wh)‖2
L2(Ω)−‖û

s,n−1
h (Wh)‖2

L2(Ω)+‖û
s,n
h (Wh)− ûs,n−1

h (Wh)‖2
L2(Ω)

)
≤ α‖wn

h‖L2(Ω)‖û
s,n
h (Wh)‖L2(Ω) .

(4.26)

Poincaré’s and Young’s inequalities on the right-hand side of (4.26) yield,

α‖wn
h‖L2(Ω)‖û

s,n
h (Wh)‖L2(Ω) ≤ α P ‖wn

h‖L2(Ω)‖∇ûs,n
h (Wh)‖L2(Ω)

≤ µs

2
‖∇ûs,n

h (Wh)‖2
L2(Ω) +

(α P)2

2µs ‖w
n
h‖

2
L2(Ω) ,

(4.27)

and (4.26) becomes

(λ s +µ
s)‖∇ · ûs,n

h (Wh)‖2
L2(Ω)+

µs

2
‖∇ûs,n

h (Wh)‖2
L2(Ω)

+
α

2∆t

(
‖ûs,n

h (Wh)‖2
L2(Ω)−‖û

s,n−1
h (Wh)‖2

L2(Ω)+‖û
s,n
h (Wh)− ûs,n−1

h (Wh)‖2
L2(Ω)

)
≤ (α P)2

2µs ‖w
n
h‖

2
L2(Ω) .

Summing over n from n = 1 to n = m, multiplying by ∆t, and using that ûs,0
h (Wh) = 0, we

obtain (4.24).
Now, in order to bound the derivative, we take zh = ûs,n

h (Wh)− ûs,n−1
h (Wh) in (4.11). Then,

λ s +µs

2

(
‖∇ · ûs,n

h (Wh)‖2
L2(Ω)−‖∇ · û

s,n−1
h (Wh)‖2

L2(Ω)+‖∇ · (û
s,n
h (Wh)− ûs,n−1

h (Wh))‖2
L2(Ω)

)
+

µs

2

(
‖∇ûs,n

h (Wh)‖2
L2(Ω)−‖∇ûs,n−1

h (Wh)‖2
L2(Ω)+‖∇(ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

α

∆t
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω)

≤ α

2∆t
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω)+
α

2
∆t‖wn

h‖
2
L2(Ω) .

Therefore,

λ s +µs

2

(
‖∇ · ûs,n

h (Wh)‖2
L2(Ω)−‖∇ · û

s,n−1
h (Wh)‖2

L2(Ω)+‖∇ · (û
s,n
h (Wh)− ûs,n−1

h (Wh))‖2
L2(Ω)

)
+

µs

2

(
‖∇ûs,n

h (Wh)‖2
L2(Ω)−‖∇ûs,n−1

h (Wh)‖2
L2(Ω)+‖∇(ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

α

2∆t
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω) ≤
α

2
∆t‖wn

h‖
2
L2(Ω) .

(4.28)
Summing over n from n = 1 to n = m, we arrive at (4.25). �
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4.2.3. Stability of V̌ f
h and Ûs

h(V̌
f
h).

Proposition 4.5. Let the inf-sup condition (4.5) hold. Assume be ∈ C 0([0,T ];L2(Ω)d), each
component of gs

N is in H1(0,T ;H1/2
00 (Γs

N)
′), v̌ f ,0

h is bounded in L2(Ω)d , and ǔs,0
h is bounded in

H1(Ω)d . Then, there exists a positive constant C3, independent of h and ∆t, such that

ρ f

2
(‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω))+µ
f

m

∑
n=1

∆t‖∇ v̌ f ,n
h ‖

2
L2(Ω) ≤ C3 . (4.29)

Proof. By testing (4.12) with wh = v̌ f ,n
h , we obtain:

ρ f

2∆t
(‖v̌ f ,n

h ‖
2
L2(Ω)−‖v̌

f ,n−1
h ‖2

L2(Ω)+‖v̌
f ,n
h − v̌ f ,n−1

h ‖2
L2(Ω))+µ

f ‖∇ v̌ f ,n
h ‖

2
L2(Ω)+α‖v̌ f ,n

h ‖
2
L2(Ω)

≤ ρ
f ‖be(tn)‖L2(Ω)‖v̌

f ,n
h ‖L2(Ω)+

α

∆t
‖ǔs,n

h − ǔs,n−1
h ‖L2(Ω)‖v̌

f ,n
h ‖L2(Ω)

≤ (ρ f )2

2α
‖be(tn)‖2

L2(Ω)+
α

2(∆t)2‖ǔ
s,n
h − ǔs,n−1

h ‖2
L2(Ω)+α‖v̌ f ,n

h ‖
2
L2(Ω) .

(4.30)
After summing over n from 1 to m in (4.30) and multiplying by ∆t, this becomes:

ρ f

2
(‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω))+µ
f

m

∑
n=1

∆t‖∇ v̌ f ,n
h ‖

2
L2(Ω)

≤ (ρ f )2

2α

m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)+

α

2

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω)+
ρ f

2
‖v̌ f ,0

h ‖
2
L2(Ω).

Then by virtue of (4.23), we infer

ρ f

2
(‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω))+µ
f

m

∑
n=1

∆t‖∇ v̌ f ,n
h ‖

2
L2(Ω)

≤ 1
2α

(
(ρ f )2 +(ρs)2) m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)+

ρ f

2
‖v̌ f ,0

h ‖
2
L2(Ω)

+
λ s +µs

2
‖∇ · ǔs,0

h ‖
2
L2(Ω) + µ

s‖∇ ǔs,0
h ‖

2
L2(Ω)

+
C2

N
µs

(
‖gs,m

N ‖
2
H1/2

00 (Γs
N)
′ +

1
2
‖gs,1

N ‖
2
H1/2

00 (Γs
N)
′

)
+

C2
N

2µs

m

∑
n=2

1
∆t
‖gs,n

N −gs,n−1
N ‖2

H1/2
00 (Γs

N)
′

+
1

2µs

m

∑
n=1

∆t
(

ρ
sP‖be(tn)‖L2(Ω)+CN‖gs,n

N ‖H1/2
00 (Γs

N)
′

)2
+

α

2
‖ǔs,0

h ‖
2
L2(Ω),

(4.31)

and the right-hand side is bounded independently of h and ∆t, provided be ∈C 0([0,T ];L2(Ω)d),
each component of gs

N is in H1(0,T ;H1/2
00 (Γs

N)
′), v̌ f ,0

h is bounded in L2(Ω)d , and ǔs,0
h is bounded

in H1(Ω)d . �

It follows from (4.29) that
m

∑
n=1

∆t‖v̌ f ,n
h ‖

2
L2(Ω) ≤

2C3

ρ f m∆t ≤ 2C3

ρ f T, (4.32)
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a quantity bounded independently of h and ∆t. Therefore, by substituting this bound into (4.24)
and (4.25) with Wh = V̌ f

h , we immediately derive that

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ûs,n
h (V̌ f

h)‖
2
L2(Ω)+

µs

2

m

∑
n=1

∆t‖∇ûs,n
h (V̌ f

h)‖
2
L2(Ω)

+
α

2
‖ûs,m

h (V̌ f
h)‖

2
L2(Ω)+

α

2

m

∑
n=1
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω) ≤

(αP)2C3

µsρ f m∆t ,
(4.33)

λ s +µs

2
(
‖∇ · ûs,m

h (V̌ f
h)‖

2
L2(Ω)+

m

∑
n=1
‖∇ · (ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h))‖

2
L2(Ω)

)
+

µs

2
(
‖∇ûs,m

h (V̌ f
h)‖

2
L2(Ω)+

m

∑
n=1
‖∇(ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h))‖

2
L2(Ω)

)
+

α

2∆t

m

∑
n=1
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω) ≤

αC3

ρ f m∆t .

(4.34)

4.2.4. Stability of V f
0,h and of the velocity part of (4.4). Regarding the velocity solution, it

remains to derive a priori estimates for V f
0,h.

Proposition 4.6. Under the assumptions of Proposition 4.5, there exists a positive constant C4,
independent of h and ∆t, such that

ρ f

2
‖v f ,m

0,h ‖
2
L2(Ω)+

ρ f

2

m

∑
n=1
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)+
µ f

2

m

∑
n=1

∆t‖∇v f ,n
0,h‖

2
L2(Ω) ≤C4 . (4.35)

Proof. By choosing wh = v f ,n
0,h in (4.13) and by applying the Cauchy-Schwarz, Poincaré and

Young inequalities, we infer

ρ f

2∆t

(
‖v f ,n

0,h‖
2
L2(Ω)−‖v

f ,n−1
0,h ‖2

L2(Ω)+‖v
f ,n
0,h−v f ,n−1

0,h ‖2
L2(Ω)

)
+µ

f ‖∇v f ,n
0,h‖

2
L2(Ω)+α‖v f ,n

0,h‖
2
L2(Ω)

≤ α

∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖L2(Ω)‖v

f ,n
0,h‖L2(Ω)

+
α

∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖L2(Ω)‖v

f ,n
0,h‖L2(Ω)

≤ (αP)2

2(∆t)2µ f ‖û
s,n
h (V̌ f

h)− ûs,n−1
h (V̌ f

h)‖
2
L2(Ω)+

µ f

2
‖∇v f ,n

0,h‖
2
L2(Ω)

+
α

2(∆t)2‖û
s,n
h (V f

0,h)− ûs,n−1
h (V f

0,h)‖
2
L2(Ω)+

α

2
‖v f ,n

0,h‖
2
L2(Ω) .

Then,

ρ f

2∆t

(
‖v f ,n

0,h‖
2
L2(Ω)−‖v

f ,n−1
0,h ‖2

L2(Ω)+‖v
f ,n
0,h−v f ,n−1

0,h ‖2
L2(Ω)

)
+

µ f

2
‖∇v f ,n

0,h‖
2
L2(Ω)+

α

2
‖v f ,n

0,h‖
2
L2(Ω)

≤ (αP)2

2(∆t)2µ f ‖û
s,n
h (V̌ f

h)− ûs,n−1
h (V̌ f

h)‖
2
L2(Ω)+

α

2(∆t)2‖û
s,n
h (V f

0,h)− ûs,n−1
h (V f

0,h)‖
2
L2(Ω) .
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Upon summing from n = 1 to n = m, and multiplying by ∆t, this gives:

ρ f

2
‖v f ,m

0,h ‖
2
L2(Ω)+

ρ f

2

m

∑
n=1
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)+
µ f

2

m

∑
n=1

∆t‖∇v f ,n
0,h‖

2
L2(Ω)+

α

2

m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω)

≤ (αP)2

2µ f

m

∑
n=1

1
∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω)+

α

2

m

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω) .

(4.36)

Finally, in view of (4.34), the first term on the right-hand side of (4.36) is bounded independently
of h and ∆t by

(αP)2

µ f ρ f C3m∆t ≤ (αP)2

µ f ρ f C3T.

The second term on the right-hand side of (4.36) is bounded by

α

2

m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω)

by virtue of (4.25) with Wh = V f
0,h. Then, (4.35) follows from these two upper bounds. �

As a by-product of Proposition 4.6, we have, for 1≤ m≤ N,
m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω) ≤

2
ρ f C4m∆t ≤ 2

ρ f C4T. (4.37)

The next theorem summarizes the conclusions of Propositions 4.3, 4.4, 4.5, and 4.6.

Theorem 4.7. Let the inf-sup condition (4.5) hold. For d = 2,3, assume that be belongs to
C 0([0,T ];L2(Ω)d), each component of gs

N is in H1(0,T ;H1/2
00 (Γs

N)
′), v̌ f ,0

h is bounded in L2(Ω)d ,
and ǔs,0

h is bounded in H1(Ω)d . Then, there exist positive constants, C5, C6 and C7, independent
of h and ∆t, such that

(λ s +µ
s)

m

∑
n=1

∆t‖∇ ·us,n
h ‖

2
L2(Ω)+

µs

2

m

∑
n=1

∆t‖∇us,n
h ‖

2
L2(Ω)+

α

2
‖us,m

h ‖
2
L2(Ω)

+
α

2

m

∑
n=1
‖us,n

h −us,n−1
h ‖2

L2(Ω) ≤C5,

(4.38)

λ s +µs

2

(
‖∇ ·us,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇ · (us,n

h −us,n−1
h )‖2

L2(Ω)

)
+

α

2

m

∑
n=1

1
∆t
‖us,n

h −us,n−1
h ‖2

L2(Ω)

+
µs

4

(
‖∇us,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(us,n

h −us,n−1
h )‖2

L2(Ω)

)
≤C6,

(4.39)

ρ
f ‖v f ,m

h ‖
2
L2(Ω)+ρ

f
m

∑
n=1
‖v f ,n

h −v f ,n−1
h ‖2

L2(Ω)+µ
f

m

∑
n=1

∆t‖v f ,n
h ‖

2
L2(Ω) ≤C7. (4.40)

Proof. To derive (4.38), we use the decomposition us,n
h = ǔs,n

h + ûs,n
h (V̌ f

h)+ ûs,n
h (V f

0,h), the trian-

gle inequality and bounds (4.14), (4.33) and (4.24) with Wh = V f
0,h, together with (4.37). In-

equality (4.39) follows from (4.15), (4.34), (4.25) with Wh = V f
0,h, and (4.37). Finally, (4.40)

is derived from the decomposition v f ,n
h = v̌ f ,n

h +v f ,n
0,h , after applying (4.29) and (4.35). �
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4.2.5. Stability of p f
h . As a rule, stability of the pressure stems from stability of the velocity’s

time derivative. Regarding v̌ f
h , a straightforward argument shows that, by testing (4.12) with

v̌ f ,n
h − v̌ f ,n−1

h , we obtain, for 1≤ m≤ N,

ρ f

2

m

∑
n=1

1
∆t
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω)+
µ f

2
(
‖∇ v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(v̌ f ,n

h − v̌ f ,n−1
h )‖2

L2(Ω)

)
α

2
(
‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω)

)
≤ µ f

2
‖∇ v̌ f ,0

h ‖
2
L2(Ω)+

α

2
‖v̌ f ,0

h ‖
2
L2(Ω)

+ρ
f

m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)+

α2

ρ f

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω),

(4.41)

a quantity that is bounded independently of m, h, and ∆t, provided that, in addition to the
assumptions of Theorem 4.7, v̌ f ,0

h is stable in H1(Ω)d .
Likewise, by testing (4.13) with v f ,n

0,h−v f ,n−1
0,h , we derive, for 1≤ m≤ N,

ρ
f

m

∑
n=1

1
∆t
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)+µ
f (‖∇v f ,m

0,h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(v f ,n

0,h−v f ,n−1
0,h )‖2

L2(Ω)

)
+α
(
‖v f ,m

0,h ‖
2
L2(Ω)+

m

∑
n=1
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)

)
≤ 2α2

ρ f

( m

∑
n=1

1
∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖2

L2(Ω)+
m

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω)

)
,

(4.42)
again a quantity that is bounded independently of m, h, and ∆t, see (4.34) and (4.37).

The stability of p f
h follows readily from (4.41) and (4.42).

Theorem 4.8. In addition to the assumptions of Theorem 4.7, suppose that v̌ f ,0
h is bounded in

H1(Ω)d and that the discrete inf-sup condition (4.5) holds with a constant β ? > 0 independent
of h. Then, there exists a positive constant C8, independent of h and ∆t, such that, for 1≤m≤N,

m

∑
n=1

∆t‖p f ,n
h ‖

2
L2(Ω) ≤C8. (4.43)

Proof. A consequence of the inf-sup condition (4.5) is that for each p f ,n
h in Qh, there exists a

function w f ,n
h ∈Vh such that (see, for instance [13])

− (p f ,n
h ,∇ ·w f ,n

h ) = ‖p f ,n
h ‖

2
L2(Ω) , ‖∇w f ,n

h ‖L2(Ω) ≤
1

β ∗
‖p f ,n

h ‖L2(Ω). (4.44)

Then, by testing the first equation in (4.4) with w f ,n
h , we obtain, in view of (4.44) and Poincaré’s

inequality,

‖p f ,n
h ‖L2(Ω) ≤

1
β ∗

(
µ

f ‖∇v f ,n
h ‖L2(Ω)+P

(
α‖v f ,n

h ‖L2(Ω)+ρ
f ‖be(tn)‖L2(Ω)

+
α

∆t
‖us,n

h −us,n−1
h ‖L2(Ω)+

ρ f

∆t
‖v f ,n

h −v f ,n−1
h ‖L2(Ω)

))
.
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Then (4.43) follows by squaring, multiplying by ∆t, summing over n from 1 to m, and applying
the upper bounds of Theorems 4.7 and 4.8. �

5. SIMPLE DECOUPLING ALGORITHM

Solving monolithically Problem (4.4) involves a large number of unknowns, sometimes
too large for the available memory. It also couples two systems with very different numerical
properties. To reduce it to a sequence of smaller problems each one separately that is easier
to solve, we propose a simple decoupling algorithm, without iterations. Note that the first
equation of (4.4) is coupled to the third equation because it uses the unknown value of the
discrete time derivative of us,n

h . As the structure is expected to move more slowly than the fluid,
the two equations could be decoupled by replacing this discrete time derivative by the discrete
time derivative of us,n−1

h . This raises the issue of approximating the initial time derivative.
By reverting to the displacement equation (1.1), we see that a possible approximation is: Find
ds,0

h ∈Uh solution of

α

∫
Ω

ds,0
h · zh =−(λ s +µ

s)
∫

Ω

(∇ ·us,0
h )(∇ · zh)−µ

s
∫

Ω

∇us,0
h : ∇zh +ρ

s
∫

Ω

be(0) · zh

+α

∫
Ω

v f ,0
h · zh + 〈gs

N(0),zh〉Γs
N
,

(5.1)

for all zh ∈Uh. Clearly, this system is uniquely solvable. Then, starting from v f ,0
h ∈V 0

h , us,0
h ∈

Uh, and ds,0
h ∈Uh, the general step n ≥ 1 of the algorithm is: find (v f ,n

h , p f ,n
h ,us,n

h ,ds,n
h ) in Vh×

Qh×Uh×Uh such that

ρ f

∆t

∫
Ω

(v f ,n
h −v f ,n−1

h ) ·wh +µ
f
∫

Ω

∇v f ,n
h : ∇wh−

∫
Ω

p f ,n
h ∇ ·wh−ρ

f
∫

Ω

be(tn) ·wh

+α

∫
Ω

(
v f ,n

h −ds,n−1
h

)
·wh = 0∫

Ω

qh∇ ·v f ,n
h = 0

(λ s +µ
s)
∫

Ω

(∇ ·us,n
h )(∇ · zh)+µ

s
∫

Ω

∇us,n
h : ∇zh−ρ

s
∫

Ω

be(tn) · zh−〈gs
N ,zh〉Γs

N

−α

∫
Ω

v f ,n
h · zh +

α

∆t

∫
Ω

(us,n
h −us,n−1

h ) · zh = 0,∫
Ω

ds,n
h · zh =

1
∆t

∫
Ω

(us,n
h −us,n−1

h ) · zh,

(5.2)

for all (wh,qh,zh) ∈ Vh×Qh×Uh. The first two equations are a generalized Stokes system,
the third equation is a linear elasticity system, and the last equation is a simple projection. As
the equations are now decoupled, it is easy to check by inspection that each system generates a
unique solution. Stability of this scheme is established in the next section, provided the starting
value ds,0

h is stable.

5.1. Stability of the discrete scheme (5.2). Let us adapt to (5.2) the decomposition used for
(4.4). We first observe that the third equation in (5.2) is formally equal to the third equation in
(4.4). We then decompose again us,n

h = ǔs,n
h + ûs,n

h (V f
h), where ǔs,n

h is the solution to (4.10) with
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ǔs,0
h = Ph(us(0)) (see (4.3)), and ûs,n

h (Vh) is the solution to (4.11) with Wh = Vh := (v f ,n
h )n≥0.

Next, we split
ds,n

h = ďs,n
h + d̂s,n

h (Vh),

where

ďs,n
h =

1
∆t

(
ǔs,n

h − ǔs,n−1
h

)
, ďs,0

h = 0,

d̂s,n
h (Vh) =

1
∆t

(
ûs,n

h (Vh)− ûs,n−1
h (Vh)

)
, d̂s,0

h (Vh) = ds,0
h ,

with ds,0
h defined by (5.1). Finally, v f ,n

h is split into

v f ,n
h = v̌ f ,n

h +v f ,n
0,h ,

where for all wh ∈V 0
h ,

ρ f

∆t

∫
Ω

(v̌ f ,n
h − v̌ f ,n−1

h ) ·wh +µ
f
∫

Ω

∇ v̌ f ,n
h : ∇wh +α

∫
Ω

v̌ f ,n
h ·wh =

= ρ
f
∫

Ω

be(tn) ·wh +α

∫
Ω

ďs,n−1
h ·wh ,

(5.3)

with v̌ f ,0
h := Πh(v f (0)) (see (4.2)), and for all wh ∈V 0

h ,

ρ f

∆t

∫
Ω

(v f ,n
0,h−v f ,n−1

0,h ) ·wh +µ
f
∫

Ω

∇v f ,n
0,h : ∇wh +α

∫
Ω

v f ,n
0,h ·wh =

= α

∫
Ω

(
d̂s,n−1

h (V̌ f
h)+ d̂s,n−1

h (V f
0,h)
)
·wh ,

(5.4)

where v f ,0
0,h = 0.

The stability argument of (5.2) follows the same lines as that of (4.4), except that obviously
(5.1) does not lead to a uniform bound for ds,0

h in L2(Ω)d . Instead, it gives rise to a bound in a
discrete negative norm. More precisely, the dual norm defined by

‖ds,0
h ‖U ′h = sup

zh∈Uh

1
‖∇zh‖L2(Ω)

∣∣∫
Ω

ds,0
h · zh

∣∣, (5.5)

leads to

‖ds,0
h ‖U ′h ≤K :=

1
α

[√
d(λ s +µ

s)‖∇ ·Ph(us(0))‖L2(Ω)+µ
s‖∇(Ph(us(0)))‖L2(Ω)

+P
(
ρ

s‖bs
e(0)‖L2(Ω)+α‖Πh(v f (0))‖L2(Ω)

)
+CN‖gs

N(0)‖
H

1
2

00(ΓN)′

]
,

(5.6)

a quantity bounded independently of h. To see the influence of this bound on the subsequent
velocity and displacement, consider v f ,1

h . It solves for all wh ∈V 0
h ,

ρ f

∆t

(
v f ,1

h −v f ,0
h ,wh

)
+µ

f (
∇v f ,1

h ,∇wh
)
+α

(
v f ,1

h ,wh
)
= ρ

f (be(t1),wh
)
+α

(
ds,0

h ,wh
)
.

In order to use (5.6) for estimating the last term above, we assume that

Vh ⊂Uh. (5.7)
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Although this assumption holds in the example chosen at the beginning of Section 4, it does
not necessarily hold in other situations and so may be restrictive, see Remark 5.2 below. Now,
suppose (5.7) holds; the choice wh = v f ,1

h yields

ρ f

2∆t

(
‖v f ,1

h ‖
2
L2(Ω)+‖v

f ,1
h −v f ,0

h ‖
2
L2(Ω)

)
+µ

f ‖∇v f ,1
h ‖

2
L2(Ω)+α‖v f ,1

h ‖
2
L2(Ω) ≤

≤ ρ f

2∆t
‖v f ,0

h ‖
2
L2(Ω)+ρ

f ‖be(t1)‖L2(Ω)‖v
f ,1
h ‖L2(Ω)+αK ‖∇v f ,1

h ‖L2(Ω),

which implies that

ρ
f (‖v f ,1

h ‖
2
L2(Ω)+‖v

f ,1
h −v f ,0

h ‖
2
L2(Ω)

)
+µ

f
∆t‖∇v f ,1

h ‖
2
L2(Ω)+α∆t‖v f ,1

h ‖
2
L2(Ω) ≤

≤ ρ
f ‖v f ,0

h ‖
2
L2(Ω)+

(ρ f )2

α
∆t‖be(t1)‖2

L2(Ω)+
α2

µ f ∆tK 2.
(5.8)

Of course, if we use the splitting v f ,1
h = v̌ f ,1

h +v f ,1
0,h , and take into account the initial conditions,

we obtain more precise inequalities for each part

ρ
f (‖v̌ f ,1

h ‖
2
L2(Ω)+‖v̌

f ,1
h − v̌ f ,0

h ‖
2
L2(Ω)

)
+2µ

f
∆t‖∇ v̌ f ,1

h ‖
2
L2(Ω)+α∆t‖v̌ f ,1

h ‖
2
L2(Ω) ≤

≤ ρ
f ‖v̌ f ,0

h ‖
2
L2(Ω)+

(ρ f )2

α
∆t‖be(t1)‖2

L2(Ω),
(5.9)

and

ρ
f ‖v f ,1

0,h‖
2
L2(Ω)+∆t

µ f

2
‖∇v f ,1

0,h‖
2
L2(Ω)+α∆t‖v f ,1

0,h‖
2
L2(Ω) ≤

α2

2µ f ∆tK 2. (5.10)

From here, the estimates of ǔs,n
h and ûs,n

h (Wh) for n ≥ 1 are respectively the same as in (4.14),
(4.15) and in (4.24), (4.25), to be specific,

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ǔs,n
h ‖

2
L2(Ω)+

µs

2

m

∑
n=1

∆t‖∇ ǔs,n
h ‖

2
L2(Ω)+

α

2
‖ǔs,m

h ‖
2
L2(Ω)

+
α

2

m

∑
n=1
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) ≤C1,

λ s +µs

2

(
‖∇ · ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇ · (ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

µs

4

(
‖∇ ǔs,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(ǔs,n

h − ǔs,n−1
h )‖2

L2(Ω)

)
+

α

2

m

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) ≤C2,

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ûs,n
h (Wh)‖2

L2(Ω)+
µs

2

m

∑
n=1

∆t‖∇ûs,n
h (Wh)‖2

L2(Ω)+
α

2
‖ûs,m

h (Wh)‖2
L2(Ω)

+
α

2

m

∑
n=1
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω) ≤
(α P)2

2µs

m

∑
n=1

∆t‖wn
h‖

2
L2(Ω),
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λ s +µs

2
(
‖∇ · ûs,m

h (Wh)‖2
L2(Ω)+

m

∑
n=1
‖∇ · (ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

µs

2
(
‖∇ûs,m

h (Wh)‖2
L2(Ω)+

m

∑
n=1
‖∇(ûs,n

h (Wh)− ûs,n−1
h (Wh))‖2

L2(Ω)

)
+

α

2∆t

m

∑
n=1
‖ûs,n

h (Wh)− ûs,n−1
h (Wh)‖2

L2(Ω) ≤
α

2

m

∑
n=1

∆t‖wn
h‖

2
L2(Ω).

We need to examine v f ,n
h for n≥ 2. First, regarding v̌ f ,n

h , we have

ρ f

2∆t

(
‖v̌ f ,n

h ‖
2
L2(Ω)+‖v̌

f ,n
h − v̌ f ,n−1

h ‖2
L2(Ω)

)
+µ

f ‖∇ v̌ f ,n
h ‖

2
L2(Ω)+α‖v̌ f ,n

h ‖
2
L2(Ω) ≤

≤ ρ f

2∆t
‖v̌ f ,n−1

h ‖2
L2(Ω)+ρ

f ‖be(tn)‖L2(Ω)‖v̌
f ,n
h ‖L2(Ω)+α‖ďs,n−1

h ‖L2(Ω)‖v̌
f ,n
h ‖L2(Ω).

Thus

ρ f

2
(
‖v̌ f ,n

h ‖
2
L2(Ω)+‖v̌

f ,n
h − v̌ f ,n−1

h ‖2
L2(Ω)

)
+µ

f
∆t‖∇ v̌ f ,n

h ‖
2
L2(Ω) ≤

≤ ρ f

2
‖v̌ f ,n−1

h ‖2
L2(Ω)+

(ρ f )2

2α
∆t‖be(tn)‖2

L2(Ω)+
α

2∆t
‖ǔs,n−1

h − ǔs,n−2
h ‖2

L2(Ω).

By summing over n from n = 2 to n = m, we obtain

ρ f

2
(
‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=2
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω)

)
+µ

f
m

∑
n=2

∆t‖∇ v̌ f ,n
h ‖

2
L2(Ω) ≤

≤ ρ f

2
‖v̌ f ,1

h ‖
2
L2(Ω)+

(ρ f )2

2α

m

∑
n=2

∆t‖be(tn)‖2
L2(Ω)+

α

2

m−1

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω).

(5.11)

Then, we substitute (5.9) into the above right-hand side and obtain

ρ f

2
(
‖v̌ f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v̌ f ,n

h − v̌ f ,n−1
h ‖2

L2(Ω)

)
+µ

f
m

∑
n=1

∆t‖∇ v̌ f ,n
h ‖

2
L2(Ω)+

α

2
∆t‖v̌ f ,1

h ‖
2
L2(Ω)

≤ ρ f

2
‖v̌ f ,0

h ‖
2
L2(Ω)+

(ρ f )2

2α

m

∑
n=1

∆t‖be(tn)‖2
L2(Ω)+

α

2

m−1

∑
n=1

1
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) ≤C9,

(5.12)

a quantity bounded above independently of h and ∆t. Note that in view of (5.9), (5.12) is also
valid when m = 1. From (5.12), we deduce the analogue of (4.32),

m

∑
n=1

∆t‖v̌ f ,n
h ‖

2
L2(Ω) ≤

2
ρ f C9m∆t ≤ 2

ρ f C9T. (5.13)

With (4.24) and (4.25), this implies

(λ s +µ
s)

m

∑
n=1

∆t‖∇ · ûs,n
h (V̌h)‖2

L2(Ω)+
µs

2

m

∑
n=1

∆t‖∇ûs,n
h (V̌h)‖2

L2(Ω)+
α

2
‖ûs,m

h (V̌h)‖2
L2(Ω)

+
α

2

m

∑
n=1
‖ûs,n

h (V̌h)− ûs,n−1
h (V̌h)‖2

L2(Ω) ≤
(α P)2

µsρ f C9T,
(5.14)
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λ s +µs

2
(
‖∇ · ûs,m

h (V̌h)‖2
L2(Ω)+

m

∑
n=1
‖∇ · (ûs,n

h (V̌h)− ûs,n−1
h (V̌h))‖2

L2(Ω)

)
+

µs

2
(
‖∇ûs,m

h (V̌h)‖2
L2(Ω)+

m

∑
n=1
‖∇(ûs,n

h (V̌h)− ûs,n−1
h (V̌h))‖2

L2(Ω)

)
+

α

2∆t

m

∑
n=1
‖ûs,n

h (V̌h)− ûs,n−1
h (V̌h)‖2

L2(Ω) ≤
α

ρ f C9T.

(5.15)

It remains to study v f ,n
0,h for n≥ 2. We have

ρ f

2∆t

(
‖v f ,n

0,h‖
2
L2(Ω)+‖v

f ,n
0,h−v f ,n−1

0,h ‖2
L2(Ω)

)
+µ

f ‖∇v f ,n
0,h‖

2
L2(Ω)+α‖v f ,n

0,h‖
2
L2(Ω) ≤

≤ ρ f

2∆t
‖v f ,n−1

0,h ‖2
L2(Ω)+

α

∆t

(
‖ûs,n−1

h (V̌ f
h)− ûs,n−2

h (V̌ f
h)‖L2(Ω)

+‖ûs,n−1
h (V f

0,h)− ûs,n−2
h (V f

0,h)‖L2(Ω)

)
‖v f ,n

0,h‖L2(Ω).

By suitably using Young’s inequality and summing over n from n = 2 to n = m, we infer

ρ f

2
(
‖v f ,m

0,h ‖
2
L2(Ω)+

m

∑
n=2
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)

)
+

µ f

2

m

∑
n=2

∆t‖∇v f ,n
0,h‖

2
L2(Ω)

+
α

2

m

∑
n=2

∆t‖v f ,n
0,h‖

2
L2(Ω) ≤

ρ f

2
‖v f ,1

0,h‖
2
L2(Ω)

+
(αP)2

2µ f

m−1

∑
n=1

1
∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω)

+
α

2

m−1

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω).

(5.16)

Let us substitute (5.10) into (5.16); this yields

ρ f

2
(
‖v f ,m

0,h ‖
2
L2(Ω)+

m

∑
n=2
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)

)
+

µ f

2
(∆t

2
‖∇v f ,1

0,h‖
2
L2(Ω)+

m

∑
n=2

∆t‖∇v f ,n
0,h‖

2
L2(Ω)

)
+

α

2

m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω) ≤

(αK )2

4µ f ∆t +
(αP)2

2µ f

m−1

∑
n=1

1
∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω)

+
α

2

m−1

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω),

(5.17)
an inequality that is also valid when m = 1.

Now, by (4.25), we have on the one hand
m

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω) ≤

m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω), (5.18)

and on the other hand, in view of (5.13),
m

∑
n=1

1
∆t
‖ûs,n

h (V̌ f
h)− ûs,n−1

h (V̌ f
h)‖

2
L2(Ω) ≤

m

∑
n=1

∆t‖v̌ f ,n
h ‖

2
L2(Ω) ≤

2
ρ f C9T. (5.19)
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When these two bounds are substituted into (5.17), we derive

ρ f

2
(
‖v f ,m

0,h ‖
2
L2(Ω)+

m

∑
n=1
‖v f ,n

0,h−v f ,n−1
0,h ‖2

L2(Ω)

)
+

µ f

2
(∆t

2
‖∇v f ,1

0,h‖
2
L2(Ω)

+
m

∑
n=2

∆t‖∇v f ,n
0,h‖

2
L2(Ω)

)
≤C10 :=

(αK )2

4µ f ∆t +
(αP)2

µ f ρ f C9T,
(5.20)

that is again bounded independently of h and ∆t. Of course, this also implies
m

∑
n=1

∆t‖v f ,n
0,h‖

2
L2(Ω) ≤

2
ρ f m∆tC10 ≤

2
ρ f C10T, (5.21)

that, in view of (5.18), implies
m

∑
n=1

1
∆t
‖ûs,n

h (V f
0,h)− ûs,n−1

h (V f
0,h)‖

2
L2(Ω) ≤

2
ρ f C10T. (5.22)

A combination of (5.19) and (5.22) immediately yields
m

∑
n=1

1
∆t
‖ûs,n

h (V f
h)− ûs,n−1

h (V f
h)‖

2
L2(Ω) ≤

4
ρ f

(
C9 +C10)T. (5.23)

This induces an estimate for the auxiliary variable ds,n
h . Indeed, from the fourth equation in

(5.2), taking zh = ds,n
h and using the triangle and Cauchy-Schwarz inequalities,

‖ds,n
h ‖

2
L2(Ω) ≤ ‖

us,n
h −us,n−1

h
∆t

‖2
L2(Ω) ≤ 2‖

ǔs,n
h − ǔs,n−1

h
∆t

‖2
L2(Ω) + 2‖

ûs,n
h (V f

h)− ûs,n−1
h (V f

h)

∆t
‖2

L2(Ω) .

Summing over n from n = 1 to n = m, and multiplying by ∆t, we obtain, owing to (4.15) and
(5.23):

m

∑
n=1

∆t‖ds,n
h ‖

2
L2(Ω) ≤

m

∑
n=1

2
∆t
‖ǔs,n

h − ǔs,n−1
h ‖2

L2(Ω) +
m

∑
n=1

2
∆t
‖ûs,n

h (V f
h)− ûs,n−1

h (V f
h)‖

2
L2(Ω)

≤ 4
α

C2 +
4

ρ f

(
C9 +C10)T.

(5.24)

Thus stability for the displacement and velocity is established under the previous hypotheses
plus assumption (5.7).

Finally, we turn to the pressure. Again, a bound for the pressure relies on a bound for the
velocity’s time derivative. This bound is readily obtained by testing the first equation of (5.2)
with v f ,n

h −v f ,n−1
h ,

ρ
f

m

∑
n=1

1
∆t
‖v f ,n

h −v f ,n−1
h ‖2

L2(Ω)+µ
f (‖∇v f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖∇(v f ,n

h −v f ,n−1
h )‖2

L2(Ω)

)
+α

(
‖v f ,m

h ‖
2
L2(Ω)+

m

∑
n=1
‖v f ,n

h −v f ,n−1
h ‖2

L2(Ω)

)
≤ µ

f ‖∇v f ,0
h ‖

2
L2(Ω)

+α‖v f ,0
h ‖

2
L2(Ω)+

1
ρ f

m

∑
n=1

∆t
(
ρ

f ‖btn
e ‖L2(Ω)+α‖ds,n−1

h ‖L2(Ω)

)2 ≤C11,

with C11 bounded above independently of m, h, and ∆t owing to (5.24) and (5.7). From here,
stability of the pressure is a consequence of the inf-sup condition (4.5) with constant β ∗ > 0
independent of h, as in the proof of Theorem 4.8. Hence the scheme (5.2) is stable.
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Theorem 5.1. In addition to the hypotheses of Theorems 4.7 and 4.8, suppose that (5.7) holds.
Then, the statement of these theorems extend to the solution of (5.2) and moreover the auxiliary
variable ds

h satisfies (5.24).

Remark 5.2. The hypothesis (5.7) is only used once, namely for deriving a bound for the initial
term ds,0

h in a dual norm. The subsequent terms ds,n
h for n ≥ 1 are bounded in L2 as in Section

4.2. But the algorithm (5.2) is fairly crude in the sense that it is a simple time lagging. It
could be refined by iteration at each time step, in which case the initial error would not be so
influential, and we could take

ds,0
h = 0.

Here is a possible iterative algorithm at each time step n≥ 1, starting from v f ,0
h ∈V 0

h , us,0
h ∈Uh,

and ds,0
h = 0, where the superscript ` denotes the algorithmic step. Let

ds,n,0
h = ds,n−1

h .

Then for `≥ 1 until convergence is attained, find (v f ,n,`
h , p f ,n,`

h ,us,n,`
h ,ds,n,`

h ) in Vh×Qh×Uh×Uh
such that

ρ f

∆t

∫
Ω

(v f ,n,`
h −v f ,n−1

h ) ·wh +µ
f
∫

Ω

∇v f ,n,`
h : ∇wh−

∫
Ω

p f ,n,`
h ∇ ·wh−ρ

f
∫

Ω

be(tn) ·wh

+α

∫
Ω

(
v f ,n,`

h −ds,n,`−1
h

)
·wh = 0∫

Ω

qh∇ ·v f ,n,`
h = 0

(λ s +µ
s)
∫

Ω

(∇ ·us,n,`
h )(∇ · zh)+µ

s
∫

Ω

∇us,n,`
h : ∇zh−ρ

s
∫

Ω

be(tn) · zh−〈gs
N ,zh〉Γs

N

−α

∫
Ω

v f ,n,`
h · zh +

α

∆t

∫
Ω

(us,n,`
h −us,n−1

h ) · zh = 0,∫
Ω

ds,n,`
h · zh =

1
∆t

∫
Ω

(us,n,`
h −us,n−1

h ) · zh,

(5.25)

for all (wh,qh,zh) ∈Vh×Qh×Uh.

6. NUMERICAL EXPERIMENTS

In this section, we present some numerical results obtained with the monolithic algorithm
(4.4) in the case d = 2. We consider the backward Euler method for the discretization in time,
the classical Hood-Taylor element for the discretization of the flow equations and continuous
piecewise quadratic polynomials for the discretization of the solid displacement. The numerical
results were obtained with FreeFem++ [16]. We also implemented the decoupled algorithm
(5.2). In that case, we obtained basically the same results although the CPU time is lower (see
the remark at the end of this section).

Let Ω be the rectangle ]0,2[×]0,1[ (see Figure 1). The parameter values in the International
System are as follows: λ s = 1.65× 109 Pa, µs = 2.475× 109 Pa, ρs = 2430Kg/m3, ρ f =
867Kg/m3, µ f = 0.016Pa · s, corresponding to shale for the solid and WTI for the fluid. We
consider α = 0.9s−1 and a mesh with 4024 triangles. The final time is T = 1 and we take a
time step ∆t = 0.1.
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FIGURE 1. Geometry

6.1. Test 1. We assume homogeneous Dirichlet boundary conditions for the displacement on
the left and right sides of the rectangle:

us = 0 , on (Γ2∪Γ4)×]0,T [,

a free normal traction boundary condition on the top:((
µ

s
∇us +(λ s +µ

s)(∇ ·us)I
)
n
)
= 0 , on Γ3×]0,T [,

and a given normal traction boundary condition on the bottom:((
µ

s
∇us +(λ s +µ

s)(∇ ·us)I
)
n
)
= gs

N , on Γ1×]0,T [,

where

gs
N =

(
0

−0.5sin(t)

)
.

As external body force we consider gravity:

be =

(
0
−9.8

)
.

For the velocity, we choose no-slip boundary conditions on the top and bottom boundaries of
the domain, and a do-nothing boundary condition on the left and right sides:

v f = 0 , on (Γ1∪Γ3)×]0,T [,

(−p f I+∇v f )n = 0 , on (Γ2∪Γ4)×]0,T [.

Initial conditions are us(0) = 0 and v f (0) = 0 in Ω.
In Figure 2 we show the displacements at time steps t = 0.1, t = 0.5 and t = 1. Solid velocities

at the first time step are plotted in Figure 3. Finally, fluid velocities and pressure are plotted in
Figures 4 and 5, respectively.
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FIGURE 2. Test 1: Displacement at times t = 0.1, t = 0.5 and t = 1.

FIGURE 3. Test 1: Solid velocity at time t = 0.1

6.2. Test 2: In this test, the only difference are the boundary conditions for the flow. For the
velocity, we choose no-slip boundary conditions on the left and right boundaries of the domain,
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FIGURE 4. Test 1: Fluid velocity at times t = 0.1, t = 0.5 and t = 1.

and a do-nothing boundary condition on the top and bottom sides:

v f = 0 , on (Γ2∪Γ4)×]0,T [,

(−p f I+∇v f )n = 0 , on (Γ1∪Γ3)×]0,T [.
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FIGURE 5. Test 1: Fluid pressure at times t = 0.1, t = 0.5 and t = 1.

In Figure 6 we show the displacements at time steps t = 0.1, t = 0.5, and t = 1. Solid
velocities at the first time step are plotted in Figure 7. Finally, fluid velocities and pressure are
plotted in Figures 8 and 9, respectively.
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FIGURE 6. Test 2: Displacement at times t = 0.1, t = 0.5 and t = 1.

FIGURE 7. Test 2: Solid velocity at time t = 0.1

In both tests, we can observe that solid displacements are very small and practically identical,
and solid velocities are negligible after time 0.2. We also observe that solid velocities are much
smaller than fluid velocities.
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FIGURE 8. Test 2: Fluid velocity at times t = 0.1, t = 0.5 and t = 1.

Remark 6.1. In Figure 10, we display the average CPU time (in seconds) for the monolithic
algorithm (4.4) and the decoupled algorithm (5.2) for different meshes. There, nt denotes the
number of triangles in the mesh. We used MUMPS to solve the linear systems in FreeFem++,
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FIGURE 9. Test 2: Fluid pressure at times t = 0.1, t = 0.5 and t = 1.

and each algorithm is run for 10 time steps. We can observe that the decoupled algorithm always
performs better than the monolithic algorithm. The differences in CPU time are smaller for
coarser meshes; for the largest mesh we tested, with 710788 triangles, we save approximately
13s per time step, which amounts to a 25,26% of time saving. These results were obtained with
a MacBook Pro M2 with 8 kernels.
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FIGURE 10. CPU time (in seconds) for the monolithic and decoupled algorithms.
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