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Abstract. This work is devoted to the resolution of the Helmholtz equation −(µ u′)′ − ρ ω2u = f in a one-
dimensional unbounded medium. We assume the coefficients of this equation to be local perturbations of quasiperi-
odic functions, namely the traces along a particular line of higher-dimensional periodic functions. Using the defi-
nition of quasiperiodicity, the problem is lifted onto a higher-dimensional problem with periodic coefficients. The
periodicity of the augmented problem allows us to extend the ideas of the DtN-based method developed in [10, 19]
for the elliptic case. However, the associated mathematical and numerical analysis of the method are more delicate
because the augmented PDE is degenerate, in the sense that the principal part of its operator is no longer elliptic.
We also study the numerical resolution of this PDE, which relies on the resolution of Dirichlet cell problems as
well as a constrained Riccati equation.
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1. INTRODUCTION AND MOTIVATION

We consider the Helmholtz equation

− d
dx

(
µ

du
dx

)
−ρ ω

2 u = f in R, (1.1)

where the coefficients µ and ρ have positive upper and lower bounds:

∃ µ±,ρ±, ∀ x ∈ R, 0 < µ− ≤ µ(x)≤ µ+ and 0 < ρ− ≤ ρ(x)≤ ρ+. (1.2)

The source term f belongs to L2(R) and is assumed to have a compact support:

∃ a > 0, supp f ⊂ (−a,a). (1.3)
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Equation (1.1) is encountered when one is looking for time-harmonic solutions u(x)e−iωt of
the linear wave equation in heterogeneous media. For real frequencies ω , the well-posedness of
this problem is unclear. In fact, on one hand, one expects that the physical solution u, if it exists,
may not belong to H1(R) due to possible wave propagation phenomena and a lack of decay at
infinity. On the other hand, uniqueness of a solution in H1

loc(R) does not hold in general. In
this case, one needs a so-called radiation condition that imposes the behaviour of the solution
at infinity. Such a condition can be obtained in practice using the limiting absorption principle,
which consists in (i) adding some absorption – that is some imaginary part to ω: Imω > 0,
and (ii) studying the limit of the solution u ≡ u(ω) as the absorption tends to 0. The limiting
absorption principle is a classical approach to study time-harmonic wave propagation problems
in unbounded domains; see for instance [1, 9, 32]. More recently, it has been successfully
applied for locally perturbed periodic media [10, 16, 20, 25].

In this paper, we will only address the case with absorption, that is

the frequency ω satisfies Imω > 0. (1.4)

Under these assumptions, (1.1) admits a unique solution in H1(R) by Lax-Milgram’s theorem.
Moreover, it can be shown (using for instance an argument similar to the one in [7]) that this
solution satisfies a sharp exponential decay property

∃ c, α > 0, ∀ x ∈ R, |u(x)| ≤ ce−α Imω|x|. (1.5)

Exploiting (1.5), a naive numerical method for treating the unboundedness would consist in
truncating the computational domain (with homogeneous Dirichlet boundary conditions for in-
stance) at a certain distance related to Imω . However the cost and the accuracy of the method
would deteriorate when Imω tends to 0. Our objective in this paper is to develop a numeri-
cal method which is robust when Imω tends to 0, in the particular case of locally perturbed
quasiperiodic media. More precisely, we solve the problem in the bounded domain (−a,a)
(which is independent of Imω) by constructing transparent boundary conditions of Dirichlet-
to-Neumann type:

± µ
du
dx

+λ
± u = 0 on x =±a, (1.6)

where λ± are called Dirichlet-to-Neumann (DtN) coefficients. These coefficients are given by

λ
± :=∓

[
µ

du±

dx

]
(±a), (1.7)

where u± is the unique solution in H1(±a,±∞) of∣∣∣∣∣∣ −
d
dx

(
µ

du±

dx

)
−ρ ω

2 u± = 0, for ±x > a,

u±(±a) = 1.
(1.8)

Knowing λ±, one is then reduced to compute u|(−a,a) by solving the problem∣∣∣∣∣∣∣∣
− d

dx

(
µ

dui

dx

)
−ρ ω

2 ui = f , for x ∈ (−a,a),[
±µ

dui

dx
+λ

± ui
]
(±a) = 0.

(1.9)
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The well-posedness of this problem is a direct consequence of the sign property

Imλ
± < 0,

which, through a Green’s formula, results itself from the presence of dissipation (1.4) in (1.8).
Then the solution u of (1.1) is given by

∀ x ∈ R, u(x) =


ui(−a) u−(x), x <−a,

ui(x), x ∈ (−a,a),

ui(a) u+(x), x > a.

(1.10)

In general, the problem is that computing λ±, that is to say solving (1.8), is as difficult as
the original problem. However, this is no longer true when the exterior medium (i.e. outside
(−a,a)) has a certain structure:

• if the exterior medium is homogeneous (ρ and µ are constant), these coefficients can be
computed explicitly;
• if the exterior medium is periodic (ρ and µ are periodic), several methods for the com-

putation of these DtN coefficients are developed in [10, 19, 20];
• if the exterior medium is a weakly random perturbation of a periodic medium, the coef-

ficients can be approximated via an asymptotic analysis; see [11].
Our main objective in this paper is to compute the DtN coefficients for a quasiperiodic exterior
medium, in order to develop a numerical method according to (1.8), (1.9), (1.10).

The outline of the rest of the paper is as follows. In Section 2, we introduce the fundamental
notion of quasiperiodic functions (in 1D) and define what is a locally perturbed quasiperiodic
medium in the context of Problem (1.1). Sections 3 and 4 are the most important sections of
the paper. In Section 3, we link the solution of the 1D half-line problem with quasiperiodic
coefficients to the solution of a degenerate directional Helmholtz equation posed in dimension
n, with n > 1 defined as in Section 2. This is the so-called lifting approach whose principle is
presented in Section 3.1. More precisely, in Section 3.3, we characterize the solution of the 1D
quasiperiodic problem as the trace along a (broken) line of a nD problem posed in a domain
with the geometry of a half-waveguide: (0,1)n−1×R+. In between, we need to dedicate the
(rather long) Section 3.2 to fix the notations used in the rest of the paper and present some
useful preliminary material about an adapted functional framework for the rigorous setting of
our method. This concerns anisotropic Sobolev spaces with an emphasis on trace theorems and
related Green’s formula. In Section 4, we provide a method for solving the half-waveguide
problem of Section 3.3. In Section 4.1, we describe the structure of the solution with the help
of a propagation operator P and local cell problems. In Section 4.2, we show that the operator
P is characterized as a particular solution of a Riccati equation. In Section 4.3, we first build
a directional DtN operator Λ for the half-waveguide problem, from which we deduce the DtN
coefficients λ± we are looking for (cf. (1.7)). Finally, in Section 4.4, we analyze the Riccati
equation from a spectral point of view and in Section 4.5 we describe the spectrum of P . In
Section 5 devoted to numerical results, we restrict ourselves to n = 2 for the sake of simplicity.
The first two subsections are devoted to the discretization of the cell problems evoked above.
We have considered two approaches: one, natural but naive, consists in using 2D Lagrange
finite elements (Section 5.1) while the other, called the quasi-1D method, is better fitted to the
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anisotropy of the problem (Section 5.2). In Section 5.3, we explain how we can construct a
discrete propagation operator from a discrete Riccati equation that we choose to solve via a
spectral approach, while Section 5.4 simply mimics Section 4.3 at the discrete level. Section
5.5 is devoted to numerical results. In the first three subsections, we provide various validations
of our method for the half-line problem (Sections 5.5.1 and 5.5.3) and the whole line problem
(Section 5.5.2). At last, in Section 5.5.4, we address the question of the approximation of the
spectrum of the propagation operator P by the one of its discrete approximation.

Particular notation used throughout the paper. In what follows,

(1) the equality modulo 1 is denoted by

∀ y ∈ R, z = y [1] ⇐⇒ z ∈ [0,1) and y− z ∈ Z.

and for all p,q ∈ N, p < q, we set Jp,qK := { j ∈ N, p≤ j ≤ q}.
(2) We denote Cper(Rn) as the space of continuous functions F : Rn→ R that are 1–periodic

with respect to each variable, and C ∞
0 (O) as the classic space of smooth functions that

are compactly supported in O ⊂ Rn.
(3) For i ∈ J1,nK, we denote by~ei the i-th unit vector from the canonical basis of Rn. For

any element y = (y1, . . . ,yn) in Rn, we define ŷ as the vector (y1, . . . ,yn−1) ∈ Rn−1, so
that y = (ŷ,yn). For y = (y1, . . . ,yn) and z = (z1, . . . ,zn), the Euclidean inner product of
y and z is denoted y · z := y1 z1 + · · ·yn zn, and the associated norm is |y| :=√y · y.

2. QUASIPERIODICITY

2.1. Quasiperiodic functions of one real variable. In this section, we present a brief overview
of the main properties of quasiperiodic functions. We refer to [3, 5, 22] for more complete
presentations. Quasiperiodicity is defined as follows.

Definition 2.1. A continuous function f : R→ R is said to be quasiperiodic of order n > 1 if
there exist a constant real vector θθθ = (θ1, . . . ,θn), with θi > 0 for all i∈ J1,nK, and a continuous
function F : Rn→ R, 1–periodic with respect to each variable, such that

∀ x ∈ R, f (x) = F(xθθθ). (2.1)

The vector θθθ is called a cut direction, and F is a periodic extension of f .

A geometrical interpretation of this definition is to see the one-dimensional function f as the
trace of a n-dimensional function F along the line passing through (0,0) and parallel to the
vector θθθ . This is illustrated in Figure 1 for n = 2 and θθθ = (1,

√
2).

Periodic functions are obviously quasiperiodic. Other examples of quasiperiodic functions are
finite sums or products of periodic functions: if f1 and f2 are periodic, then f1 + f2 and f1 f2
can be expressed under the form (2.1). Note that f1 + f2 and f1 f2 are not periodic if f1 and f2
are continuous functions with non-commensurable periods. For instance, with f1(x) = cos2πx
and f2(x) = cos2π

√
2x, one easily checks that the sum f1 + f2, represented in Figure 1, is not

periodic since it equals 2 only when x = 0.



WAVE PROPAGATION IN ONE-DIMENSIONAL QUASIPERIODIC MEDIA 5

θθθ

0 0.4 0.8
0

0.4

0.8

0

Size of periodicity cell
−4 −2 0 2 4
−2

0

2

FIGURE 1. Function F : (y1,y2) 7→ cos2πy1 + cos2πy2 in its periodicity cell
(left) whose trace along θθθ = (1,

√
2) leads to a quasiperiodic function (right).

In Definition 2.1, it is easy to see that neither the periodic extension nor the cut direction are
uniquely defined. Given (F,θθθ), it is possible to lower the value of n, and change the function
F accordingly, so that the coefficients θ1, . . . ,θn are linearly independent over the integers (see
[22, Chapter 2]), that is

∀ k ∈ Zn, k ·θθθ = 0 ⇐⇒ k = 0. (2.2)

For n = 2 and θθθ = (θ1,θ2), the above condition amounts to saying that the ratio θ1/θ2 is
irrational. Due to this observation, vectors that satisfy (2.2) will be abusively referred to as
irrational vectors. A consequence of (2.2) is given by Kronecker’s approximation theorem.

Theorem 2.2 ([15, Theorem 444]). If θθθ is an irrational vector, then the set θθθ R+Nn is dense
in Rn.

Corollary 2.3. Let F ∈ Cper(Rn) and an irrational vector θθθ ∈ Rn. Then

sup
y∈Rn

F(y) = sup
x∈R

F(θθθ x) and inf
y∈Rn

F(y) = inf
x∈R

F(θθθ x). (2.3)

In particular, if F satisfies F(θθθ R) = 0, then F = 0.

In other words, under the linear independence assumption, F is uniquely determined by its
restriction on the line θθθ R.

For n = 2, Theorem 2.2 implies that the broken line
{
(xθ1[1],xθ2[1]), x ∈ R

}
is dense in the

unit cell (0,1)2. To illustrate this, Figure 2 represents the set
{
(xθ1[1],xθ2[1]), x ∈ (0,M)

}
in

the unit cell for different values of M, when (1) θ1/θ2 ∈ Q (see the first row), and when (2)
θ1/θ2 ∈ R \Q (see the second row for θθθ = (

√
2,1) and the third one for θθθ = (π,1)). For M

large enough, in the first case, this set is reduced to a finite union of segments, whereas in the
second case, it seems to fill the unit cell without ever passing through the same positions. It is
also interesting to see that for θθθ = (

√
2,1), the unit cell is somehow filled uniformly, contrary

to the case where θθθ = (π,1).

Remark 2.4. It is worth mentioning that Definition 2.1 extends to higher-dimensional continu-
ous functions as well. Moreover, the notion of quasiperiodicty can be defined at a discrete level,
to describe the properties of tilings that are cuts and projections of higher-dimensional periodic
tilings. These quasiperiodic tilings have been extensively studied [12, 23, 24, 27], and are used
for modelling quasicrystals [28].
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FIGURE 2. Representation of the set
{
(xθ1[1],xθ2[1]), x ∈ (0,M)

}
in (0,1)2

for different values of M, when θ1/θ2 ∈ Q (first row), and when θ1/θ2 ∈ R \Q
(second row for θθθ = (

√
2,1) and third row for θθθ = (π,1)).

2.2. Locally perturbed quasiperiodic media. A locally perturbed quasiperiodic medium is a
medium corresponding to functions µ and ρ that satisfy (1.2) and that are quasiperiodic out-
side a bounded interval, which can be supposed to be (−a,a) (see (1.3)) without any loss of
generality. More precisely,

µ(x) =

∣∣∣∣∣ µi(x) x ∈ (−a,a)
µp(xθθθ) x ∈ R\ (−a,a)

and ρ(x) =

∣∣∣∣∣ ρi(x) x ∈ (−a,a)
ρp(xθθθ) x ∈ R\ (−a,a),

where the functions µp, ρp belong to Cper(Rn) with n > 1, and θθθ ∈ Rn is an irrational vector
(see Condition (2.2)).

Remark 2.5. (a). Since θθθ is an irrational vector, Corollary 2.3 ensures that the functions µp
and ρp have the same lower and upper bounds as µ and ρ .
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(b). The present study can be extended without difficulty to the case where µ (resp. ρ)
coincides with two different quasiperiodic functions in (−∞,−a) and in (a,+∞):

for ± x > a, µ(x) = µ
±
p (xθθθ

± ) and ρ(x) = ρ
±
p (xθθθ

± ),

where µ±p , ρ±p belong to Cper(Rn±) with n± > 1, and where θθθ
± ∈ Rn± are irrational vectors.

3. THE HALF-LINE QUASIPERIODIC PROBLEMS

We now focus on the half-line quasiperiodic problems (1.8). As these problems are very similar
to each other, it is sufficient to study the half-line problem set on (a,+∞) and suppose without
loss of generality that a = 0. Let µθθθ := µp(θθθ ·) and ρθθθ := ρp(θθθ ·). Therefore, the problem we
consider in this section is the following:∣∣∣∣∣∣ −

d
dx

(
µθθθ

du+
θθθ

dx

)
−ρθθθ ω

2 u+
θθθ
= 0, in R+,

u+
θθθ
(0) = 1.

(3.1)

Remark 3.1. The function u+
θθθ

corresponds exactly to the solution u+ of (1.8) that was intro-
duced in Section 1 for very general media. The reason why this solution is relabeled u+

θθθ
is due

to the fact that, because we consider here quasiperiodic media, the coefficients µ and ρ that
appear in (1.8) have been replaced by µθθθ and ρθθθ .

3.1. Lifting in a higher-dimensional periodic problem. We wish to exhibit some structure of
the solution u+

θθθ
. As the coefficients µθθθ and ρθθθ in (3.1) are by definition traces of n–dimensional

functions along the half-line θθθ R+, it is natural to seek u+
θθθ

as the trace along the same line of a
function y ∈ Rn 7→ Ũ+

θθθ
(y), that is to say:

a.e. x ∈ R, u+
θθθ
(x) = Ũ+

θθθ
(xθθθ), (3.2)

where Ũ+
θθθ

shall be characterized as the solution of a n–dimensional PDE (in some sense, an
“augmented” problem in which y is the augmented space variable) with periodic coefficients,
as illustrated in Figure 3. This so-called lifting approach has been used in the homogenization
setting for the analysis of some correctors in presence of periodic halfspaces [13, 14] or periodic
structures separated by an interface [4], as well as for the homogenization of quasicrystals and
Penrose tilings [6, 31]. However, to our knowledge, very little seems to have been done in other
contexts (such as wave propagation), and in particular for numerical analysis and simulation
purposes.

To build a higher-dimensional PDE, one has to exploit the correspondence between the deriva-
tive of u+

θθθ
and the partial derivatives of Ũ+

θθθ
: according to the chain rule, for any smooth enough

function F : Rn→ C, one has

∀ x ∈ R,
d
dx

[F(θθθ x)] = (D
θθθ

F)(θθθ x), with D
θθθ

:= θθθ ·∇ =
n

∑
i=1

θi
∂

∂yi
. (3.3)

This leads us to introduce the n–dimensional PDE set on a half-space (see Remark 3.2)

−D
θθθ

(
µp D

θθθ
Ũ+

θθθ

)
−ρp ω

2 Ũ+
θθθ
= 0, for yn > 0, (3.4a)
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y1

y2

•

θθθ R+

θθθ

0

− d
dx

(
µθθθ

du+
θθθ

dx

)
−ρθθθ ω

2 u+
θθθ
= 0−D

θθθ

(
µp D

θθθ
Ũ+

θθθ

)
−ρp ω2 Ũ+

θθθ
= 0

u+
θθθ
(0) = 1 Ũ+

θθθ
= ϕ̃

FIGURE 3. Illustration of the lifting approach for n = 2

where we recall that the coefficients µp, ρp : Rn→ R are continuous and 1–periodic with respect
to each variable. In addition, the boundary condition in (3.1) can be lifted onto the inhomoge-
neous Dirichlet boundary condition

Ũ+
θθθ
= ϕ̃, on yn = 0, (3.4b)

where the data ϕ̃ : Rn−1 → C could be chosen continuous and must satisfy ϕ̃(0) = 1, for the
sake of consistency with the fact that u+

θθθ
(0) = 1. Furthermore, to exploit the periodicity of the

coefficients µp and ρp with respect to the transverse variables y j, j < n, we can impose the
following:

ϕ̃ is 1–periodic, (3.5)

so that it is natural to impose that

Ũ+
θθθ
(ϕ) is 1–periodic with respect to the transverse variables y j, j < n. (3.6)

In Section 3.3, we show how to reduce the above to a half-guide problem with periodic coeffi-
cients. In order to do so, we shall need some preliminary materials, which is the object of the
next section.

Remark 3.2. (a). One could have defined the augmented problem (3.4) on other half-spaces
{y ∈ Rn, yi > 0}. The choice of the half-space {y ∈ Rn, yn > 0} where yn is priviledged is
purely arbitrary.

(b). At first glance, one could imagine restricting the whole study to a constant boundary
data ϕ̃ = 1. Though, in practice, this can be the case, the method used to solve the half-guide
problem requires to investigate the structure of Ũ+

θθθ
(ϕ̃) for any ϕ̃ in an appropriate function

space (see Remark 4.2).

3.2. Preliminary material. The main objective of this section is to establish rigorously some
Green’s formulas that are formally obvious, such as the one of Proposition 3.9. This requires
first to introduce the adapted functional framework and, since Green’s formulas involve bound-
ary integrals, to establish relevant trace theorems. Section 3.2.1 is devoted to these trace theo-
rems, while we present the corresponding Green’s formulas in Section 3.2.2. Finally, Section
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3.2.3 highlights a simple but useful link between the derivative D
θθθ

and a single partial derivative
with respect to one real variable, through a so-called oblique change of variables.

3.2.1. Anisotropic Sobolev spaces and trace theorems. For any open set O ⊂ Rn, let us first
define the directional Sobolev space

H1
θθθ
(O) :=

{
U ∈ L2(O) / D

θθθ
U ∈ L2(O)

}
, (3.7)

which is a Hilbert space, provided with the scalar product

(U,V )H1
θθθ
(O) :=

∫
O

(
D

θθθ
U D

θθθ
V +U V

)
.

Let us denote by ‖ · ‖H1
θθθ
(O) the induced norm. We begin with the following density property,

whose proof can be found in [29, Appendix 1].

Proposition 3.3. The space C ∞
0 (O) is dense in H1

θθθ
(O).

We denote the half-space Rn
+ := {y ∈ Rn, yn > 0} and the half-cylinder Ω] := (0,1)n−1×R+ in

the following. Let us introduce also the sets, for a ∈ {0,1} and for any integer i ∈ J1,nK,

Σi,a := {y ∈ Rn
+, yi = a} and Σ

]
i,a := {y ∈ Σi,a, y j ∈ (0,1), j ∈ J1,n−1K, j 6= i}.

These definitions are illustrated in Figure 4 in dimensions n = 2 and n = 3. Note that Σ]
n,a is

bounded whereas Σ]
i,a for i 6= n is unbounded in the direction yn. Moreover,

∂Ω
] = Σ

]
n,0∪

[n−1⋃
i=1

(
Σ
]
i,0∪Σ

]
i,1
)]
.

A trace operator can be defined from H1
θθθ
(Rn

+) on Σi,a. The main idea for doing so con-
sists in using a one-dimensional trace theorem on the θθθ–oriented line that starts from a point
(z1, . . . ,zi−1,a,zi+1, . . . ,zn) ∈ Σi,a, to obtain an inequality which will be integrated with respect
to z j, j 6= i. The precise 1D trace theorem which will be used is the following.

Proposition 3.4. Let L ∈ [0,+∞]. Then the mapping γL : u 7→ u(0) is continuous from H1(0,L)
to C. Moreover, the operator norm of γL is given by

‖γL‖2 =
eL + e−L

eL− e−L =: [tanhL]−1 with ‖γL‖2 ∼
L→0

L−1. (3.8)

Proof. The continuity property is a classical result which can be proved by density.
By definition, ‖γL‖ := sup{|u(0)|, ‖u‖H1(0,L) = 1}. This corresponds to a constrained opti-

mization problem. Using the standard theory, this leads to introduce a Lagrange multiplier λ

and to find a pair (λ ,uL) ∈ C\{0}×H1(0,L) such that ‖uL‖H1(0,L) = 1 and

∀ v ∈ H1(0,L) λ uL(0)v(0) =
∫ L

0

(duL

dx
dv
dx

+uL v
)

dx, (3.9)

in which case, we have ‖γL‖2 = λ . The explicit solution of this problem leads to the result. �

We are now able to define traces on Σi,a in the following sense.
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(A) n = 2
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=
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=

Σ]
1,1

Σ2,0
Σ]

2,0

(B) n = 3

Σ3,0

Σ1,0

Σ2,0

y1

y2

y3
Ω]
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3,0 y1
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FIGURE 4. Domains Ω], Σi,a and Σ]
i,a for n = 2 (a) and n = 3 (b).

Proposition 3.5. Fix a ∈ {0,1} and i ∈ J1,nK. The mapping γi,a : C ∞
0 (Rn

+)→ C ∞
0 (Σi,a) defined

by γi,aU =U |Σi,a extends by continuity to a linear mapping still denoted γi,a, from H1
θθθ
(Rn

+) to
L2(Σi,a), and which satisfies the estimate

∀U ∈ H1
θθθ
(Rn

+), ‖γi,aU‖2
L2(Σi,a)

≤ 1
θi
‖U‖2

H1
θθθ
(Rn

+)
. (3.10)

Proof. One can simply prove the continuity estimate (3.10) for any function U ∈ C ∞
0 (Rn

+) and
conclude using the density result of Proposition 3.3. Because the variable yn plays a different
role than yi, i 6= n, the case i = n has to be distinguished from the case i 6= n.

(i) Case i ∈ J1,n−1K: Without loss of generality, we set i = 1. Define

Γ1,a := {z = (z2, . . . ,zn), (a,z) ∈ Σ1,a} ≡ Rn−1
+ , where (a,z) = (a,z2, . . . ,zn). (3.11)

For U ∈ C ∞
0 (Rn

+) and given any z = (z2, . . . ,zn) ∈ Γ1,a, consider the function

∀ x > 0, uz,θθθ (x) :=U(xθθθ +(a,z)). (3.12)

As uz,θθθ belongs to H1(R∗+), Lemma 3.4 for L =+∞ combined with an integration with respect
to z ∈ Γ1,a leads to ∫

Γ1,a

|uz,θθθ (0)|2 dz≤
∫

Γ1,a

‖uz,θθθ‖2
H1(R∗+)

dz. (3.13)

On the other hand, let us introduce the transformation

T : y 7→
(
(y1−a)/θ1,y2− (y1−a)θ2/θ1, · · · ,yn− (y1−a)θn/θ1

)
, (3.14)

which defines a C 1–diffeomorphism with a Jacobian determinant detJT = 1/θ1 6= 0. Since the
inverse image {T−1(x,z), z ∈ Γ1,a, x > 0} is nothing but the polyhedron

Q1,a := {y ∈ Rn
+, y1 > a, yn > (y1−a)θn/θ1} ⊂ Rn

+,
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it follows from the chain rule and from the change of variables y 7→ Ty that

duz,θθθ

dx
(x) = D

θθθ
U(xθθθ +(a,z)) and

∫
Γ1,a

‖uz,θθθ‖2
H1(R∗+)

dz =
1
θ1
‖U‖2

H1
θθθ
(Q1,a)

. (3.15)

Finally, since uz,θθθ (0) =U(a,z2, · · · ,zn), Equations (3.13) and (3.15) imply

‖U‖2
L2(Σ1,a)

≤ 1
θ1
‖U‖2

H1
θθθ
(Q1,a)

≤ 1
θ1
‖U‖2

H1
θθθ
(Rn

+)
, (3.16)

which is exactly the desired estimate.

(ii) Case i = n: starting from the function uz,θθθ (x) := U(xθθθ +(z,a)) defined for x > 0 and for
any z = (z1, . . . ,zn−1) with (z,a) ∈ Σn,a, the proof uses the exact same arguments as above,
except the inverse image under T becomes the whole half-space Qn,a := {y ∈ Rn

+, yn > a}. �

The previous result does not hold in general for functions which are only H1
θθθ

in sub-domains of
the half-space Rn

+. In particular when it comes to the half-cylinder Ω], one is led to apply the
one-dimensional trace theorem on segments that become smaller in the neighbourhood of the
“corners”, i.e. the intersections of two faces (see Remark 3.7). To overcome this difficulty, let
us consider the sets (see Figure 5)

∀ 0 < b < 1/2, Σ
],b
i,a := {y ∈ Σ

]
i,a, dist(y, ∂Σ

]
i,a) := inf

z∈∂Σ]i,a

|y− z|> b}. (3.17)

Using these domains, the traces on Σ]
i,a can be defined as locally integrable functions in the

sense of the following proposition, which will be useful in particular for the Green’s formula in
Proposition 3.11.

Σ
],b
2,1

Σ
],b
1,0

Σ
],b
3,0 y1

y2

y3

b

Ω]

Tn
y1

y2

y3

a Ω]
a,−

Ω]
θθθ

y1

y2

y3

FIGURE 5. From left to right: Σ
],b
i,a (3.17), Tn (3.37), Ω]

a,− (3.36), and Ω]
θθθ

(3.40)
represented for n = 3.

Proposition 3.6. Let a ∈ {0,1} and i ∈ J1,nK. The mapping γ]i,a : C ∞
0 (Ω

]
)→ C ∞

0 (Σ]
i,a) defined

by γ]i,aU =U |Σ]i,a extends by continuity to a linear mapping still denoted γ]i,a, from H1
θθθ
(Ω]) to
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L2
loc(Σ

]
i,a), and which satisfies the estimate

∀ 0 < b < 1/2, ∃Cb > 0, ∀U ∈ H1
θθθ
(Ω]), ‖γ]i,aU‖2

L2(Σ],bi,a )
≤ Cb

θi
‖U‖2

H1
θθθ
(Ω])

. (3.18)

Proof. Using the density result stated in Proposition 3.3, one only has to show (3.18) for U ∈
C ∞

0 (Ω
]
). Let us assume that i = 1 and a = 0, the arguments in the following extending without

any difficulty to i ∈ J1,nK and a ∈ {0,1}. Define

Γ
]
1,0 := {z = (z2, . . . ,zn), (0,z) ∈ Σ

]
1,0} ≡ (0,1)n−1×R+. (3.19)

We introduce the length function defined by

∀ z∈Γ
]
1,0, λ1,0(z) :=

∣∣{θθθ R+(0,z)}∩Ω
]
∣∣= sup{x> 0, xθ1≤ 1, xθi+zi≤ 1 ∀ i∈ J2,n−1K}.

We deduce easily that

λ1,0(z) = min
{

1
θ1

; min
2≤ j≤n−1

(1− z j

θ j

)}
. (3.20)

For U ∈ C ∞
0 (Ω

]
) and z ∈ Γ]

1,0, we define

∀ 0 < x < λ1,0(z), uz,θθθ (x) =U(xθθθ +(0,z)). (3.21)

Since uz,θθθ ∈ H1(0,λ1,0(z)
)
, Lemma 3.4 and an integration with respect to z give∫

Γ]1,0

w1,0(z) |uz,θθθ (0)|2 dz≤
∫

Γ]1,0

‖uz,θθθ‖2
H1(0,λ1,0(z))

dz, with w1,0(z) = tanh[λ1,0(z)]. (3.22)

On the other hand, consider the C 1–diffeomorphism T given by (3.14). The set Q]
1,0 :=

{T−1(x,z), 0 < x < λ1,0(z), z ∈ Γ]
1,0} is clearly included in Ω]. Thus, by analogy with (3.16)

in the proof of Proposition 3.5, we have from (3.21), the chain rule, and the change of variables
y 7→ Ty that ∫

Γ]1,0

w1,0(z) |U(0,z)|2 dz≤ 1
θ1
‖U‖2

H1
θθθ
(Ω])

. (3.23)

More generally, we can show that γ]i,a can be defined from H1
θθθ
(Ω]) to the weighted space

L2(Σ]
i,a,wi,a dz), where the weight wi,a is given in (3.22) for i = 1 and a = 0. Now, the ex-

pression (3.20) of λ1,0 implies that w1,0 degenerates at the neighbourhood of the corners z j = 1.
However, the weight w1,0 is bounded from below on Σ

],b
1,0 with

inf
(0,z)∈Σ

],b
1,0

w1,0(z) = tanh
[

min
{ 1

θ1
; b min

2≤ j≤n−1

1
θ j

}]
> 0. (3.24)

If we set Cb := [inf
(0,z)∈Σ

],b
1,0

w1,0(z)]−1 > 0, then (3.18) follows directly from (3.23) by integrat-
ing with respect to {z, (0,z) ∈ Σ

],b
1,0}, instead of Γ]

1,0. �

Remark 3.7. The best constant in the previous proposition necessarily blows up when b tends
to 0. The above proof shows that traces could be defined on the whole faces in appropriate
weighted L2-spaces. More details about traces in anisotropic spaces can be found in [18].
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3.2.2. Green’s formulas. Let us now define the set H1
θθθ ,loc(R

n
+) of functions which are H1

θθθ
in

any half-cylinder S×R+ where S is a bounded open set in Rn−1. More rigorously, we define for
any ϕ ∈ C ∞

0 (Rn−1) the n–dimensional function qϕ ∈ C ∞(Rn) such that

qϕ(y1, . . . ,yn−1,yn) := ϕ(y1, . . . ,yn−1). (3.25)

Note that for any U ∈ L2
loc(R

n
+), the support of qϕ U is bounded in the directions y j, j 6= n.

Starting from this remark, we define

H1
θθθ ,loc(R

n
+) :=

{
U ∈ L2

loc(R
n
+), qϕ U ∈ H1

θθθ
(R+

n ) ∀ϕ ∈ C ∞
0 (Rn−1)

}
. (3.26)

Let us introduce a 1D cut-off function χ ∈ C ∞
0 (R) such that χ = 1 on (0,1), from which we

define qχ] ∈ C ∞
0 (Rn) as

qχ](y1, . . . ,yn−1,yn) := χ(y1) . . .χ(yn−1). (3.27)

We have in particular that

∀U ∈ H1
θθθ ,loc(R

n
+), U |Ω] =(qχ]U)|Ω] ∈ H1

θθθ
(Ω]). (3.28)

Thanks to this and Proposition 3.5, it is obvious that we can define without any ambiguity the
trace map γ]i,a to H1

θθθ ,loc(R
n
+) as follows

∀U ∈ H1
θθθ ,loc(R

n
+), γ

]
i,aU :=γi,a(qχ]U)|Σ]i,a ∈ L2(Σ]

i,a). (3.29)

For simplicity, when considering traces on Σ]
i,a, we shall write U instead of γ]i,aU . We can now

state the following Green’s formula.

Proposition 3.8. For any U,V ∈ H1
θθθ ,loc(R

n
+), we have the Green’s formula∫

Ω]

(
D

θθθ
U V +U D

θθθ
V
)

dy =
1
θn

∫
Σ]n,0

U V ds+
n−1

∑
i=1

1
θi

(∫
Σ]i,1

U V ds−
∫

Σ]i,0

U V ds
)
. (3.30)

Proof. Let U,V ∈ H1
θθθ ,loc(R

n
+). By definition, for any χ ∈ C ∞

0 (R) such that χ = 1 on (0,1), the
functions qχ]U and qχ]V belong to H1

θθθ
(Rn

+), where qχ] is defined in (3.27). Since Proposition
3.3 ensures that C ∞

0 (Rn
+) is dense in H1

θθθ
(Rn

+), there exist two sequences (Uk)k∈N,(Vk)k∈N of
functions in C ∞

0 (Rn
+), such that

Uk→ qχ]U and Vk→ qχ]V in H1
θθθ
(Rn

+), k→+∞.

It follows from the usual Green’s formula for smooth functions that Uk and Vk satisfy (3.30) for
any k ∈ N. Passing to the limit and using the trace continuity result stated in Proposition 3.5
imply that (3.30) is satisfied by qχ]U and qχ]V , i.e. by U and V , since qχ] = 1 in Ω]. �

We next focus on functions which are periodic with respect to their (n− 1) first variables.
More precisely, for any U ∈ L2(Ω]) and any ϕ ∈ L2(Σ]

n,0), we introduce the respective periodic
extensions Ũ ∈ L2

loc(R
n
+) and ϕ̃ ∈ L2

loc(Σn,0) as defined for any i ∈ J1,n−1K by a.e. y ∈ Rn
+, Ũ(y+~ei) = Ũ(y) and Ũ |Ω] =U.

a.e. s ∈ Σn,0, ϕ̃(s+~ei) = ϕ̃(s) and ϕ̃|Σ]n,0 = ϕ.
(3.31)
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An appropriate functional framework is provided by the space

H1
θθθ ,per(Ω

]) =
{

U ∈ L2(Ω]), Ũ ∈ H1
θθθ ,loc(R

n
+)
}
⊂ H1

θθθ
(Ω]), (3.32)

where the inclusion follows from (3.28) and (3.31). Note that for any U ∈ H1
θθθ ,per(Ω

]), as the

periodic extension Ũ belongs to H1
θθθ ,loc(R

n
+), the trace of U on Σ]

i,a is well-defined in L2 thanks
to (3.29). Moreover, using the continuity estimate (3.10) for qχ]U , we have

γ
]
i,a ∈L (H1

θθθ ,per(Ω
]),L2(Σ]

i,a)). (3.33)

In addition, one can show the following characterization:

H1
θθθ ,per(Ω

]) =
{

U ∈ H1
θθθ
(Ω]), γ

]
i,0U = γ

]
i,1U ∀ i ∈ J1,n−1K

}
, (3.34)

where the traces of functions in H1
θθθ
(Ω]) are defined in Proposition 3.6 and the equality of traces

has to be understood up to the identification of functions on Σ]
i,0 and Σ]

i,1. It is clear from (3.34)
that H1

θθθ ,per(Ω
]) is a closed subspace of H1

θθθ
(Ω]), thus it is an Hilbert space when equipped with

the norm of H1
θθθ
(Ω]). From Proposition 3.8 and (3.34), we deduce the Green’s formula on

H1
θθθ ,per(Ω

]).

Proposition 3.9. For any U,V ∈ H1
θθθ ,per(Ω

]), we have the Green’s formula∫
Ω]

(
D

θθθ
U V +U D

θθθ
V
)

dy =
1
θn

∫
Σ]n,0

U V ds. (3.35)

From the Green’s formula (3.35), we can easily deduce the following result.

Corollary 3.10. Let a > 0, and define the sets with common boundary Σ]
n,a (see Figure 5):

Ω
]
a,+ := Ω

]∩{yn > a} and Ω
]
a,− := Ω

]∩{yn < a}. (3.36)

Consider a function U ∈ L2(Ω]) such that U± :=U |Ω]
a,± ∈H1

θθθ ,per(Ω
]
a,±), where H1

θθθ ,per(Ω
]
a,±) is

defined as in (3.34). Then

U ∈ H1
θθθ ,per(Ω

]) ⇐⇒ γ
]
n,aU+ = γ

]
n,aU−.

We finish this section with a more technical Green’s formula, used in the proof of Proposi-
tion 3.16, involving functions U that only belong to H1

θθθ
(Ω]), provided that the test function V

vanishes in the neighborhood of the skeleton Tn defined by

T2 = Σ
]
2,0 and Tn = Σ

]
n,0∪

[n−1⋃
j=1

(
∂Σ

]
j,0∪∂Σ

]
j,1
)]

for n≥ 3. (3.37)

This domain is represented in Figure 5 for n = 3.

Proposition 3.11. For U ∈H1
θθθ
(Ω]) and V ∈C ∞

0 (Ω
]\Tn), the Green’s formula (3.30) still holds.

Proof. Consider U ∈H1
θθθ
(Ω]) and V ∈ C ∞

0 (Ω
] \Tn). Since by Proposition 3.3, C ∞

0 (Ω
]
) is dense

in H1
θθθ
(Ω]), there exists a sequence (Uk)k∈N of functions in C ∞

0 (Ω
]
) which tends to U . It follows

from Green’s formula in Ω] for smooth functions that Uk and V satisfy (3.30) for any k ∈N. For
0 < b < 1/2, let Ω],b be the domain

Ω
],b = {y ∈Ω

], dist(y, Tn) := inf
z∈Tn
|y− z|> b}. (3.38)
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Since V ∈ C ∞
0 (Ω

] \ Tn), there exists a real number 0 < b < 1/2 such that V |Ω],b ∈ C ∞
0 (Ω

],b
).

Consequently, for any i ∈ J1,n−1K, the surface integral on Σ]
i,a is reduced to the set Σ

],b
i,a defined

by (3.17). When k tends to +∞, we can then use the trace continuity result stated in Proposition
3.6 on Σ

],b
i,a , to deduce that (3.30) is satisfied by U and V . �

3.2.3. An oblique change of variables. Before stating Proposition 3.13 which is the main result
of this section, let us introduce the change of variables in Rn

+:

(s,x) ∈ Rn
+ 7→ y = (s,0)+ xθθθ ∈ Rn

+, (3.39)

and denote by Ω]
θθθ

the image of Ω] by the above transformation:

Ω
]
θθθ

:= {(s,0)+ xθθθ , s ∈ (0,1)n−1, x > 0}. (3.40)

This is illustrated in Figure 5 for n = 3 and in Figure 6 for n = 2 and |θθθ | = 1. The following
easy lemma will be used in the sequel.

Lemma 3.12. For any V ∈ L1(Ω]), we have∫
Ω]

θθθ

Ṽ (y) dy =
∫

Ω]
Ṽ (y) dy, (3.41)

where Ṽ ∈ L1
loc(R

n
+) denotes the periodic extension of V , defined by (3.31).

Proof. We will use the notation k = (k1, . . . ,kd) ∈ Zd for a vector of integers. For any set
O ⊂ Rn, let 1O be the indicator function of O . By density of C ∞

0 (Ω]) in L1(Ω]), it suffices to
prove (3.41) for V ∈ C ∞

0 (Ω]). By additivity of integration,∫
Ω]

θθθ

Ṽ (y) dy =
∫

Rn
+

1Ω]
θθθ
(y) Ṽ (y) dy = ∑

k∈Zn−1

∫
Ω]+(k,0)

1Ω]
θθθ
(y) Ṽ (y) dy,

where the sum over k ∈ Zn−1 is finite because V is compactly supported. The change of vari-
ables z 7→ z+(k,0) then leads to∫

Ω]
θθθ

Ṽ (y) dy = ∑
k∈Zn−1

∫
Ω]
1Ω]

θθθ
(z+(k,0)) Ṽ (z) dz because Ṽ is periodic

=
∫

Ω]

[
∑

k∈Zn−1

1Ω]
θθθ
−(k,0)(z)

]
Ṽ (z) dz, (3.42)

where we used the fact that 1Ω]
θθθ
(z+(k,0)) = 1Ω]

θθθ
−(k,0)(z). Furthermore, by noticing that the

collection of sets {Ω]
θθθ
− (k,0), k ∈ Zn−1} forms a partition of Rn

+, it follows that

∀ z ∈Ω
], ∑

k∈Zn−1

1Ω]
θθθ
−(k,0)(z) = 1Rn

+
(z) = 1. (3.43)

Combining (3.42) and (3.43) implies that (3.41) is satisfied for V ∈ C ∞
0 (Ω]). �

The inversion of the change of variables (3.39) leads us to introduce:

∀ y ∈ Rn, sθθθ (y) := ŷ − (yn/θn) θ̂θθ ∈ Rn−1, (3.44)

so that,
y = (s,0)+ xθθθ ⇐⇒ s = sθθθ (y) and x = yn/θn. (3.45)
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The next proposition emphasizes the fact that through the change of variables (3.39), the dif-
ferential operator D

θθθ
simply becomes the partial derivative (in the sense of distributions) with

respect to yn (which is obvious for smooth functions).

Proposition 3.13. Let Ψ ∈ L2(Ω]). The function Ψθθθ whose periodic extension is given by

a.e. y ∈ Rn
+, Ψ̃θθθ (y) := Ψ̃(sθθθ (y),yn/θn), (3.46)

belongs to L2(Ω]) and
‖Ψθθθ‖L2(Ω]) =

√
θn ‖Ψ‖L2(Ω]). (3.47)

Moreover, if ∂ynΨ ∈ L2(Ω]), then Ψθθθ belongs to H1
θθθ ,per(Ω

]) with directional derivative

a.e. y ∈ Rn
+, Dθθθ Ψ̃θθθ (y) =

∂ Ψ̃

∂yn
(sθθθ (y),yn/θn). (3.48)

Proof. The map (s,x) 7→ (s,0)+ xθθθ from Σ]
n,0×R+ to Ω]

θθθ
defines a C 1–diffeomorphism with

a non-vanishing Jacobian θn 6= 0. Therefore, by using the definition (3.40) of Ω]
θθθ

, the change of
variables (s,x) 7→ (s,0)+ xθθθ , and the property sθθθ ((s,0)+ xθθθ) = s, we obtain that∫

Ω]
θθθ

|Ψ̃θθθ (y)|2 dy = θn

∫
Σ]n,0

∫ +∞

0
|Ψ̃θθθ ((s,0)+ xθθθ)|2 dxds = θn

∫
Σ]n,0

∫ +∞

0
|Ψ̃(s,x)|2 dxds.

We deduce from Lemma 3.12 that Ψθθθ ∈ L2(Ω]), and that (3.47) holds.

Now in order to derive the expression of Dθθθ Ψ̃θθθ in the sense of distributions, consider a test
function Φ ∈ C ∞

0 (Rn
+). The change of variables (s,x) 7→ (s,0)+ xθθθ combined with Fubini’s

theorem for integrable functions leads to∫
Rn
+

Ψ̃θθθ (y) Dθθθ Φ(y) dy = θn

∫
Rn−1

∫ +∞

0
Ψ̃(s,x) Dθθθ Φ((s,0)+ xθθθ) dxds. (3.49)

Furthermore the 1D function φs,θθθ defined by φs,θθθ (x) := Φ((s,0)+ xθθθ) belongs to C ∞
0 (R+) and

we have [dφs,θθθ/dx](x) = Dθθθ Φ((s,0)+ xθθθ) from the chain rule. Since ∂ynΨ is in L2, we can
integrate by parts the inner integral in (3.49) to obtain∫

Rn
+

Ψ̃θθθ (y) Dθθθ Φ(y) dy =−θn

∫
Rn−1

∫ +∞

0

∂Ψ

∂yn
(s,x) φs,θθθ (x) dxds

=−
∫

Rn
+

∂Ψ

∂yn
(sθθθ (y),yn/θn) Φ(y) dy, (3.50)

where the last equality comes from the change of variables y 7→ (sθθθ (y),yn/θn). This gives the
expression of Dθθθ Ψ̃θθθ in (3.48) in the sense of distributions. �

Remark 3.14. It will be often useful to use (3.48) in the form

a.e. (s,x) ∈ Rn
+, Dθθθ Ψ̃θθθ ((s,0)+ xθθθ) =

∂ Ψ̃

∂yn
(s,x). (3.51)

The previous proposition allows in particular to deduce the surjectivity of the trace operator
from H1

θθθ ,per(Ω
]) to L2(Σ]

n,0).
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Corollary 3.15. Let ϕ ∈ L2(Σ]
n,0), and ψ ∈ H1(R+) such that ψ(0) = 1. Then the periodic

function defined by
a.e. y ∈ Rn

+, Rϕ (y) := ϕ̃(sθθθ (y)) ψ(yn/θn) (3.52)

belongs to H1
θθθ ,per(Ω

]), and its trace is Rϕ|Σ]n,0 = ϕ . Moreover, R defines a continuous map
from L2(Σ]

n,0) to H1
θθθ ,per(Ω

]).

3.3. Link with a periodic half-guide problem. For any boundary data ϕ ∈ L2(Σ]
n,0), we can

now introduce U+
θθθ

as the solution in H1
θθθ
(Ω]) of the half-guide problem∣∣∣∣∣∣∣∣∣∣∣∣

−D
θθθ

(
µp D

θθθ
U+

θθθ

)
−ρp ω

2 U+
θθθ
= 0, in Ω],

U+
θθθ
|Σ]n,0 = ϕ,

U+
θθθ
|Σ]i,0 =U+

θθθ
|Σ]i,1 ∀ i ∈ J1,n−1K,

µp D
θθθ

U+
θθθ
|Σ]i,0 = µp D

θθθ
U+

θθθ
|Σ]i,1 ∀ i ∈ J1,n−1K.

(3.53)

Note that the third equation above implies that U+
θθθ
∈ H1

θθθ ,per(Ω
]), the first one implies that

µp D
θθθ

U+
θθθ
∈ H1

θθθ
(Ω]), and finally the fourth one implies that µp D

θθθ
U+

θθθ
∈ H1

θθθ ,per(Ω
]), according

to (3.34). The space of the boundary data can seem surprising compared to the Helmholtz
equation with an elliptic principal part, but recall from Corollary 3.15 that the trace mapping on
Σ]

n,0 is surjective from H1
θθθ ,per(Ω

]) to L2(Σ]
n,0).

With the functional framework introduced in the previous section, we can now show that Prob-
lem (3.53) is well-posed.

Proposition 3.16. For any ϕ ∈ L2(Σ]
n,0), (3.53) is equivalent to∣∣∣∣∣∣

Find U+
θθθ
∈ H1

θθθ ,per(Ω
]), U+

θθθ
|Σ]n,0 = ϕ

∀V ∈ H1
θθθ ,per(Ω

]), V |Σ]n,0 = 0,
∫

Ω]

(
µp D

θθθ
U+

θθθ
D

θθθ
V −ρp ω

2 U+
θθθ

V
)
= 0,

(3.54)

for which Lax-Milgram’s theorem applies.

Proof. The variational formulation (3.54) is obtained by multiplying the first equation of (3.53)
by V ∈H1

θθθ ,per(Ω
]), and by using Green’s formula (3.35). The application of the Lax-Milgram’s

theorem in {V ∈ H1
θθθ ,per(Ω

]), γn,0V = 0} is direct, thanks to the surjectivity result in Corollary
3.15.

For the equivalence, as usual, one picks test functions V ∈ C ∞
0 (Ω]) to deduce that the solution

U+
θθθ
∈ H1

θθθ ,per(Ω
]) of (3.54) satisfies the first equation of (3.53). This implies that µp D

θθθ
U+

θθθ
∈

H1
θθθ
(Ω]). The real difficulty is to show that U+

θθθ
satisfies the fourth equation in (3.53) or equiva-

lently that µp D
θθθ

U+
θθθ
∈ H1

θθθ ,per(Ω
]). According to Proposition 3.6, we have

∀ 1≤ i≤ n−1, µp D
θθθ

U+
θθθ
|Σ]i,a ∈ L2

loc(Σ
]
i,a).

Therefore, Proposition 3.11 allows us to use Green’s formula (3.30) for U = µp D
θθθ

U+
θθθ

and for
V ∈ C ∞

0 (Ω
] \Tn)∩H1

θθθ ,per(Ω
]), where Tn is the skeleton defined in (3.37). By combining this
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y1

y2

•s

•y
•x

θθθ

Ω] Ω]
θθθ

0
Σ]

n,0

Σ]
n,1

C ]
0

Σ]
n,2

C ]
1

Σ]
n,3

C ]
2

FIGURE 6. The half-cylinders Ω] and Ω]
θθθ

(left), and the domains C ]
` and Σ]

n,k
(right) for n = 2

with the fact that U+
θθθ

solves (3.54) and the first equation of (3.53), one obtains that for any
integer i ∈ J1,n−1K,

∀V ∈ C ∞
0 (Ω

] \Tn)∩H1
θθθ ,per(Ω

]),
(∫

Σ]i,1

µp D
θθθ

U+
θθθ

V ds−
∫

Σ]i,0

µp D
θθθ

U+
θθθ

V ds
)
= 0.

Furthermore, C ∞
0 (Σ]

i,0) is included in {V |Σ]i,0, V ∈ C ∞
0 (Ω

] \ Tn)∩H1
θθθ ,per(Ω

])}. In fact, any
ψ ∈ C ∞

0 (Σ]
i,0) admits the extension Ψ : y ∈ Ω] 7→ ψ(y1, . . . ,yi−1,yi+1, . . . ,yn), which belongs

to C ∞
0 (Ω

] \Tn)∩H1
θθθ ,per(Ω

]). Finally, since C ∞
0 (Σ]

i,0) is dense in L2(Σ]
i,0), it is easy to show that

the fourth equation of (3.53) holds and that µp D
θθθ

U+
θθθ
|Σ]i,1 ∈ L2(Σ]

i,1) for any i ∈ J1,n−1K. �

We now make the link between U+
θθθ
(ϕ) and the solution of the half-line problem (3.1) that fully

justifies the introduction of the half-guide problem (3.53).

To do so, first, let us introduce the one-dimensional functions defined for any s ∈ Rn−1 by

∀ x ∈ R, µs,θθθ (x) := µp
(
(s,0)+ xθθθ

)
and ρs,θθθ (x) := ρp

(
(s,0)+ xθθθ

)
, (3.55)

as well as the one-dimensional problems∣∣∣∣∣∣∣ −
d
dx

(
µs,θθθ

du+s,θθθ
dx

)
−ρs,θθθ ω

2 u+s,θθθ = 0, in R+,

u+s,θθθ (0) = 1.
(3.56)

Note that (3.1) corresponds to (3.56) taken with s = 0.

As for the problem (3.1) satisfied by u+
θθθ

, under the assumptions (1.2) and (1.4), Problem (3.56)
admits a unique solution u+s,θθθ in H1(R+) for any s ∈ Rn−1. Moreover, u+s,θθθ decays exponentially
at infinity, uniformly with respect to s, that is, there exist constants α,c > 0 depending only on
µ±,ρ± such that

∀ s ∈ Rn−1,
∥∥e−α Imω x u+s,θθθ

∥∥
H1(R+)

≤ c. (3.57)
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Furthermore, thanks to the continuity of µp and ρp, we can show that u+s,θθθ is continuous with
respect to s, as stated in the next proposition.

Proposition 3.17. The mapping s ∈ Rn−1 7→ u+s,θθθ , which associates with a real vector s the
solution in H1(R+) of Problem (3.56), defines a uniformly continuous function which is periodic
of period 1 in each direction.

Proof. To show that s 7→ u+s,θθθ is 1–periodic in each direction, one simply has to note that since
µs,θθθ and ρs,θθθ are 1–periodic with respect to each si, both u+s,θθθ and u+s+~ei,θθθ

satisfy the same half-
line problem (3.56). Thus, by well-posedness of (3.56), u+s,θθθ = u+s+~ei,θθθ

.

Now let us prove the regularity of s 7→ u+s,θθθ . For any s1,s2 ∈ Rn−1, by writing the variational
formulations satisfied by u+s1,θθθ

and u+s2,θθθ
, and by substracting one from the other, we obtain

∀ v ∈ H1
0 (R+),

∫
R+

[
µs1,θθθ

d
dx

(u+s1,θθθ
−u+s2,θθθ

)
dv
dx
−ρs1,θθθ ω

2 (u+s1,θθθ
−u+s2,θθθ

) v
]
=

∫
R+

[
(µs2,θθθ −µs1,θθθ )

du+s2,θθθ

dx
dv
dx
− (ρs1,θθθ −ρs2,θθθ ) ω

2 u+s2,θθθ

]
.

Now choose v = u+s1,θθθ
−u+s2,θθθ

∈ H1
0 (R+) in the above equality. The well-posedness of (3.56), a

Cauchy-Schwarz inequality applied to the right-hand side and (3.57) imply that there exists a
real number c > 0 independent of s and θθθ such that∥∥u+s1,θθθ

−u+s2,θθθ

∥∥
H1(R+)

≤ c
(
‖µs2,θθθ −µs1,θθθ‖∞ +‖ρs2,θθθ −ρs1,θθθ‖∞

)
. (3.58)

Since the functions µp and ρp are continuous and 1–periodic in each direction, it follows from
Heine-Cantor theorem that they are uniformly continuous. Let us define the modulus of uniform
continuity

∀ µ ∈ C 0(Rn), ∀ ε > 0, δ (µ,ε) = sup
y,z
{|µ(y)−µ(z)|, |y− z|< ε}

As µ is uniformly continuous, δ (µ,ε) tends to 0 as ε tends to 0. It follows from (3.58) that∥∥u+s1,θθθ
−u+s2,θθθ

∥∥
H1(R+)

≤ c
(

δ (µp, |s1− s2|)+δ (ρp, |s1− s2|)
)
.

Therefore, s 7→ u+s,θθθ is continuous from Rn−1 in H1(R+). �

At last, we can show the next result, which highlights the link between the 2D half-guide solu-
tion U+

θθθ
and the 1D half-line solution u+

θθθ
.

Proposition 3.18. Let sθθθ be the mapping defined by (3.44), and Ũ+
θθθ

(resp. ϕ̃) be the periodic
extension of U+

θθθ
(resp. ϕ) the solution of (3.53). Then, we have

a.e. y ∈ Rn
+, Ũ+

θθθ
(ϕ̃)(y) = ϕ̃

(
sθθθ (y)

)
u+sθθθ (y),θθθ

(yn/θn), (3.59)

or equivalently, thanks to the change of variables (s,x) 7→ ((s,0)+θθθ x),

a.e. (s,x) ∈ Rn−1×R+, Ũ+
θθθ
(ϕ̃)((s,0)+θθθ x) = ϕ̃(s) u+s,θθθ (x). (3.60)
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Moreover if ϕ̃ is continuous in the neighbourhood of 0 and satisfies ϕ̃(0) = 1, then

a.e. x ∈ R, u+
θθθ
(x) = Ũ+

θθθ
(ϕ̃)(xθθθ) (3.61)

Proof. We begin by proving (3.59). Let us denote for a.e. y ∈ Rn
+, U1(y) the right-hand side of

(3.59). Note that Ψ : (s,x) 7→ ϕ̃(s) u+s,θθθ (x) is 1–periodic with respect to s (thanks to Proposition
3.17), and belongs to L2(Ω]) since

‖Ψ‖2
L2(Ω]) = θn

∫
Σ]n,0

|ϕ(s)|2 ‖u+s,θθθ‖
2
L2(R+)

ds≤ θn c2 ‖ϕ‖2
L2(Σ]n,0)

, with c = sup
s
‖u+s,θθθ‖L2(R+)

.

Moreover, since for all s, u+s,θθθ ∈ H1(R+), ∂ynΨ is also in L2(Ω]) (using similar inequalities to
the above). By Proposition 3.13, U1 belongs to H1

θθθ ,per(Ω
]) with

a.e. y ∈ Rn
+, Dθθθ Ũ1(y) = ϕ̃

(
sθθθ (y)

) du+sθθθ (y),θθθ

dx
(yn/θn).

Finally, since u+s,θθθ (0) = 1, it is clear thatU1|Σ]n,0 = ϕ . By repeating the same argument, we can
show that µpDθθθ U1 belongs to H1

θθθ ,per(Ω
]) with

a.e. y ∈ Rn
+, Dθθθ [µp Dθθθ Ũ1](y) = ϕ̃

(
sθθθ (y)

) d
dx

(
µsθθθ (y),θθθ

du+sθθθ (y),θθθ

dx

)
(yn/θn).

Since u+s,θθθ satisfies (3.56), it is clear that U1 satisfies (3.53). By well-posedness of (3.53), we
have U1 =U+

θθθ
.

We have from Proposition 3.17 that s 7→ u+s,θθθ is continuous. If in addition to that, ϕ̃ is continuous
in a neighbourhood of 0, then (3.60) becomes true for any s in that neighbourhood. In particular,
(3.60) can be written for s = 0, thus leading to (3.61). �

Remark 3.19. The half-guide solution U+
θθθ

depends on ϕ whereas u+s,θθθ does not. Numerical
results presented in Section 5.5.1 will illustrate this property.

4. RESOLUTION OF THE HALF-GUIDE PROBLEM

The advantage of the lifting process lies in the periodic nature of (3.53), which allows us to
exploit tools that are well-suited for periodic waveguides. In this paper, we use a DtN-based
method [10, 19], developed for the elliptic Helmholtz equation −∇ · (µp ∇U)−ρp ω2 U = 0 in
unbounded periodic waveguides. This method does not rely on decay properties, and therefore
remains robust when the absorption tends to 0. As we essentially transpose this method to our
directional Helmholtz equation, we will see below that the approach remains exactly the same,
although the analysis has to be adapted. For information purposes, it is worth mentioning the
recursive doubling method [33, 8], suited for bounded periodic waveguides, and a method [34]
based on the Floquet-Bloch transform, although its extension to our non-elliptic equation seems
unclear.

By elliptic Helmholtz equation, we refer to the Helmholtz equation with an elliptic principal part.
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In what follows, C ]
` is the cell defined for every ` ∈ N by

C ]
0 := (0,1)n and C ]

` := C ]
0 + ~̀en, so that Ω

] =
⋃
`∈N

C ]
` . (4.1)

For ` > 0, we call Σ]
n,` the interface between the cells C ]

` and C ]
`+1, that is, Σ]

n,` = Σ]
n,0+ ~̀en. By

periodicity, each cell C ]
` can be identified to C ]

0 . Similarly, each interface Σ]
n,` can be identified

to Σ]
n,0. The cells and interfaces are represented in Figure 6.

4.1. Structure of the solution. The solution U+
θθθ
(ϕ) of (3.53) has a particular structure that we

explain in this section. Denote by P ∈L
(
L2(Σ]

n,0)
)

the operator

∀ ϕ ∈ L2(Σ]
n,0), Pϕ :=U+

θθθ
(ϕ)|Σ]n,1, (4.2)

where L2(Σ]
n,1) and L2(Σ]

n,0) have been identified to each other in an obvious manner. This
identification will be used systematically in what follows, even if not mentioned. Note that the
operator P is well-defined, due to the continuity of the trace operator on Σ]

i,a (3.33).

Proposition 4.1. For any ϕ in L2(Σ]
n,0), we have

∀ ` ∈ N, a.e. y ∈Ω
], U+

θθθ
(ϕ)(y+ ~̀en) =U+

θθθ
(P`

ϕ)(y). (4.3)

Moreover, the spectral radius of P is strictly less than one.

Proof. We only present the outline of the proof, which is quite similar to the one in [10, 19].
Given ϕ ∈ L2(Σ]

n,0), consider the function U1 defined in Ω] by U1(y) = U+
θθθ
(ϕ)(y +~en) for

almost any y ∈ Ω]. Since the coefficients µp and ρp are periodic, one deduces that U1 satisfies
the volume equation as well as the periodicity condition in (3.53). Furthermore,

U1|Σ]n,0 =U+
θθθ
(ϕ)|Σ]n,1 = Pϕ.

Thus, by well-posedness of (3.53), we have (4.3) for `= 1. The result (4.3) for `≥ 2 is proved
by induction.

It remains to show that the spectral radius is strictly less than 1. To this end, by analogy with
(3.57), one can show the existence of constants α,c > 0 such that

∀ ϕ ∈ L2(Σ]
n,0),

∥∥eα Imω yn/θn U+
θθθ

∥∥
H1

θθθ
(Ω])
≤ c ‖ϕ‖L2(Σ]n,0)

. (4.4)

Since P`ϕ =U+
θθθ
(ϕ)(·, `), the estimate above implies that ‖P`‖≤ c e−α Imω `/θn . Hence, using

Gelfand’s formula [26, §10.3], the spectral radius can be estimated as follows:

ρ(P) = lim
`→+∞

‖P`‖1/` ≤ e−β Imω/θn < 1.
�

Remark 4.2. Even if ϕ = 1 on Σ]
n,0, the function P`ϕ is generally not constant. This is the

reason why the study of the half-guide problem cannot be restricted to constant boundary datas,
as explained in Remark 3.2.

The operator P is called the propagation operator, as it describes how the solution of (3.53)
evolves from one interface to another. Provided that P is known, the solution U+

θθθ
(ϕ) may
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then be constructed using local cell problems. Let us first introduce the appropriate functional
framework in a periodicity cell

H1
θθθ ,per(C

]
0 ) :=

{
U ∈ H1

θθθ
(C ]

0 ), Ũ ∈ H1
θθθ ,loc(B0)

}
, (4.5)

where B0 := Rn
+∩{0 < yn < 1}, and where Ũ is the periodic extension of U defined in (3.31).

Similarly to Section 3.2.1, one can show that any function of H1
θθθ ,per(C

]
0 ) has a L2 trace on the

boundary of C ]
0 . We can prove in particular that

H1
θθθ ,per(C

]
0 ) =

{
U ∈ H1

θθθ
(C ]

0 ) /U |yi=0 =U |yi=1, ∀ i ∈ J1,n−1K
}
.

We can now introduce the local cell problems: for ϕ ∈ L2(Σ]
n,0) and j ∈ {0,1}, let E j(ϕ) ∈

H1
θθθ ,per(C

]
0 ) satisfy ∣∣∣∣∣ −D

θθθ

(
µp D

θθθ
E j)−ρp ω

2 E j = 0, in C ]
0 ,

µp D
θθθ

E j|yi=0 =µp D
θθθ

E j|yi=1 ∀ i ∈ J1,n−1K,
(4.6)

completed with the boundary conditions∣∣∣∣∣ E0|Σ]n,0 = ϕ and E0|Σ]n,1 = 0,

E1|Σ]n,0 = 0 and E1|Σ]n,1 = ϕ.
(4.7)

A variational formulation can be derived as in Proposition 3.16, and the well-posedness follows
once again from with Lax-Milgram’s theorem in H1

θθθ ,per(C
]
0 ), thanks to the surjectivity of the

trace operator (see Corollary 3.15).

Proposition 4.1 implies thatU+
θθθ
(ϕ)(·+ ~̀en)|Σ]n,0 =P`ϕ . Hence, if the propagation operator P

is known, by linearity, the solution of the half-guide problem can be entirely constructed cell by
cell as follows:

∀ ` ∈ N, U+
θθθ
(ϕ)(·+ ~̀en)|C ]

0
= E0(P`

ϕ)+E1(P`+1
ϕ). (4.8)

4.2. Characterization of the propagation operator: the Riccati equation. In order to char-
acterize the propagation operator P , it is useful to introduce the local DtN operators T jk ∈
L (L2(Σ]

n,0)), defined for j,k = 0,1 by

∀ ϕ ∈ L2(Σ]
n,0), T jk

ϕ := (−1)k+1
θn
[
µp D

θθθ
E j(ϕ)

]
|Σ]n,k . (4.9)

where E j(ϕ) satisfies (4.6)–(4.7). By Green’s formula (3.30), note that for all j,k = 0,1 and for
(ϕ,ψ) ∈ L2(Σ]

n,0)
2, these operators satisfy∫

Σ]n,0

(T jk
ϕ)ψ =

∫
C ]

0

[
µp D

θθθ
E j(ϕ) D

θθθ
Ek(ψ)−ρp ω

2 E j(ϕ) Ek(ψ)
]
. (4.10)

Before deriving other useful properties of the local DtN operators, we need to introduce some
additional notations. For any closed operator A ∈L (L2(Σ]

n,0)), we denote A ∗ the adjoint of
A , and A its « complex conjugate », that is,

∀ ϕ ∈ L2(Σ]
n,0), A ϕ := A ϕ.

It is not difficult to see that A ∗ = A
∗
, and A = A .
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Proposition 4.3. The local DtN operators T jk satisfy[
T 00]∗ = T 00,

[
T 11]∗ = T 11,

[
T 01]∗ = T 10,

[
T 10]∗ = T 01. (4.11)

Furthermore, the operators T 00, T 11, and T 00 +T 11 are invertible.

Proof. The property (4.11) follows from Green’s formula applied to E j(ϕ) and Ek(ψ), see [10,
Proposition 2.2.4] in the case of the Helmholtz equation with an elliptic principal part.

The operators T 00, T 11, and T 00+T 11 are bounded. We are going to show that they are also
coercive. Their invertibility will then follow from Lax-Milgram’s theorem. From (4.10), there
exists a constant c≡ c(µ−,ρ−, |ω|)> 0 such that

−|ω| Im
[ 1

ω

∫
Σ]n,0

(T kk
ϕ)ϕ

]
≥ c Imω ‖Ek(ϕ)‖2

H1
θθθ
(C ]

0 )
≥ c̃ Imω ‖ϕ‖2

L2(Σ]n,0)
,

since from (3.33), the trace application from H1
θθθ ,per(C

]
0 ) to L2(Σ]

n,0) is continuous. It follows
that the operators T 00 and T 11 are coercive, and therefore invertible. The inequalities above
summed for k = 0,1 imply the coercivity and hence the invertibility of T 00+T 11 as well. �

As seen earlier, the solution of the half-guide problem (3.53) is given by (4.8). Now let us use
the characterization of H1

per,θθθ (Ω
]), namely, Corollary 3.10 with a = 1, so that Ω]

a,− = C ]
0 and

Ω]
a,+ = Ω] \C ]

0 . Since µp D
θθθ

U+
θθθ
(ϕ) belongs to H1

θθθ ,per(Ω
]), the directional derivative of U+

θθθ
(ϕ)

is continuous across the interface Σ]
n,1, i.e.[

µp D
θθθ

U+
θθθ
(ϕ)
]
|Σ]n,1 =

[
µp D

θθθ
U+

θθθ
(ϕ)((·+~en)

]
|Σ]n,0, (4.12)

or equivalently,[
µp D

θθθ
E0(ϕ)

]
|Σ]n,1 +

[
µp D

θθθ
E1(Pϕ)

]
|Σ]n,1

=
[
µp D

θθθ
E0(Pϕ)

]
|Σ]n,0 +

[
µp D

θθθ
E1(P2ϕ)

]
|Σ]n,0.

(4.13)

By using the definition of the local DtN operators T jk, (4.13) leads to the following character-
ization.

Proposition 4.4. The propagation operator P defined by (4.2) is the unique solution of the
constrained Riccati equation∣∣∣∣∣∣

Find P ∈L (L2(Σ]
n,0)) such that ρ(P)< 1 and

T 10P2 +(T 00 +T 11)P +T 01 = 0.
(4.14)

Proof. The proof is identical to the one for the elliptic Helmholtz equation [19, Theorem 4.1].
We know from Proposition 4.1 that P has a spectral radius which is strictly less than 1. More-
over (4.13) ensures that P satisfies the Riccati equation.

In order to prove the uniqueness, let us consider an operator P1 which satisfies (4.14). The
function defined cell by cell by

∀ ϕ ∈ L2(Σ]
n,0), ∀ ` ∈ N∗, U1(ϕ)(·+ ~̀en)|C ]

0
= E0(P`

1ϕ)+E1(P`+1
1 ϕ),
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solves (3.53) in each cell C` and is continuous across each interface Σ]
n,`, by definition (4.6),

(4.7) of E0 and E1. By Corollary 3.10, U1 is locally H1
θθθ

in Ω].

Moreover, since P1 satisfies (4.14), the directional derivative µpD
θθθ

U1 is continuous across
each interface. Thus, using Corollary 3.10, we deduce that U1 satisfies (3.53) in Ω].

Furthermore, given that ρ(P1)< 1, Gelfand’s formula and the well-posedness of the cell prob-
lems ensure that there exist constants c,ρ∗ > 0, with ρ∗ < 1 such that, for ` ∈ N large enough,

‖U1(ϕ)‖H1
θθθ
(C ]

` )
≤ c ρ

`
∗ ‖ϕ‖L2(Σ]n,0)

.

Hence U1(ϕ) belongs to H1
θθθ ,per(Ω

]) and satisfies the half-guide problem (3.53). By well-
posedness of (3.53), U1(ϕ) and U+

θθθ
(ϕ) coincide, and thus have the same trace on Σ]

n,1, that
is P1ϕ = Pϕ for any ϕ ∈ L2(Σ]

n,0). �

As a consequence, the propagation operator can be obtained by solving the Riccati equation in
(4.14), and by choosing the unique solution whose spectral radius is strictly less than 1. One
important thing to retain from the above is that both the propagation operator and the solution
of the half-guide problem only require the computation of E0, E1, and the operators T 00, T 10,
T 01, and T 11, which involve problems defined on a periodicity cell. However, the resolution
of the constrained Riccati equation (4.14) is not obvious at all. The properties of this equation
are investigated in further details in Section 4.4.

4.3. The DtN operator and the DtN coefficient. The goal of this part is to see how the half-
guide problem and the local cell problems can be used to compute the DtN coefficient λ+. We
recall that

λ
+ :=−µθθθ (0)

du+
θθθ

dx
(0).

Therefore, it is natural to introduce the DtN operator Λ ∈L (L2(Σ]
n,0)) defined by

∀ ϕ ∈ L2(Σ]
n,0), Λϕ :=−θn

[
µp D

θθθ
U+

θθθ
(ϕ)
]
|Σ]n,0 . (4.15)

This operator also has the following properties, whose proof is exactly identical to the one of
Proposition 4.3.

Proposition 4.5. One has Λ∗ = Λ. Moreover, Λ and Λ+T 11 are invertible operators.

Taking the directional derivative of (4.8) (for `= 0) on Σ]
n,0 and using the definition (4.9) of the

local DtN operators T 00 and T 10 leads to

Λ = T 00 +T 10P. (4.16)

Besides, one can apply the directional derivative Dθθθ to both sides of the link (3.59) between U+
θθθ

and u+
θθθ

, and use the oblique change of variables result (3.48), to obtain

a.e. y ∈ Rn
+, D

θθθ
Ũ+

θθθ
(ϕ̃)(y) = ϕ̃

(
sθθθ (y)

) du+sθθθ (y),θθθ

dx
(yn/θn). (4.17)
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By multiplying this formula by µp and by evaluating it for y = (s,0) so that sθθθ (y) = s, we obtain
from (4.15) that

Λϕ(s) = θn λ
θθθ
(s) ϕ(s), with λ

θθθ
(s) :=−

[
µs,θθθ

du+s,θθθ
dx

]
(0). (4.18)

Hence, Λ is a multiplication operator. We next deduce from (4.18) the DtN coefficient λ+.

Proposition 4.6. The function λ
θθθ

: Rn−1 → C defined by (4.18) is continuous. Moreover, if
ϕ ∈ Cper(Rn−1) is a given function which satisfies ϕ(0) = 1, then we have

λ
+ = λ

θθθ
(0) =

1
θn

(Λϕ)(0). (4.19)

Proof. Using Green’s formula, we have that for all s ∈ Rn−1

λ
θθθ
(s) = as(u+s,θθθ ,u

+
s,θθθ ), with as(u,v) :=

∫
R+

(
µs,θθθ

du
dx

dv
dx
−ρs,θθθ ω

2 u v
)
.

The continuity of u 7→ as(u,u) results directly from the properties of the coefficients µp and ρp.
Moreover, Proposition 3.17 ensures that the function s 7→ u+s,θθθ is continuous. Therefore, as the
composition of these two functions, λ

θθθ
is also continuous.

If in addition ϕ is continuous, then Λϕ is also continuous. Hence, (Λϕ)(0) = θn λ
θθθ
(0)ϕ(0)

which yields (4.19). �

4.4. Spectral properties of the Riccati equation. We now present some properties regarding
Equation (4.14). These properties will be exploited for the numerical resolution of the Riccati
equation, by constructing the operator P from its eigenpairs (this will be done in Section 5.3
after space discretization). For this reason, it is worhwhile to reformulate a spectral version
(Proposition 4.8) of the Riccati equation that would characterize these eigenpairs, while taking
into account the spectral radius constraint. This is precisely the purpose of this section.

Recall that T (P) = 0, where T is the bounded operator defined by

∀ X ∈L
(
L2(Σ]

n,0)
)
, T (X) := T 10X2 +(T 00 +T 11)X +T 01. (4.20)

In the sequel, we will write T (λ ) for T (λ I). We begin with the following factorization lemma.

Lemma 4.7. Let P be the propagation operator defined by (4.2). For any number λ ∈ C,

T (λ ) = (λP∗− I) (Λ+T 11) (P−λ ), (4.21)

where T 11 is defined by (4.9) and Λ is defined by (4.15).

Proof. Let λ ∈ C. Since the propagation operator satisfies T (P) = 0, one obtains that

T (λ ) = T (λ )−T (P)

=
[
T 10(λ +P)+T 00 +T 11] (λ −P)

= (λT 10 +Λ+T 11) (λ −P), from (4.16). (4.22)

We use once again the fact that T (P) = 0 which, by the expression (4.16), is equivalent to
T 01 = −(Λ+T 11) P . By transposing this equation, and by taking the complex conjugate,
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one obtains that [T 01]
∗
= −P∗ (Λ+T 11)∗. Since

[
T 11]∗ = T 11 and

[
T 01]∗ = T 10 as

ensured by Proposition 4.3, and since Λ∗ = Λ from Proposition 4.5, it follows that

T 10 =−P∗ (Λ+T 11).

Inserting this expression of T 10 in (4.22) therefore leads to

T (λ ) =
[
−λP∗ (Λ+T 11)+Λ+T 11] (λ −P) = (I−λP∗) (Λ+T 11) (λ −P).

which is the desired result. �

The previous factorization lemma allows one to characterize the spectrum of the propagation
operator as follows.

Proposition 4.8. For any complex number λ , one has

λ ∈ σ(P) ⇐⇒ 0 ∈ σ
[
T (λ )

]
and |λ |< 1. (4.23)

Proof. Proving (4.23) amounts to showing that for any λ ∈ C such that |λ | < 1, P − λ is
invertible if and only if T (λ ) is invertible. To this end, as T (λ ) = (λP∗−I) (Λ+T 11) (P−
λ ) according to Lemma 4.7, it is sufficient to prove that (λP∗− I) (Λ+T 11) is an invertible
operator for any λ ∈ C, |λ |< 1. Proposition 4.5 ensures the invertibility of Λ+T 11 already. It
thus remains to show that λP∗− I is invertible, which is the case when |λ |< 1.

Indeed, if λ = 0, then λP∗− I =−I is obviously invertible. If λ 6= 0, we use the fact that P
and P∗ have the same spectrum. Hence, given that |1/λ | > 1 > ρ(P∗), it follows that 1/λ

does not belong to σ(P∗). In other words, P∗− (1/λ ) I is an invertible operator. �

Remark 4.9. Note that the property (4.23) can be proved easily (and without Lemma 4.7) for
the point spectrum:

λ ∈ σp(P) ⇐⇒ 0 ∈ σp
[
T (λ )

]
and |λ |< 1. (4.24)

This property was already proved in [19] for the Helmholtz equation. In this context, this was
sufficient since the operator P was compact, which is no longer the case here.

Finally, it is worth noting that the values λ 6= 0 for which 0 ∈ σ
[
T (λ )

]
can be paired in the

following way.

Proposition 4.10. For any complex number λ 6= 0, one has the following equivalence:

0 ∈ σ
[
T (λ )

]
⇐⇒ 0 ∈ σ

[
T (1/λ )

]
. (4.25)

Proof. Let λ ∈ C∗. From the properties of the local DtN operators (see Proposition 4.3), we
deduce that

[T (λ )]∗ = λ
2 T 01 +λ (T 00 +T 11)+T 10 = λ

2 T (1/λ ). (4.26)

The operators T (λ ) and [T (λ )]∗ have the same spectrum, hence the result. �
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Remark 4.11. As Proposition 4.10 shows, the values λ 6= 0 for which

0 ∈ σ
[
T (λ )

]
come by pairs (λ ,λ−1). From a numerical point of view, it suffices to choose λ such that
|λ |< 1 and discard λ−1.

4.5. Spectral properties of the propagation operator. This section, contrary to Section 4.4
is not related to the construction of our numerical method; it is of theoretical interest. On one
hand, the result of this section, that is Proposition 4.12, is useful for interpreting some of the
numerical results in Section 5.5.3. On the other hand, it emphasizes the differences between the
spectral properties of P , and the ones of the corresponding operator for classical waveguide
problems. For the elliptic Helmholtz equation, P is compact (see [19, Theorem 3.1]) and its
spectrum hence consists only in isolated eigenvalues which accumulate to 0. However, the
picture is completely different in this case, because the spectrum has no isolated points.

One useful way to study the properties of the propagation operator (especially its spectrum) is
through an analytic formula: by evaluating the link (3.60) between U+

θθθ
and u+

θθθ
for x = 1/θn and

s ∈ Rn−1, P can be expressed for all ϕ in L2(Σ]
n,0) as follows:

Pϕ(s) = pθθθ (s) ϕ̃
(
s−δδδ

)
, with pθθθ (s) := u+s−δδδ ,θθθ

(1/θn) and δδδ := θ̂θθ /θn ∈Rn−1. (4.27)

Note that since θθθ is an irrational vector, δδδ is also an irrational vector.

The properties of the mapping s 7→ u+s,θθθ stated in Proposition 3.17 imply that the fonction pθθθ is
continuous and 1-periodic in each direction.

Operators that can be written under the form (4.27) are known as weighted shift operators, and
have been studied for instance in [2]. In particular, the spectral properties of P are given by
the following result.

Proposition 4.12. Let pθθθ : Σ]
n,0→ C be the function defined in (4.27). Then, pθθθ (s) 6= 0 for all s

in Σ]
n,0 and the spectral radius of P is given by

ρ(P) = exp

(∫
Σ]n,0

log |pθθθ (s)| ds

)
. (4.28)

Moreover, the spectrum of P is a circle of radius ρ(P).

This result can be found in [2, Theorem 2.1] for n = 2. We give below the proof for n > 2,
which requires the following lemma (see Theorem 6.1 and Example 6.1 of [21]), known as a
particular case of Birkhoff’s ergodic theorem for continuous functions.

Lemma 4.13. Let ψ : Σ]
n,0→ C be continuous and 1–periodic in each direction. Let α ∈ Rn−1

be an irrational vector. Then, we have the following uniform convergence:

lim
`→+∞

∥∥∥1
`

`−1

∑
m=0

ψ(·−mααα)−
∫

Σ]n,0

ψ

∥∥∥
∞

= 0.
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Proof of Proposition 4.12. Let us first show by contradiction that pθθθ or equivalently the func-
tion s 7→ u+s,θθθ (1/θn) is nowhere vanishing. To do so, we use an argument of unique continua-
tion. In fact, assume that there exists s ∈ Σ]

n,0 such that u+s,θθθ (1/θn) = 0. Then u+s,θθθ belongs to
H1(1/θθθ n,+∞) and satisfies the problem

− d
dx

(
µs,θθθ

du+s,θθθ
dx

)
−ρs,θθθ ω

2 u+s,θθθ = 0, in (1/θn,+∞), and u+s,θθθ (1/θn) = 0.

From the well-posedness of this problem, it follows that u+s,θθθ = 0 in (1/θn,+∞). Therefore, by
unique continuation, one deduces that u+s,θθθ = 0 in R+, which contradicts the boundary condition
u+s,θθθ (0) = 1.

We now establish the expression of the spectral radius ρ(P). One has ρ(P) = lim
`→+∞

‖P`‖1/`

from Gelfand’s formula, and by induction, P` can be expressed under the form

P`
ϕ(s) = p(`)

θθθ
(s) ϕ(s− `δδδ ), with p(`)

θθθ
(s) =

`−1

∏
m=0

pθθθ (s−mδδδ ).

Since the translation operator ϕ 7→ ϕ(· − `δδδ ) is isometric and bijective, the norm of P` is
equal to the norm of the multiplication operator ϕ 7→ p(`)

θθθ
ϕ , that is ‖p(`)

θθθ
‖∞. Hence, given that

pθθθ (s) 6= 0 for all s, one has

ρ(P) = lim
`→+∞

∥∥∥ `−1

∏
m=0

pθθθ (·−mδδδ )
∥∥∥1/`

∞

= lim
`→+∞

exp
∥∥∥1
`

`−1

∑
m=0

log
(
|pθθθ (·−mδδδ )|

)∥∥∥
∞

Since θθθ is an irrational vector, δδδ = θ̂θθ/θn is also an irrational vector. Therefore, Lemma 4.13 can
be applied with ααα = δδδ , and ψ : s 7→ log |pθθθ (s)|, which is well-defined and continuous. Hence
the spectral radius is given by

ρ(P) = Mlog(pθθθ ) := exp

(∫
Σ]n,0

log |pθθθ (s)| ds

)
.

Let us now characterize the spectrum. To begin, note that the inverse of P is well-defined,
since pθθθ vanishes nowhere: for all ϕ ∈ L2(Σ]

n,0), P−1ϕ(s) := [pθθθ (s)]−1 ϕ̃
(
s+δδδ

)
. Therefore,

all the computations above can be applied to P−1, thus yielding

ρ(P−1) = Mlog(p−1
θθθ
) =

1
Mlog(pθθθ )

=
1

ρ(P)

Since the spectrum of P is included in the annulus ρ(P−1)−1 ≤ |z| ≤ ρ(P) (this is true for
any operator), it follows that σ(P) is included in the circle |z|= ρ(P) = Mlog(pθθθ ).

Conversely, for k ∈ Zn−1, let Sk be the multiplication operator by s ∈ Rn−1 7→ exp(2iπ k · s).
From the expression (4.27) of the propagation operator, we obtain that

Sk P S−1
k = e2iπ k ·δδδ P.

The operators P and e2iπk ·δδδ P are similar, and thus have the same spectrum. Now consider an
element λ0 of σ(P). Then, |λ0|= Mlog(pθθθ ), and λk := e2iπk ·δδδ λ0 also belongs to σ(P) for all
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k ∈ Zn−1. Since δδδ is irrational, we have from Kronecker’s theorem (Theorem 2.2) that the set
{λk, k ∈ Zn−1} is dense in the circle |z| = |λ0| = Mlog(pθθθ ). Consequently, this whole circle is
included in the spectrum, since the latter is a closed set. �

5. RESOLUTION ALGORITHM AND DISCRETIZATION ISSUES FOR n = 2

In order to compute the solution of Equation (1.1), the previous sections provide an algorithm
which sums up as follows:

1. Compute the solution u+
θθθ

of (1.8) and the DtN coefficient λ+ defined by (1.7) using the
following procedure:
(a). for any boundary data ϕ ∈ L2(Σ]

n,0), compute the solutions E0(ϕ), E1(ϕ) of the
local cell problems (4.6);

(b). compute the local DtN operators (T 00,T 01,T 10,T 11), defined by (4.9)–(4.10);
(c). compute the propagation operator P as the unique solution of the constrained Ric-

cati equation (4.14);
(d). using an arbitrarily chosen boundary data ϕ ∈Cper(Rn−1) which satisfies ϕ(0) = 1,

• from (4.8), construct the solution U+
θθθ

of the half-guide problem cell by cell;
• deduce the half-line solution u+

θθθ
via the formula (3.61);

(e). compute the DtN operator Λ defined by (4.16), and deduce λ+ from (4.19).

2. Compute the solution u−
θθθ

of (1.8) and the DtN coefficient λ− defined by (1.7) using ex-
actly the same procedure as in Step 1 (but independently from Step 1).

3. Finally, solve the interior problem (1.9) in (−a,a), and extend the solution everywhere
using (1.10), as well as Step 1 and Step 2.

Since this algorithm is defined at a continuous level, it has to be discretized in order to be
implemented. For convenience sake, the quasiperiodicity order is set to n= 2. The most original
aspects of the algorithm are the steps (1.a)–(1.d), and the rest of this section focuses on the
discretization of these four steps. We present in Sections 5.1 and 5.2 two different methods that
are linked to a choice of discretization of the step (1.a), which influences the implementation of
the steps (1.b) and (1.d). The treatment of the step (1.c) is independent of this choice, and will
be presented in Section 5.3.

per per per per

FIGURE 7. Two-dimensional mesh for the 2D method (left), and family of one-
dimensional meshes for the quasi-1D method (right)

5.1. A fully two-dimensional method. The first method is inspired from the resolution of the
elliptic Helmholtz equation (see [10] for instance), and consists in solving directly the local cell
problems on an unstructured mesh of the periodicity cell C ]

0 = (0,1)2 (see Figure 7 on the left).



30 P. AMENOAGBADJI, S. FLISS, P. JOLY

We start from a triangular mesh Th(C
]
0 ) of C ]

0 = (0,1)2 with a mesh step h > 0. We assume that
this mesh is periodic, in the sense that one can identify the mesh nodes on the boundary yi = 0
with those on yi = 1, for 1≤ i≤ 2. In particular for i = 1, this condition allows us to handle the
periodic boundary conditions.

Now let Vh(C
]
0 ) be the usual H1–conforming approximation by Lagrange finite elements of

order d > 0. We also introduce

Vh,per(C
]
0 ) :=

{
V ∈ Vh(C

]
0 ) /V |y1=0 =V |y1=1

}
as an internal approximation of H1

θθθ ,per(C
]
0 ). Finally, to approximate L2(Σ]

2,0) and L2(Σ]
2,1), we

consider the following subspaces:

∀ a ∈ {0,1}, Vh,per(Σ
]
2,a) :=

{
Vh|Σ]2,a / Vh ∈ Vh,per(C

]
0 )
}
.

Since the mesh nodes on Σ]
2,0 and Σ]

2,1 can be identified to each other by periodicity of Th(C
]
0 ),

we can also make the identification Vh,per(Σ
]
2,0)≡ Vh,per(Σ

]
2,1)≡ Vh,per(0,1), as in the continu-

ous case. Set N := dimVh,per(0,1), and consider a basis (ϕp)1≤p≤N .

For any data ϕh ∈ Vh,per(0,1), we denote by E0
h(ϕh),E1

h(ϕh) ∈ Vh,per(C
]
0 ) the discrete solutions

defined via the standard finite element approximation of the local cell problems (4.6)–(4.7) in
the space Vh,per(C

]
0 ). (We omit the details.) In practice, one has to compute E j

h(ϕp), where
(ϕp)1≤p≤N is a basis of Vh,per(0,1).

Similarly to the weak expression (4.10) of the continuous local DtN operators, the discrete
local DtN operators T jk

h ∈L (Vh,per(0,1)), j,k = 0,1, are defined for any ϕh,ψh ∈ Vh,per(0,1)
as follows:∫

Σ]n,0

T jk
h ϕh ψh :=

∫
C ]

0

[
µp D

θθθ
E j

h(ϕh) D
θθθ

Ek
h(ψh)−ρp ω

2 E j
h(ϕh) Ek

h(ψh)
]
. (5.1)

In practice, these operators are represented as N×N matrices T jk whose components are given
by T jk

pq =
∫

Σ]n,0
T jk

h ϕq ϕp, for p,q ∈ J1,NK.

Let ϕh ∈ Vh,per(0,1)⊂ Cper(R) such that ϕh(0) = 1. The computation of the propagation oper-
ator Ph ∈L (Vh,per(0,1)) is presented in Subsection 5.3. Once this operator is determined, the
solution of the half-guide problem (3.53) can be approximated with the function defined cell by
cell by

∀ ` ∈ N, U+
θθθ ,h(ϕh)(·+ ~̀en)|C ]

0
:= E0

h(P
`
h ϕh)+E1

h(P
`+1
h ϕh).

Finally, a suitable approximation of the solution of the half-line problem 3.1 is provided by

∀ x ∈ R, u+
θθθ ,h(x) :=U+

θθθ ,h(ϕ)(θθθ x).

5.2. A quasi one-dimensional method. Though easy to implement, the two-dimensional ap-
proach described in the previous section does not exploit the fibered properties of the directional
derivative D

θθθ
. However, the periodic half-guide problem can be seen as a concatenation in a

certain sense of one-dimensional half-line problems. This fibered structure is the core of the
method presented in this section.
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5.2.1. Presentation. For any s ∈ R, we consider the 1D cell problems in H1(0,1/θ2):∣∣∣∣∣∣∣∣∣∣
− d

dx

(
µs,θθθ

de j
s,θθθ

dx

)
−ρs,θθθ ω

2 e j
s,θθθ = 0, in (0,1/θ2) := Iθθθ ,

e0
s,θθθ (0) = 1 and e0

s,θθθ (1/θ2) = 0,

e1
s,θθθ (0) = 0 and e1

s,θθθ (1/θ2) = 1.

(5.2)

Then, by analogy with Proposition 3.18, one easily shows that the local cell problems are con-
catenations of one-dimensional cell problems (up to periodicity), in the following sense.

Proposition 5.1. For any boundary data ϕ in L2(0,1), the solutions E0(ϕ) and E1(ϕ) of the
local cell problems (4.6) are given by

a.e. y ∈ C ]
0 , E j(ϕ)(y) = ϕ̃

(
sθθθ (y)+ j δ

)
e j

sθθθ (y),θθθ

(
y2

θ2

)
, (5.3)

with δ := θ1/θ2, where e j
s,θθθ denotes the solution of the cell problems (5.2), and where ϕ̃ denotes

the periodic extension of ϕ on R, defined by (3.31).

Proposition 5.1 also highlights the structure of the local DtN operators. To see this, let us
introduce the local DtN functions t jk

θθθ
defined for j,k = 0,1, by

∀ s ∈ R, t jk
θθθ
(s) := (−1)k+1

θ2

[
µs,θθθ

de j
s,θθθ

dx

](
k
θ2

)
. (5.4)

Note that by periodicity of µp and ρp, the maps s 7→ e j
s,θθθ and t jk

θθθ
are 1–periodic.

By applying the directional derivative operator D
θθθ

to (5.3), and by using the relationship be-
tween D

θθθ
E j(ϕ) and de j

s,θθθ/dx given by (3.51), it follows that the local DtN operators defined
by (4.9) are weighted translation operators, similarly to the propagation operator.

Proposition 5.2. The operators T jk can be written for ϕ ∈ L2(0,1) and s ∈ (0,1) as

T 00ϕ(s) = t00
θθθ
(s) ϕ̃(s) and T 10ϕ(s) = t10

θθθ
(s) ϕ̃(s+δ ),

T 11ϕ(s) = t11
θθθ
(s−δ ) ϕ̃(s) and T 01ϕ(s) = t01

θθθ
(s−δ ) ϕ̃(s−δ ),

(5.5)

with δ := θ1/θ2 and where ϕ̃ denotes the periodic extension of ϕ on R, defined by (3.31).

Finally, the solution u+
θθθ

of the half-line problem (3.1) can be computed directly from e j
s,θθθ and

from the propagation operator. In fact, given ϕ ∈Cper(Σ
]
n,0) such that ϕ(0) = 1, taking formally

the trace along θθθ R in (4.8) leads to

∀ ` ∈ N, u+
θθθ
(·+ `/θ2)|Iθθθ

= (P̃`ϕ)(`δ ) e0
`δ ,θθθ +(P̃`+1ϕ)((`+1)δ ) e1

`δ ,θθθ , (5.6)

where P̃`ϕ is the periodic extension of P`ϕ , ` ∈ N. The proof is similar to the one of (4.8).

Expressions (5.3), (5.5), and (5.6) form the basis of the quasi one-dimensional or quasi-1D
strategy, which consists in approximating the solutions e j

s,θθθ as well as the functions t jk
θθθ

and
finally the local DtN operators T jk. Then once the propagation operator is computed by solving
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the constrained Riccati equation (4.14), the solution u+
θθθ

may be constructed directly cell by cell
using (5.6).

5.2.2. Discretization. The quasi-1D approach requires two distinct approximate spaces associ-
ated to the transverse and the θθθ–oriented directions (see Figure 7 on the right).

Transverse direction. We begin with a one-dimensional mesh Th(0,1) of Σ]
2,0 ≡ (0,1) with

a mesh step h > 0. Let Vh(0,1) be the approximation space of H1(0,1) by Lagrange finite
elements of order d > 0. We denote by (ϕp)0≤p≤N the usual nodal basis, which satisfies in
particular ϕp(sq) = δp,q, where (sp)0≤p≤N are usual interpolation points (they include the mesh
vertices) with 0 = s0 < · · ·< sN = 1. Then an internal approximation of L2(0,1) is

Vh,per(0,1) := Span{ϕ0 +ϕN ,ϕ1, . . . ,ϕN−1},

which is chosen so that Vh,per(0,1) ⊂ Cper(0,1). In particular, from the definition of the basis
functions ϕi, one has the following decomposition

∀ϕh ∈ Vh,per(0,1), ϕh =
N

∑
p=0

ϕh(sp)ϕp, with ϕh(s0) = ϕh(sN). (5.7)

θθθ–oriented direction. Let Thθθθ
(Iθθθ ) denote a mesh of the line segment Iθθθ with a mesh step

hθθθ > 0. Set Vhθθθ
(Iθθθ ) as the approximation space of H1(Iθθθ ) by Lagrange finite elements of order

dθθθ > 0 and define Vhθθθ ,0(Iθθθ ) := Vhθθθ
(Iθθθ )∩H1

0 (Iθθθ ).

The approximation of e0
s,θθθ and e1

s,θθθ can be seen as a two-step process. First, for any s ∈ R,

consider the solution e j
s,θθθ ,hθθθ

of the discrete variational formulation associated to (5.2).

In practice, the solution e j
s,θθθ ,hθθθ

can only be computed for a finite number of s ∈ (0,1). This is
where the discretization in the transverse direction comes into play: given x ∈ Iθθθ , the function
s 7→ e j

s,θθθ ,hθθθ
(x) shall be interpolated in Vh,per(0,1). The interpolation process requires to compute

the discrete solution e j
s,θθθ ,hθθθ

only for s = sp, p ∈ J0,N − 1K. Then, using the decomposition

formula (5.7), e j
s,θθθ shall be approximated by

∀ (s,x) ∈ (0,1)× Iθθθ , e j
s,θθθ ,h(x) =

N

∑
p=0

e j
sp,θθθ ,hθθθ

(x) ϕp(s), with h = (h,hθθθ ). (5.8)

where e j
0,θθθ ,hθθθ

= e j
1,θθθ ,hθθθ

(because e j
s,θθθ is 1–periodic with respect to s).

From the solutions e j
s,θθθ ,h, we introduce the discrete local DtN functions

∀ s ∈ (0,1), t jk
θθθ ,h(s) := θn

∫ 1/θn

0

(
µs,θθθ

de j
s,θθθ ,h

dx

dek
s,θθθ ,h

dx
−ρs,θθθ ω

2 e j
s,θθθ ,h ek

s,θθθ ,h

)
,

which are inspired from the weak expression (5.4) of the local DtN functions t jk
θθθ

. Then, by
analogy with (5.1), we define the discrete DtN operators T jk

h ∈ L (Vh,per(0,1)) for any ϕh,
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ψh ∈ Vh,per(0,1) as follows:∫
Σ]n,0

T jk
h ϕh ψh :=

∫ 1

0
t jk
θθθ ,h(s− k δ ) ϕ̃h(s+( j− k)δ ) ψh(s) ds, (5.9)

with ϕ̃h being the periodic extension of ϕh to R, defined by (3.31). These discrete operators,
when computed for ϕh, ψh being the basis functions of Vh,per(0,1), are represented by N ×
N matrices, where N = dimVh,per(0,1). The integrals which appear in (5.9) are evaluated in
practice using a specifically designed quadrature rule whose description is omitted here.

Finally, let ϕh ∈ Vh,per(0,1) ⊂ Cper(R) such that ϕh(0) = 1. Then using (5.6), the solution of
the half-line problem (3.1) can be approximated with the function defined cell by cell by

∀ ` ∈ N, u+
θθθ ,h(·+ `/θ2)|Iθθθ

= (P`
hϕh)(`δ ) e0

`δ ,θθθ ,h +(P`+1
h ϕh)((`+1)δ ) e1

`δ ,θθθ ,h.

where Ph ∈L (Vh,per(0,1)) corresponds to a suitable discrete RN×N approximation of P . The
computation of such an operator is the subject of the next subsection.

5.3. Approximation of the propagation operator. In order to find a suitable approximation
Ph ∈ L (Vh,per(0,1)) of the propagation operator P , it is natural to introduce the discrete
constrained Riccati equation∣∣∣∣∣∣

Find Ph ∈L (Vh,per(0,1)) such that ρ(Ph)< 1 and Th(Ph) = 0, where

Th(Ph) := T 10
h P2

h +(T 00
h +T 11

h )Ph +T 01
h ,

(5.10)

and where (T 00
h ,T 01

h ,T 10
h ,T 11

h ) are obtained via one of the methods described in Sections
5.1 and 5.2 (cf. (5.1) or (5.9)). Using the same arguments as for the elliptic Helmholtz equation
[10], it can be proved that this discrete equation admits a unique solution.

In order to solve (5.10), two methods have been proposed in [19]: a spectral decomposition
method, and a modified Newton method. Here, we only describe the spectral approach.

The spectral decomposition method consists in characterizing Ph by means of its eigenpairs
(λi,ψi) of Ph. Doing so however raises an important question: is Ph completely defined by
its eigenpairs? This is equivalent to wondering if Ph is diagonalizable or not. The diagonaliz-
ability of Ph is an open question, but for the sake of simplicity, we will assume in the sequel
that this is the case, namely

The family of eigenfunctions (ψi)1≤i≤N forms a basis of Vh,per(0,1).

In practice, this is the situation that we always have encountered. Moreover, in the case where
this assumption fails to be true, one can still adapt the method, and recover Ph through a Jordan
decomposition. (See [10, Section 2.3.2.3] for more details.)

The spectral approach relies on the results presented in Section 4.4, which remain true for the
discrete equation. In particular, by analogy with Proposition 4.8, (λh,ψh) ∈ C×Vh,per(0,1) is
an eigenpair of Ph if and only if it satisfies

Th(λh)ψh = 0, with ψh 6= 0 and |λh|< 1.
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Solving the Riccati equation hence comes down to solving a quadratic eigenvalue problem:∣∣∣∣∣∣
Find (λh,ψh) ∈ C×Vh,per(0,1) such that ψh 6= 0, |λh|< 1 and

λ
2
h T 10

h ψh +λh (T
00

h +T 11
h )ψh +T 01

h ψh = 0.
(5.11)

If one sets N = dimVh,per(0,1), then (5.11) can be reduced to a 2N × 2N linear eigenvalue
problem in a classical way [30], thus yielding 2N eigenvalues. In order to pick the N eigenvalues
of the propagation operator, we need a criterion. To do so, note that with the 2D or the quasi-1D
method, the properties of the local DtN operators (Proposition 4.3) remain preserved for the
discrete operators T jk

h . Hence Proposition 4.10 admits the following discrete version:

KerTh(λh) 6= {0} ⇐⇒ KerTh(1/λh) 6= {0}.

Therefore, as already expected with Remark 4.11, the solutions of (5.11) can be grouped into
pairs (λh,1/λh), where 0 < |λh| < 1. Consequently, in order to compute Ph, one can solve
(5.11) (using for instance linearization techniques), and choose the N eigenpairs (λh,ψh) which
satisfy |λh|< 1.

5.4. The DtN coefficient. Finally, consider a function ϕh ∈ Vh,per(0,1)⊂ Cper(R) which satis-
fies ϕh(0) = 1. Then by analogy with (4.16), and in the spirit of Proposition 4.6, we define the
discrete DtN operator and the discrete DtN coefficient as follows:

Λh = T 10
h Ph +T 00

h and λ
+
h =

(Λhϕh)(0)
θ2

,

where T 10
h and T 00

h are computed using one of the methods presented in Sections 5.1 and 5.2,
and where Ph is the solution of the discrete Riccati equation (5.10).

5.5. Numerical results. We present some numerical results to validate the method, to illustrate
its efficiency, and to compare the multi-dimensional and the quasi one-dimensional methods in
the case where the order of quasiperiodicity is set to n = 2. Simulations will be carried out with
the periodic coefficients µp and ρp, defined for y = (y1,y2) ∈ R2 by

µp(y) = 1.5+ cos(2πy1) cos(2πy2) and ρp(y) = 1.5+0.5 sin(2πy1)+0.5 sin(2πy2).

We set θθθ = (cosπ/3,sinπ/3). As the ratio θ2/θ1 =
√

3 is irrational, θθθ is an irrational vector.
For a = 1, the source term f is the cut-off function

∀ x ∈ R, f (x) = exp
(
100

(
1−1/(1− x2)

))
χ(−1,1),

and the local perturbations µi and ρi are defined as piecewise constants, so that the coefficients
µ and ρ of the model problem (1.1) are represented in Figure 8.

5.5.1. The half-line and the half-guide solutions. The model problem (1.1) is solved by com-
puting the solutions of the half-line problems (1.8), as well as the DtN coefficients λ±. In this
part, only results regarding the numerical resolution of Problem (3.1) are going to be presented
on (a,+∞) (with a = 0 for simplicity), as the problem set on (−∞,−a) provides the same
overall results.

Error analysis. In order to validate the method, we introduce for L > 0 large enough the
unique function u+

θθθ ,L in H1(0,L) that satisfies Problem (3.1) on the truncated domain (0,L),
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FIGURE 8. The locally perturbed quasiperiodic coefficients µ and ρ , and the
source term f .

with u+
θθθ ,L(L) = 0. Also let ΩL := (0,1)× (0,L), and for ϕ ∈ L2(Σ]

2,0), let U+
θθθ ,L(ϕ) ∈ H1

θθθ
(ΩL)

denote the unique function that satisfies (3.53) on ΩL, withU+
θθθ ,L(ϕ)|y2=L = 0.

In presence of absorption, the solutions u+
θθθ

and U+
θθθ
(ϕ) decay exponentially at infinity (see

(3.57) and (4.4)), and by studying the problems satisfied by u+
θθθ ,L−u+

θθθ
and U+

θθθ ,L(ϕ)−U+
θθθ
(ϕ), it

can be proved as in [11] that there exist constants α,c > 0 such that for any L > 0,

‖u+
θθθ ,L−u+

θθθ
‖H1(0,L) ≤ ce−α ImωL ‖u+

θθθ
‖H1(0,L)

‖U+
θθθ ,L(ϕ)−U+

θθθ
(ϕ)‖H1

θθθ
(ΩL)
≤ ce−α ImωL ‖U+

θθθ
(ϕ)‖H1

θθθ
(ΩL)

.
(5.12)

with α =
√

ρ−/µ+. In particular, if L is chosen large enough, then u+
θθθ ,L and U+

θθθ ,L(ϕ) can be
viewed as suitable approximations of u+

θθθ
and U+

θθθ
(ϕ), and thus can serve as reference solutions.

In the upcoming results, to make the truncation errors in (5.12) negligible with respect to the
errors induced by the numerical method, we choose L≡ L(ω) so that

exp
(
−
√

ρ−/µ+ Imω L
)
≤ 10−10. (5.13)

The corresponding solutions u+
θθθ ,L and U+

θθθ ,L(ϕ), which will be denoted by u+ref and U+
ref(ϕ) re-

spectively, are computed via P1 Lagrange finite elements. The mesh step h = 5×10−4 is taken
small enough to guarantee a suitable approximation even for the largest values of the frequency
Reω (cf. [17]).

In the following, the boundary data is fixed to ϕ = 1, and is omitted in the notation of U+
θθθ

and
U+

ref. Also, we only plot relative errors corresponding to the 1D solution, as we have checked
that the errors for the 2D solution behave similarly. In Figure 9, the relative error

ε(u+
θθθ
) :=
‖u+

θθθ ,h−u+ref ‖H1(0,4/θ2)

‖u+ref ‖H1(0,4/θ2)

(5.14)
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is represented with respect to the mesh step h, and for both the 2D and the quasi-1D method
(with hθθθ = h for the quasi-1D method). The solutions are computed using Lagrange finite
elements of degree 1.
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FIGURE 9. Relative error in H1 norm of the half-line solution for different val-
ues of ω .

One sees that the errors tend to 0 as h at least, as expected for P1 Lagrange finite elements.
With the quasi-1D method however, ε(u+

θθθ
) behaves as h2. This is a special superconvergence

phenomenon, which is probably due to the fact that the problems solved in practice with the
quasi-1D method are one-dimensional. Note also that in general, the quasi-1D method appears
to be more accurate than the 2D method.
For a fixed mesh step, the relative error increases with the real frequency Reω . This is a well-
known particularity of the Helmholtz equation: since Reω represents the spatial frequency of
the time-harmonic waves, the discretization parameter h has to be adapted in order to take the
oscillations into account.

Representation of the half-guide solution. The half-guide solution is represented in Figure 10
for different values of ω , when ϕ = 1. As expected, U+

θθθ
oscillates more when Reω increases

(Figures 10a–10b), and it propagates more as Imω decreases (Figures 10b–10c).

Dependence with respect to the boundary data. The goal of this part is to see how the half-
line and the half-guide solutions depend on the boundary data ϕ . To do so, we choose three
different datas:

ϕ1(s) = 1, ϕ2(s) = cos(2πs), and ϕ3(s) = 1−1[1/3,2/3](s). (5.15)

We set ω = 8+ 0.25i, and we display results obtained with the quasi-1D method, knowing
that the 2D method yields the same conclusions. The computations are carried out using P1

Lagrange finite elements, with mesh steps h = hθθθ = 2×10−3.
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FIGURE 10. Real part of the half-guide solution computed using the quasi-1D
approach, with P1 Lagrange finite elements and h = 2×10−3, and for different
values of ω .
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FIGURE 11. Real part of the half-guide solution computed using the quasi-1D
approach, with P1 Lagrange finite elements and h = 2×10−3, and for different
values of ϕ .
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FIGURE 12. Real part of the half-line solution computed using the quasi-1D
approach with P1 Lagrange finite elements, h = 2×10−3, and for different ϕ .
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FIGURE 13. Real part of the solution of (1.1) computed using the quasi-1D
approach with P1 Lagrange finite elements, h = 2×10−3, and for different ω .

As expected, and as Figures 12 and 11a–11c show, the aspect of half-guide solution changes
drastically with respect to the boundary data, whereas the half-line solution looks invariant.

5.5.2. The whole line problem. The solutions u±
θθθ

of the half-line problems (1.8) allow one to
compute the DtN coefficients λ±, to solve (1.9), and then to compute the solution u of Problem
(1.1) using (1.10). Recall that the coefficients µ , ρ , and the source term f are shown in Figure
8. The solution of (1.1) is represented in Figure 13 for different values of ω .
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5.5.3. About the influence of the absorption on the accuracy. We come back to the numerical
resolution of Problem (3.1), and we study the convergence of the 2D and quasi-1D methods
depending on the absorption, especially when it tends to 0. As in Section 5.5.1, the solutions
are computed with Lagrange finite elements of degree 1. The relative error ε(u+

θθθ
) defined (5.14)

is represented in Figure 14 for both the 2D and the quasi-1D method, and for different values
of Imω .
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FIGURE 14. Relative error in H1 norm of the half-line solution for different
values of ω .

As Figure 14 shows, the error deteriorates with Imω . It would mean that the numerical method
becomes less efficient as the absorption decreases. We believe that this issue is closely related to
the well-posedness of the local cell problems with Dirichlet boundary conditions when Imω =
0. In fact, for the elliptic Helmholtz equation, it is known (see [10, Section 3.2.1.1] for instance)
that the local cell problems are well-posed except for a countable set of frequencies which
correspond to the eigenvalues of the associated differential operator. In our case however, as
the differential operator has a non-elliptic principal part, it also has a continuous spectrum, and
one can show that when µp and ρp are non-constant, the local cell problems are well-posed only
for frequencies in a bounded set (that can even be empty). An alternative to avoid this problem
is to use Robin-to-Robin operators instead of the DtN operators, which would involve solving
well-posed local cell problems with Robin boundary conditions, as it is done in [10] for periodic
media. This will be done in a forthcoming paper for quasiperiodic media.

5.5.4. About the spectral approximation of the propagation operator. As explained in Subsec-
tion 5.3, the discrete propagation operator Ph is computed by means of its eigenpairs. In this
section, the eigenvalues of Ph are compared with the spectrum of the exact propagation opera-
tor which, according to Proposition 4.12, is a circle of radius

Mlog(pθθθ ) = exp
(∫ 1

0
log |pθθθ (s)| ds

)
, with pθθθ (s) = u+s−δ ,θθθ (1/sinθ2).
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FIGURE 15. Number of eigenvalues of Ph that are close by 5% to σ(P) with
respect to h.

To compute this radius, u+s,θθθ is approximated by the unique function u+s,θθθ ,L that satisfies (3.56)
on a truncated domain (0,L), with u+s,θθθ ,L(L) = 0. One can show similar estimates to (5.12),
and if L is chosen large enough (for instance, if L satisfies (5.13)), then u+s,θθθ ,L can be used as
a reference solution. In practice, u+s,θθθ ,L is computed for several s, and finally the integral that
defines Mlog(pθθθ ) is evaluated using a rectangular quadrature rule.

The spectra of Ph and P are shown in Figure 16 for ω = 8+0.25i, and for different values of
the discretization parameter h (with hθθθ = h for the quasi-1D method). Figure 15 represents the
number Nh of eigenvalues of Ph that are close by 5% to σ(P), namely

Nh = #
{

λh ∈ σ(Ph)
/ ∣∣∣∣ |λh|−Mlog(pθθθ )

Mlog(pθθθ )

∣∣∣∣≤ 5%
}
. (5.16)

In Figure 15, one sees that Nh increases with 1/h, which means that more and more eigenvalues
of Ph are close to σ(P) when h decreases. In other words, a finer discretization leads as
expected to a better approximation of the spectrum. The number Nh of such eigenvalues also
seems to increase linearly with 1/h (up to subsequences for the quasi-1D method). Finally, note
that Nh is higher with the quasi-1D method than with the 2D method.

As Figure 16 shows, the eigenvalues of Ph are all included in the disk of radius ρ(P), but one
observes some spectral pollution. This is a classical phenomenon when one approximates the
spectrum of an operator which is neither compact nor self-adjoint. What is striking however, is
that the pollution behaviours are very different depending on the method used.

On one hand, the eigenvalues obtained with the 2D approach tend to accumulate to 0. A likely
explanation for this phenomenon is that solving the local cell problems on 2D meshes does not
take their directional structure into account. Since the location of the eigenvalues of Ph is
similar to the one obtained in the elliptic case, for which P is compact (see [19, Theorem 3.1]),
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FIGURE 16. Eigenvalues of the discrete propagation operator (circle-shaped
markers) compared to the spectrum of the exact propagation operator (circle
in dashed line) for ω = 8+ 0.25i, and for different values of the discretization
parameter.

we believe the 2D method somehow regularizes the half-guide problem (3.53) by introducing
an elliptic (discrete) approximation of the corresponding differential operator.

On the other hand, with the quasi-1D approach, the spectrum of Ph “oscillates” as the dis-
cretization parameter h tends to 0. This phenomenon has to do with the particular nature of
P which is a weighted translation operator. We strongly suspect that one can extract a subse-
quence (Ph′) whose spectrum converges towards σ(P) in a sense to be defined precisely, as
it is suggested by the peaks in Figure 15. The investigation of this assumption as well as the
construction of such a subsequence are subject to ongoing works.

With both approaches, it has been observed numerically that the eigenfunctions associated to
the spurious eigenvalues are highly oscillating functions, thus badly approximated by the dis-
cretization, whereas the components of the half-guide solution on these eigenfunctions are very
small. This might explain why the spectral pollution does not have a visible influence on the
approximation of the half-guide and the half-line solutions, as the errors in Figure 9 seem to
suggest.

6. PERSPECTIVES AND ONGOING WORKS

A numerical method has been proposed to solve Helmholtz equation in 1D unbounded quasi-
periodic media. Using the presence of absorption, we justified that this equation could be lifted
onto a higher-dimensional problem which, in turn, can be solved using a Dirichlet-to-Neumann
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approach. For the discretization, we presented a multi-dimensional method, as well as a so-
called quasi one-dimensional method. As shown by numerical simulations, both methods pro-
vide a suitable approximation of the solution as long as there is absorption. However, the
quasi-1D method proved to be more efficient than the 2D method, as it takes the anisotropy of
the problems involved into account.

The method presented opens up numerous perspectives, and raises multiple questions that
are subject to ongoing works. For instance, it would be interesting to approximate efficiently
the spectrum of the propagation operator, even though the spectral pollution seems to have no
major impact on the efficiency of the overall method. Another key extension concerns the case
where the absorption tends to 0. This extension, which will be presented in a subsequent paper,
involves replacing the DtN method by a Robin-to-Robin method as explained in Section 5.5.1,
and finding a way to characterize the propagation operator.

Finally, an approach which is similar to the one presented in this paper can be used to study
the propagation of waves in presence of a 2D periodic half-space when the interface does not
lie in any direction of periodicity, or in presence of two 2D periodic half-spaces with non-
commensurable periods.
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