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Abstract. In this paper, the existence of distributional solutions of an elliptic system (loosely related to mean field
games systems) is proved. The solutions belong to the Sobolev space W 1,q

0 (Ω); in some cases q = 2, in some cases
q < 2 and even q = 1.
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1. INTRODUCTION

In this paper is studied the existence of distributional solutions (u,ψ) of the boundary value
problem 

0≤ u, in Ω,
u = 0 = ψ, on ∂Ω,
− div(M(x)∇u)+u=−A div(uM(x)∇ψ)+ f (x), in Ω,

ψ ∈W 1,2
0 (Ω) :− div(M(x)∇ψ)+ψ = B M(x)∇ψ∇ψ +uλ−1, in Ω.

(1)

where Ω is a bounded, open subset of RN , with N > 2, M(x) is a measurable, symmetric matrix
such that, for α, β ∈ R+,

α|ξ |2 ≤M(x)ξ ξ , |M(x)| ≤ β , (2)

0≤ f (x) ∈ L1(Ω), (3)

1 < λ <
N

N−2
, (4)

0 < A≤ B. (5)
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The above boundary value problem (1) is an elliptic system loosely related to mean field games
systems, where, roughly speaking, A, B < 0. We refer to the papers [8], [7], for existence and
regularity results for a mean field games type system, where a duality approach is used.

Even if we do not assume A, B < 0, nevertheless it will still be possible to use a duality
approach in the study of (1), in spite of the nonlinearity of our problem. On the other hand, in
our framework, we cannot take advantage to the presence of the positive term M(x)∇ψ∇ψ on
the left hand side of the second equation, as in [8], [7], since, in (1), it is on the right hand side.
For the basic theory of Mean Field Games see [9].

We point out that we prove that the solution ψ of the second equation belongs to W 1,2
0 (Ω)∩

L∞(Ω); whereas the solution u is less regular: u does not belong to W 1,2
0 (Ω), but only to W 1,1

0 (Ω)

(Theorem 3.2) or W
1, N

N−1
0 (Ω) (Theorem 3.1).

However, in the first case, u ∈W 1,1
0 (Ω) and not only in BV (Ω) (as usual in elliptic problems

with L1 estimates on the gradient of the solution).

2. APPROXIMATION OF SYSTEM (1) AND PRELIMINARY RESULTS

We begin this section by proving that, thanks to Schauder’s theorem, there exist solutions for
a sequence of systems which approximate system (1).

Let k ∈ R+, n ∈ N, s ∈ R and let f (x)≥ 0 be a function in L1(Ω); define

Tk(s) = max(−k,min(s,k)) , fn(x) =
f (x)

1+ 1
n f (x)

.

Note that 0≤ fn ≤ f . We consider the following system

un ∈W 1,2
0 (Ω) : − div(M(x)∇un)+un

=−A div
(

un

1+ 1
n |un|

M(x)∇ψn

1+ 1
n |∇ψn|2

)
+ fn(x)

ψn ∈W 1,2
0 (Ω) : − div(M(x)∇ψn)+ψn = B

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

+Tn4[|un|λ−1]

The existence of (un,ψn) can be proved (thanks to the Schauder theorem) as in [8], [7]. The
positivity un(x) ≥ 0 follows by the results of [1] (see also [2]), so that we rewrite the above
system as

un ∈W 1,2
0 (Ω) : − div(M(x)∇un)+un

=−A div
(

un

1+ 1
nun

M(x)∇ψn

1+ 1
n |∇ψn|2

)
+ fn(x)

ψn ∈W 1,2
0 (Ω) : − div(M(x)∇ψn)+ψn = B

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

+Tn4 [uλ−1
n ].

(6)

Since in the first equation the right hand side terms are controlled by n2 and n, we can say that
‖un‖L∞(Ω)

≤ C̄ n2, ‖ψn‖L∞(Ω)
≤ C̄ n3 (see [11]). Observe that uλ−1

n ≤ (C̄ n2)λ−1 and (conse-

quence of (4)) that 2λ − 2 ≤ 2 N
N−2 − 2 = 4

N−2 ≤ 4. Thus for n large enough, Tn4[(un)
λ−1] =
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(un)
λ−1 and the solutions of the above system are solutions of the following Dirichlet problem

0≤ un ∈W 1,2
0 (Ω)∩L∞(Ω), ψn ∈W 1,2

0 (Ω)∩L∞(Ω) :

− div(M(x)∇un)+un =−A div
(

un

1+ 1
nun

M(x)∇ψn

1+ 1
n |∇ψn|2

)
+ fn(x).

− div(M(x)∇ψn)+ψn = B
M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

+(un)
λ−1.

(7)

Moreover, a consequence of a result proved in [1] (and [2]) is that∫
Ω

un ≤
∫

Ω

fn ≤
∫

Ω

f (8)

and a consequence of a result proved in [6] is that

‖ψn‖W 1,2
0 (Ω)

+‖ψn‖L∞(Ω)
≤C0 +C0‖(un)

λ−1‖
Lp(Ω)

, p >
N
2
. (9)

REMARK 2.1. The use of the truncation Tn4 (instead of Tn) in (6) simplifies the calculations (see
[10]).

3. EXISTENCE RESULTS

Even if our problem is nonlinear, in the proof of our theorems, we use a duality approach in
the study of the existence of solutions of (1).

THEOREM 3.1. Under the assumptions (2), (4),

B > A (10)

and ∫
Ω

f log(1+ f ) ∈ L1(Ω), (11)

there exist a weak solution (u,ψ) of the system (1), that is a solution of

0≤ u ∈ W
1, N

N−1
0 (Ω), ψ ∈W 1,2

0 (Ω)∩L∞(Ω) :
∀ w ∈ Lip(Ω), ϕ ∈W 1,2

0 (Ω)∩L∞(Ω),∫
Ω

M(x)∇u∇w+
∫

Ω

uw = A
∫

Ω

u[M(x)∇ψ∇w]+
∫

Ω

f (x)w(x),∫
Ω

M(x)∇ψ∇ϕ +
∫

Ω

ψϕ = B
∫

Ω

[M(x)∇ψ∇ψ]ϕ +
∫

Ω

uλ−1
ϕ.

(12)

PROOF. Note that the assumption (11) is slightly stronger than (3).
We use ψn as test function in the weak formulation of the first equation of (7) and use un as

test function in the weak formulation of the second equation and we deduce that

B
∫

Ω

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

un +
∫

Ω

uλ
n = A

∫
Ω

un

1+ 1
nun

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

+
∫

Ω

fn ψn (13)

Now the equality (13) and B > A imply

(B−A)
∫

Ω

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

un +
∫

Ω

uλ
n ≤ ‖ f‖

L1(Ω)
‖ψn‖L∞(Ω)
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and, thanks to (9), if p > N
2 ,

(B−A)
∫

Ω

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

un +
∫

Ω

uλ
n ≤ ‖ f‖

L1(Ω)

[
C0 +C0‖(un)

λ−1‖
Lp(Ω)

]
.

Since λ < N
N−2 , it is true that N

2 < λ ′; then we take p ∈ (N
2 ,

λ

λ−1) and we deduce that

the sequence {un} is bounded in Lλ (Ω) (14)

and ∫
Ω

M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

un ≤
C f

(B−A)
‖ f‖

L1(Ω)
=C1. (15)

Thus (up to a subsequence) there exists u ∈ Lλ (Ω) (recall that λ > 1) such that

un converges weakly in Lλ (Ω) to u. (16)

Since the sequence {un} is bounded in Lλ (Ω), then

the sequence {(un)
λ−1} is bounded in L

λ

λ−1 (Ω)⊂ Lp(Ω), p > N
2 .

Thus (9) becomes
‖ψn‖W 1,2

0 (Ω)
+‖ψn‖L∞(Ω)

≤C f . (17)

At this point we use that in [6] is also proved that (up to a subsequence)
there existsψ ∈W 1,2

0 (Ω)∩L∞(Ω)such that‖ψn−ψ‖
W 1,2

0 (Ω)
→ 0,

ψn(x) converges a.e. to ψ(x),
∇ψn(x) converges a.e. to ∇ψ(x).

(18)

With respect to the sequence {un}, in the first equation of (7) we take
un

1+un
as test function,

we use Young inequality and we have (recall (8))

α

∫
Ω

|∇un|2

(1+un)2 ≤
α

2

∫
Ω

|∇un|2

(1+un)2 +
1

2α

∫
Ω

|∇ψn|2 +
∫

Ω

f ,

that is, by (17),
α

2

∫
Ω

|∇un|2

(1+un)2 ≤
1

2α

∫
Ω

|∇ψn|2 +
∫

Ω

f ≤ C̃ f +
∫

Ω

f .

In [2], is proved that the above estimate allow us to say that (up to a subsequence)

un(x)→ u(x) a.e. (19)

As a consequence of this a.e. convergence we can say that

the sequence {un} converges strongly to u in Lσ (Ω), 1≤ σ < λ , (20)

the sequence {(un)
λ−1} converges weakly to uλ−1 in L

λ

λ−1 (Ω). (21)

In the next step, we will prove that it is possible to pass to the limit in un
1+ 1

n un

M(x)∇ψn

1+ 1
n |∇ψn|2

.
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First of all, we prove the equi-integrability of the sequence
{

un
1+ 1

n un

M(x)∇ψn

1+ 1
n |∇ψn|2

}
. Let E be a

measurable subset of Ω and t ∈ R+. Then∫
E

un

1+ 1
nun

|M(x)∇ψn|
1+ 1

n |∇ψn|2
≤ β

∫
E

un
|∇ψn|

1+ 1
n |∇ψn|2

≤ tβ
∫

E∩{|∇ψn|≤t}
un +

β

t α

∫
E∩{t<|∇ψn|}

un
M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

≤ tβ
∫

E
un +

C2β

t α
,

which implies (thanks to the strong L1 convergence of un)

lim
|E|→0

∫
E

un

1+ 1
nun

|M(x)∇ψn|
1+ 1

n |∇ψn|2
= 0, uniformly w.r.t. n,

where we denote |E| the Lebesgue mesure of a measurable subset E. In addition, in (18) and
(19) are proved almost everywhere convergences. Hence, by Vitali convergence theorem,

the sequence
{ un

1+ 1
nun

M(x)∇ψn

1+ 1
n |∇ψn|2

}
strongly converges in L1. (22)

The last step concerns an estimate of the sequence {un} in a Sobolev space.
We use log(1+un) as test function in the first equation of (7) and we have

α

∫
Ω

|∇un|2

1+un
≤ A

∫
Ω

un

(1+ 1
nun)
√

1+un

|M(x)∇ψn|
1+ 1

n |∇ψn|2
|∇un|√
1+un

+
∫

Ω

fn(x) log(1+un).

Then the Young inequality and st ≤ es−1+ t log(1+ t), s, t ∈ R+, yield

α

2

∫
Ω

|∇un|2

1+un
≤C3

∫
Ω

u2
n

1+un

M(x)∇ψn∇ψn

(1+ 1
n |∇ψn|2)2

+
∫

Ω

f (x) log(1+un)

≤C3

∫
Ω

un
M(x)∇ψn∇ψn

1+ 1
n |∇ψn|2

+
∫

Ω

f log(1+ f )+
∫

Ω

un.

Here we recall (15) and we have

α

2

∫
Ω

|∇un|2

1+un
≤C4 +

∫
Ω

f log(1+ f )+
∫

Ω

f .

Here we follow [4]. Recall that 1∗ = N
N−1 and that (1∗)∗ = N

N−2 = 1∗
2−1∗ . Then we have (using

the Hölder inequality with exponents 2
1∗ and 2

2−1∗ )∫
Ω

|∇un|
N

N−1 =
∫

Ω

|∇un|1
∗

(1+un)
1∗
2

(1+un)
1∗
2

≤C5

[
1+

∫
Ω

f log(1+ f )+
∫

Ω

f
] 1∗

2
[∫

Ω

(1+un)
1∗

2−1∗

] 2−1∗
2

which implies (S is the Sobolev constant)

S

[∫
Ω

u
N

N−2
n

]N−2
N

≤
[∫

Ω

|∇un|
N

N−1

]N−1
N

≤C6

[∫
Ω

(1+un)
N

N−2

]N−2
2N

.
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Since N−2
2N < N−2

N , we deduce the boundedness of the sequence {un} in L
N

N−2 (which is stronger

than (14) because of the assumption (4)) and of {∇un} in L
N

N−1 . Thus now we have

∇un converges weakly in L
N

N−1 to ∇u. (23)

Conclusion - (18), (21), (22), (23), allow us to pass to the limit in the weak form of the first and
of the second equation of (7) and we prove the existence of a solution (u,ψ) of (1).

In the next theorem, we are in the borderline case A = B and we prove the existence of
solutions in the particular case N = 3.

We will show that the sequence {un} is bounded in W 1,1
0 (Ω). Nevertheless our proof yields

solutions u not only in BV (Ω) (as usual in elliptic problems with L1 estimates on the gradient
of the solution) but u ∈W 1,1

0 (Ω).

THEOREM 3.2. Under the assumptions B = A > 0, N = 3, (2), (3),

2≤ λ <
N

N−2
= 3, (24)

there exist a weak solution (u,ψ) of the system (1), that is

0≤ u ∈W 1,1
0 (Ω), ψ ∈W 1,2

0 (Ω)∩L∞(Ω) :
∀ w ∈ Lip(Ω), ϕ ∈W 1,2

0 (Ω)∩L∞(Ω),∫
Ω

M(x)∇u∇w+
∫

Ω

uw = A
∫

Ω

u[M(x)∇ψ∇w]+
∫

Ω

f (x)w(x),∫
Ω

M(x)∇ψ∇ϕ +
∫

Ω

ψ ϕ = B
∫

Ω

[M(x)∇ψ∇ψ]ϕ +
∫

Ω

uλ−1
ϕ.

(25)

PROOF. Even if A = B, the first part of the proof of the previous theorem still holds; in particular
(14), (18), (19), (20) and (21) remain valid.

Note that (8) implies, for k ∈ R+,

|{x : k < un(x)}| ≤
1
k

∫
Ω

f .

Now we improve the estimate on
∫

Ω

|∇un|2
(1+un)2 proved in the previous theorem.

If in the first equation of (7) we take
[ un

1+un
− k

1+ k

]+
, k ≥ 0, as test function and we use

Young inequality, we have (recall (8))

α

∫
{k<un}

|∇un|2

(1+un)2 ≤
α

2

∫
{k<un}

|∇un|2

(1+un)2 +C7

∫
{k<un}

|∇ψn|2 +
∫
{k<un}

f

and
α

2

∫
{k<un}

|∇un|2

(1+un)2 ≤C7

∫
{k<un}

|∇ψn|2 +
∫
{k<un}

f = ωn(k), k ≥ 0. (26)

The convergence (18) and f ∈ L1(Ω) imply that

for k large, ωn(k) is small, uniformly with respect to n. (27)

Moreover, if λ ≥ 2, the sequence {un} is bounded in L2(Ω) so that (up to a subsequence) there
exists u ∈ L2(Ω) such that

un converges weakly in L2(Ω) to u. (28)
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Now we observe that (using the Hölder inequality)∫
{k<un}

|∇un|=
∫
{k<un}

|∇un|
1+un

(1+un)

≤
[
C8

∫
{k<un}

|∇ψn|2 +C9

∫
{k<un}

f
] 1

2

C10.

Furthermore a result proved in [1] can be read in the first equation as∫
Ω

|∇Tk(un)|2 ≤
k2

α2

∫
Ω

A2
β

2|∇ψn|2 + k
2
α

∫
Ω

f ≤ k2 C̃ f + k
2
α

∫
Ω

f ,

so that, for every measurable subset E ⊂Ω we have (we use the Hölder inequality)∫
E
|∇un|=

∫
E
|∇Tk(un)|+

∫
{k<un}

|∇un|

≤ |E|
1
2

[
k2C f + k

2
α

∫
Ω

f
] 1

2

+[ωn(k)]
1
2 C11,

so that
lim
|E|→0

∫
E
|∇un| ≤ [ωn(k)]

1
2 C12,

that is, thanks to (27),

lim
|E|→0

∫
E
|∇un|= 0, uniformly w.r.t. n, (29)

which proves the equi-integrability of the sequence {∇un}.
This equi-integrability and the convergence (28) give (result proved in [3], see also [5]) that

u ∈W 1,1
0 (Ω) and

∇un converges weakly in L1 to ∇u. (30)
Conclusion - (18), (21), (28), and (30) allow us to pass to the limit in the weak form of the first
and of the second equation of (7) and we prove the existence of solutions of (1).
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