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1. INTRODUCTION

In the paper, an optimization problem is considered for the differential equation with delays
in the phase coordinates and controls

ẋ(t) = (ṗ(t), q̇(t))T = f (t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ)), (1.1)

x(t) ∈ Rn, t ∈ [t0, t1]
with the mixed initial condition{

x(t) = (p(t),q(t))T = (ϕ(t),g(t))T , t < t0,
x(t0) = (p(t0),q(t0))T = (p0,g(t0))T ,

(1.2)

where T is the sign transposition.
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Condition (1.2) is called the mixed initial condition because it consists of two parts: the
first part is p(t) = ϕ(t), t < t0, p(t0) = p0, the discontinuous part, since in general p(t0) 6= p0;
discontinuity at the initial moment may be related to the instant change in a dynamic process,
for example changes of investment and environment etc; the second part is q(t) = g(t), t ≤ t0,
the continuous part, since always q(t0) = g(t0).

In this paper, for the optimization problem containing equation (1.1) and initial condition
(1.2), and general boundary conditions

zi(τ,σ ,θ , p0,x(t1)) = 0, i = 1, l

and functional
z0(τ,σ ,θ , p0,x(t1))→ min

the necessary optimality conditions are proved: for delays τ,σ and θ ; for the initial vector p0;
for the initial functions ϕ(t) and g(t); for the control u(t).

Delay optimal control problems with the mixed initial condition, without optimization of
delay parameters were considered in [1, 2]. The origin of the development of the optimal
control theory with delay goes back to [3]. Many works have been devoted to the investigation
of optimization problems with delay; see, e.g., [4]-[22] and the references therein.

The paper is organized as follows. In Section 2, the main theorem and its corollary are
formulated. The main theorem is proved in Section 3 by the scheme given in [21, 22].

2. STATEMENT OF THE PROBLEM AND FORMULATION OF MAIN RESULTS

Let Rn be the n-dimensional vector space of points x = (x1, . . . ,xn)T . Let τ2 > τ1 > 0, σ2 >
σ1 > 0, θ2 > θ1 > 0 be given numbers and let I = [t0, t1], with t0 + τ2 < t1; I1 = [τ̂, t0] and
I2 = [t0−θ2, t1], where τ̂ = t0−max{τ2,σ2}. Suppose that P⊂Rk,Q⊂Rm,V ⊂Rr are convex
and open sets with k+m = n,x = (p,q)T ∈ O = (P,Q)T .

Furthermore, let the n-dimensional function f (t,x, p,q,u,v) be continuous on I×O×P×
Q×V 2, and continuously differentiable with respect to x, p, q, u and v; there exists a number
L > 0 such that, for all (t,x, p,q.u,v) ∈ I×P×Q×V 2,

| f (t,x, p,q,u,v)|+ | fx(·)|+ | fp(·)|+ | fq(·)|+ | fu(·)|+ | fv(·)| ≤ L.

Denote by C1
ϕ(I1,Rk) the space of continuous differentiable functions ϕ : I1 → Rk. Let us

introduce the sets

Φ = {ϕ ∈C1
ϕ(I1,Rk) : ϕ(t) ∈ K, t ∈ I1}, G = {g ∈C1

g(I1,Rm) : g(t) ∈M, t ∈ I1},

Ω = {C1
u(I2,Rr) : u(t) ∈U, t ∈ I2},

where K ⊂ P, M ⊂ Q and U ⊂V are convex and compact sets. To any element

w = (τ,σ ,θ , p0,ϕ,g,u) ∈W = (τ1,τ2)× (σ1,σ2)× (θ1,θ2)×P0

×Φ×G×Ω,

where P0 ⊂ P is a convex and compact set, we assign the nonlinear control differential equation
with delays in the phase coordinates and controls

ẋ(t) = f (t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ)), t ∈ I (2.1)
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with the mixed initial condition{
x(t) = (p(t),q(t))T = (ϕ(t),g(t))T , t ∈ [τ̂, t0),
x(t0) = (p0,g(t0))T .

(2.2)

Definition 2.1. Let w = (τ,σ ,θ , p0,ϕ,g,u) ∈W. A function x(t) = x(t;w) ∈ O, t ∈ [τ̂, t1] is
called a solution to equation (2.1) with initial condition (2.2) or a solution corresponding to
the element w if it satisfies condition (2.1) and is absolutely continuous on the interval I and
satisfies equation (2.1) almost everywhere on I.

It can be proved that for every element w ∈W there exits unique solution x(t;w) defined on
interval I and it is continuous with respect to w; see [22].

Let the scalar-valued functions zi(τ,σ ,θ , p,x), i = 0, l, be continuously differentiable on
(τ1,τ2)× (σ1,σ2)× (θ1,θ2)×P×O.

Definition 2.2. An element w = (τ,σ ,θ , p0,ϕ,g,u) ∈W is said to be admissible if the corre-
sponding solution x(t) = x(t;w) satisfies the boundary conditions

zi(τ,σ ,θ , p0,x(t1)) = 0, i = 1, l. (2.3)

Denote by W0 the set of admissible elements.

Definition 2.3. An element w0 = (τ0,σ0,θ0, p00,ϕ0,g0,u0) ∈W0 is said to be optimal if for an
arbitrary element w ∈W0 the inequality

z0(τ0,σ0,θ0, p00,x0(t1))≤ z0(τ,σ ,θ , p0,x(t1)) (2.4)

holds, where x0(t) = x(t;w0), x(t) = x(t;w).

(2.1)-(2.4) is called the optimization problem of the delays with the mixed initial condition.

Theorem 2.1. Let w0 be an optimal element and x0(t) = (p0(t),q0(t))T be the correspond-
ing solution. There exist a vector π = (π0, ...,πl) 6= 0, with π0 ≤ 0, and a solution ψ(t) =
(ψ1(t), ...,ψn(t)) of the equation

ψ̇(t) =−ψ(t) fx[t]−ψ(t + τ0)
(

fp[t + τ0],Θn×m

)
−ψ(t +σ0)

(
Θn×k, fq[t +σ0]

)
(2.5)

with the initial condition
ψ(t1) = πZ0x, ψ(t) = 0, t > t1 (2.6)

where Θn×m is the n×m zero matrix and

Z = (z0, ...,zl)T ,Z0x =
∂Z(τ0,σ0,θ0, p00,x0(t1))

∂x
,

fp[t] = fp(t,x0(t), p0(t− τ0),q0(t−σ0),u0(t),u0(t−θ0)),

such that the following conditions hold:
1) the condition for the delay τ0 πZ0τ = ψ(t0 + τ0) f1 +

∫ t1
t0 ψ(t) fp[t]ṗ0(t− τ0)dt, where

f1 = f (t0 + τ0,x0(t0 + τ0), p00,q0(t0 + τ0−σ0),u0(t0 + τ0),u0(t0 + τ0−θ0))

− f (t0 + τ0,x0(t0 + τ0),ϕ0(t0),q0(t0 + τ0−σ0),u0(t0 + τ0),u0(t0 + τ0−θ0));

2) the condition for the delay σ0 πZ0σ =
∫ t1

t0 ψ(t) fq[t]q̇0(t−σ0)dt;
3) the condition for the delay θ0 πZ0θ =

∫ t1
t0 ψ(t) fv[t]u̇0(t−θ0)dt;
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4) the condition for the vector p00,(
πZ0p +(ψ1(t0), ...,ψk(t0))

)
p00 = max

p0∈P0

(
πZ0p +(ψ1(t0), ...,ψk(t0))

)
p0;

5) the condition for the initial function ϕ0(t),∫ t0

t0−τ0

ψ(t + τ0) fp[t + τ0]ϕ0(t)dt = max
ϕ∈Φ

∫ t0

t0−τ0

ψ(t + τ0) fp[t + τ0]ϕ(t)dt;

6) the condition for the initial function g0(t),

(ψk+1(t0), ...,ψn(t0))g0(t0)+
∫ t0

t0−σ0

ψ(t +σ0) fq[t +σ0]g0(t)dt

= max
g∈G

[
(ψk+1(t0), ...,ψn(t0))g(t0)+

∫ t0

t0−σ0

ψ(t +σ0) fq[t +σ0]g(t)dt
]
;

7) the condition for the control function u0(t),∫ t1

t0
ψ(t)

[
fu[t]u0(t)+ fv[t]u0(t−θ0)

]
dt = max

u∈Ω

∫ t1

t0
ψ(t)

[
fu[t]u(t)

+ fv[t]u(t−θ0)
]
dt.

Theorem 2.1 on the bases of the variation formula of solution [23] will be proved by the
scheme given in [21, 22].

Now we consider the optimization problem with the integral functional

ẋ(t) = f (t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ)), t ∈ I,

x(t) = (ϕ(t),g(t))T , t ∈ [τ̂, t0),x(t0) = (p0,g(t0))T , x(t1) = x1,∫ t1

t0
f 0(t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ))dt→min .

Here f 0(t,x, p,q,u,v) is a scalar-valued function continuous on I×O×P×Q×V 2, and con-
tinuously differentiable with respect to x, p, q, u and v; ϕ(t) ∈Φ and g(t) ∈ G are fixed initial
functions; p0 ∈ P, and x1 ∈ O are fixed points.

Evidently, the above considered problem is equivalent to the following problem

ẋ0(t) = f 0(t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ)),

ẋ(t) = f (t,x(t), p(t− τ),q(t−σ),u(t),u(t−θ)),

x0(t0) = 0,x(t) = (ϕ(t),g(t))T , t ∈ [τ̂, t0),x(t0) = (p0,g(t0))T , x(t1) = x1,

x0(t1)→ min,
which is a particular case of the problem (2.1)-(2.4). Therefore, Theorem 2.2 formulated below
is a simple corollary of Theorem 2.1. Let us introduce the function f̂ = ( f0, f )T .

Theorem 2.2. Let (τ0,σ0,θ0,u0) be an optimal element and x0(t) = (p0(t),q0(t))T be the
corresponding solution. There exists a nontrivial solution ψ̂(t) = (ψ0(t),ψ1(t), ... ,ψn(t)) =
(ψ0(t),ψ(t)), t ∈ I with ψ0(t)≡ const ≤ 0, of the equation

ψ̇(t) =−ψ̂(t) f̂x[t]− ψ̂(t + τ0)
(

f̂p[t + τ0],Θ(n+1)×m

)
− ψ̂(t +σ0)

(
Θ(n+1)×k, f̂q[t +σ0]

)
ψ̂(t) = 0, t > t1

such that the following conditions hold:



NECESSARY OPTIMALITY CONDITIONS OF DELAY PARAMETERS 5

8) the condition for the delay τ0 ψ̂(t0 + τ0) f̂1 +
∫ t1

t0 ψ̂(t) f̂p[t]ṗ0(t− τ0)dt = 0; where

f̂1 = f̂ (t0 + τ0,x0(t0 + τ0), p00,q0(t0 + τ0−σ0),u0(t0 + τ0),u0(t0 + τ0−θ0))

− f̂ (t0 + τ0,x0(t0 + τ0),ϕ0(t0),q0(t0 + τ0−σ0),u0(t0 + τ0),u0(t0 + τ0−θ0)),

f̂p[t] = f̂p(t,x0(t), p0(t− τ0),q0(t−σ0),u0(t),u0(t−θ0));

9) the condition for the delay σ0
∫ t1

t0 ψ̂(t) f̂q[t]q̇0(t−σ0)dt = 0;
10) the condition for the delay θ0

∫ t1
t0 ψ̂(t) f̂v[t]u̇0(t−θ0)dt = 0;

11) the condition for the control function u0(t),∫ t1

t0
ψ̂(t)

[
f̂ (t)u0(t)+ f̂v(t)u0(t−θ0)

]
dt = max

u∈Ω

∫ t1

t0
ψ̂(t)

[
f̂u[t]u(t)

+ f̂v(t)v(t−θ0)
]
dt.

3. PROOF OF THEOREM 2.1

On the convex set Π = R+×W, where R+ = [0,∞), let us define the mapping

Q : Π→ R1+l (3.1)

by the formula

Q(ς) = (Q0(ς), ...,Ql(ς))T = Z(τ,σ ,θ , p0,x(t1;w))+(ξ ,0...,0)T ,ς = (ξ ,w) ∈Π.

It is clear that
Q0(ς0)≤ Q0(ς),Qi(ς) = 0, i = 1, l,∀ς ∈ R+×W0 ⊂Π,

where ς0 = (0,w0).
Thus, the point ς0 = (0,w0) ∈Π is a critical (see [21, 22]) since Q(ς0) ∈ ∂Q(Π). Moreover,

mapping (3.1) is continuous (see [22]).
There exist numbers ε0 > 0 and α > 0 such that, for an arbitrary ε ∈ (0,ε0) and

δς = (δξ ,δw) ∈Ψς0 := [0,α)×Ψw0 ⊂Π− ς0 = {ς − ς0 : ∀ς ∈Π},
where

δw = (δτ,δσ ,δθ ,δ p0,δϕ,δg,δu),
Ψw0 = (−α,α)× (−α,α)× (−α,α)× [P0− p0]

×[Φ−ϕ0]× [G−g0]× [Ω−u0],

ς0 + εδς ∈Π.

On the basis of the variation formula of solutions [23], we have

∆x(t1;εδw) := x(t1;w0 + εδw)− x0(t1) = εδx(t1;δw)+o(εδw),

∀(ε,δw) ∈ (0,ε0)×Ψw0 ,

where
δx(t1;δ µ) = Y (t0; t1)

(
(δ p0,Θm×1)

T +(Θk×1,δg(t0))T
)

−
{

Y (t0 + τ0; t1) f1 +
∫ t1

t0
Y (s; t1) fp[s]ṗ0(s− τ0)ds

}
δτ

−
{∫ t1

t0
Y (s; t1) fq[s]q̇0(s−σ0)ds

}
δσ +

∫ t0

t0−τ0

Y (s+ τ0; t1) fp[(s+ τ0]δϕ(s)ds
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+
∫ t00

t00−σ0

Y (s+σ0; t) fq[s+σ0]δg(s)ds−
{∫ t

t00

Y (s; t) fv[s]u̇0(s−θ0)ds
}

δθ

+
∫ t1

t00

Y (s; t1)
[

fu[s]δu(s)+ fv[s]δu(s−θ0)
]
ds; (3.2)

and

lim
ε→0

o(εδw)
ε

= 0 uniformly for δw ∈Ψw0;

Y (t; t1) is the n× n− matrix function satisfying the linear differential equation with advanced
argument

d
dt

Y (t; t1) =−Y (t; t1) fx[t]−Y (t + τ0; t1)
(

fp[t + τ0],Θn×m

)
−Y (t +σ0; t1)

(
Θn×k, fq[t +σ0]

)
and the condition

Y (t; t1) =

{
E f or t = t1,
Θn×n f or t > t1,

where E is the identity matrix.
Now we calculate a differential of the mapping (3.1) at the point ς0. Note that

Q(ς0 + εδς)−Q(ς0) = Z(τ0 + εδτ,σ0 + εδσ ,θ0 + εδθ , p00 + εδ p0,x(t1;w0 + εδw))

−Z(τ0,σ0,θ0, p00,x0(t1))+ ε(δξ ,0...,0)T , ε ∈ (0,ε0),δw ∈Ψw0.

We introduce the notation

Z[ε;s] = Z(τ0 + εsδτ,σ0 + εsδσ ,θ0 + εsδθ , p00 + εsδ p0,x0(t1)+ s∆x(t1;εδw))

Let us transform the difference

Z(τ0 + εδτ,σ0 + εδσ ,θ0 + εδθ , p00 + εδ p0,x(t1;w0 + εδw))

−Z(τ0,σ0,θ0, p00,x0(t1)) =
∫ 1

0

d
ds

Z[ε;s]ds

=
∫ 1

0

[
ε

(
Zτ [ε;s]δτ +Zσ [ε;s]δσ +Zθ [ε;s]δθ +Zp[ε;s]δ p0

)
+Zx[ε;s]∆x(t1;εδw)

]
ds

=
∫ 1

0

[
ε

(
Zτ [ε;s]δτ +Zσ [ε;s]δσ +Zθ [ε;s]δθ +Zp[ε;s]δ p0 +Zx[ε;s]δx(t1;εδw)

)
+Zx[ε;s]o(εδw)

]
ds = ε

[
Z0τδτ +Z0σ δσ +Z0θ δθ +Z0pδ p0 +Z0xδx(t1;δw)

]
+ γ(εδw),

where

γ(εδw) = ε

∫ 1

0

{
[Zτ [ε;s]−Z0τ ]δτ +[Zσ [ε;s]−Z0σ ]δσ +[Zθ [ε;s]−Z0θ ]δθ

+[Zp[ε;s]−Z0p]δ p0 +[Zx[ε;s]−Z0x]δx(t1;δw)+Zx[ε;s]
o(εδw)

ε

}
ds.

It is easy to see that

lim
ε→0

[Zτ [ε;s]−Z0τ ] = 0, lim
ε→0

[Zσ [ε;s]−Z0σ ] = 0, lim
ε→0

[Zθ [ε;s]−Z0θ ] = 0,
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lim
ε→0

[Zp[ε;s]−Z0p] = 0, lim
ε→0

[Zx[ε;s]−Z0x] = 0.

Therefore, γ(εδς) = o(εδw) and then Q(ς0 + εδς)−Q(ς0) = εdQς0(δς) + o(εδς), where
o(εδv) := o(εδw) and differential dQς0(δς) of the mapping (3.1) has the form

dQς0(δς) = Z0τδτ +Z0σ δσ +Z0θ δθ +Z0pδ p0 +Z0xδx(t1;δw)+(δξ ,0, ...,0)T .

From relation (3.2), we have

dQv0(δv) =
[
Z0τ −Z0xY (t0 + τ0; t1) f1−

∫ t1

t0
Z0xY (t; t1) fp[t]ṗ0(t− τ0)dt

]
δτ

∫ t0

t0−τ0

Z0xY (t + τ0; t1) fp[t + τ0]δϕ(t)dt +
[
Z0σ −

∫ t1

t0
Z0xY (t; t1) fq[t]q̇0(t−σ0)dt

]
δσ

+Z0pδ p0 +Z0xY (t0; t1)(δ p0,Θm×1)
T +

[
Z0xY (t0; t1)(Θk×1,δg(t0))T

+
∫ t0

t0−σ0

Z0xY (t +σ0; t1) fq[t +σ0]δg(t)dt +
[
Z0θ −

∫ t1

t0
Z0xY (t; t1) fv[t]u̇0(t−θ0)dt

]
δθ

+
∫ t1

t0
Z0xY (t; t1)

{
fu[t]δu(t)+ fv[t]δu(t−θ0)

}
dt +(δξ ,0, ...,0)T . (3.3)

From the necessary condition of criticality [21, 22] it follows that there exists a vector π =
(π0, ...,πl) 6= 0 such that

πdQς0(δς)≤ 0,∀ δv ∈ R+×R×R×R× [P0− p00]× [Φ−ϕ0] (3.4)

×[G−g0]× [Ω−u0]

Introduce the function

ψ(t) = πZ0xY (t; t1) (3.5)
as is easily seen, it satisfies equation (2.5) and condition (2.6). Taking into account (2.6) and
(3.5) from inequality (3.4), we obtain[

πZ0τ −ψ(t0 + τ0) f1−
∫ t1

t0
ψ(t) fp[t]ṗ0(t− τ0)dt

]
δτ∫ t0

t0−τ0

ψ(t + τ0) fp[t + τ0]δϕ(t)dt +
[
πZ0σ −

∫ t1

t0
ψ(t) fq[t]q̇0(t−σ0)dt

]
δσ

+
[
πZ0p +(ψ1(t0), ...,ψk(t0))

]
δ p0 +

[
(ψk+1(t0), ...,ψn(t0))δg(t0)

+
∫ t0

t0−σ0

ψ(t +σ0) fq[t +σ0]δg(t)dt
]
+
[
πZ0θ −

∫ t1

t0
ψ(t) fv[t]u̇0(t−θ0)dt

]
δθ

+
∫ t1

t0
ψ(t)

{
fu[t]δu(t)+ fv[t]δu(t−θ0)

}
dt +(δξ ,0, ...,0)T ≤ 0, (3.6)

∀δξ ∈ R+, ∀δτ ∈ R, ∀δσ ∈ R, ∀δθ ∈ R, δ p0 ∈ P0− p00, δϕ ∈Φ−ϕ0,
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δg ∈ G−g0, δu ∈Ω−u0.

Let δτ = δσ = δθ = 0,δ p0 = 0,δϕ = 0,δg= 0, and δu= 0 in (3.6). Then π0δξ ≤ 0, δξ ∈R+.
This implies π0 ≤ 0. Letting δξ = δσ = δθ = 0,δ p0 = 0,δϕ = 0,δg = 0, and δu = 0 in (3.6),
we have [

πZ0τ −ψ(t0 + τ0) f1−
∫ t1

t0
ψ(t) fp[t]ṗ0(t− τ0)dt

]
δτ ≤ 0.

Taking into account that δτ ∈R, we obtain condition 1). Let δξ = δτ = δθ = 0,δ p0 = 0,δϕ =
0,δg = 0, and δu = 0 in (3.6). Then we have[

πZ0σ −
∫ t1

t0
ψ(t) fq[t]q̇0(t−σ0)dt

]
δσ ≤ 0.

Taking into account that δσ ∈R, we obtain the condition 2). Letting δξ = δτ = δσ = 0,δ p0 =
0,δϕ = 0,δg = 0, and δu = 0 in (3.6), we have[

πZ0θ −
∫ t1

t0
ψ(t) fv[t]u̇0(t−θ0)dt

]
δθ ≤ 0.

Taking into account that δθ ∈ R, we obtain condition 3). Let δξ = δτ = δσ = δθ = 0,δϕ =
0,δg = 0, and δu = 0 in (3.6). It follows that[

πZ0p +(ψ1(t0), ...,ψk(t0))
]
δ p0 ≤ 0.

Taking into account that δ p0 ∈ P0− p00 = {p− p00 : p ∈ P0}, we obtain condition 4). Let
δξ = δτ = δσ = δθ = 0,δ p0 = 0,δg = 0, and δu = 0 in (3.6). It follows that∫ t0

t0−τ0

ψ(t + τ0) fp[t + τ0]δϕ(t)dt ≤ 0.

Taking into account that δϕ ∈ Φ−ϕ0, we obtain condition 5). Let δξ = δτ = δσ = δθ =
0,δ p0 = 0,δϕ = 0, and δu = 0 in (3.6). It follows that[

(ψk+1(t0), ...,ψn(t0))δg(t0)+
∫ t0

t0−σ0

ψ(t +σ0) fq[t +σ0]δg(t)dt
]
≤ 0.

Taking into account that δg ∈ G− g0, we obtain condition 6). Let δξ = δτ = δσ = δθ =
0,δ p0 = 0,δϕ = 0, and δϕ = 0 in (3.6). It follows that∫ t1

t0
ψ(t)

{
fu[t]δu(t)+ fv[t]δu(t−θ0)

}
dt ≤ 0.

Finally, taking into account that δu ∈Ω−u0, we obtain condition 7).

The present work is dedicated to the bright memory of the outstanding contemporary scientist
Professor Rafael Gabasov. He made a great contribution to the development of the theory of
optimal control and in the preparation of young scientific personnel. He was a very attentive
and charming person.
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