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University of Sevilla (Spain) and UFPB (João Pessoa, Brazil)
Dep. EDAN and IMUS. Aptdo. 1160, 41080 Sevilla, Spain

This paper is dedicated to the memory of Roland Glowinski,
with my respect and deep thanks

Abstract. This paper is devoted to recall several contributions to the numerical solution and control of PDE’s that
have origin in Roland Glowinski’s activity. First, I will recall some results contained in works carried out under his
direction in the first 80’s. Then, operator-splitting methods primarily used to solve Navier-Stokes equations will
be reviewed. In the final part of the paper, I will describe briefly several advances obtained in the last decades.
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1. INTRODUCTION

This paper is organized on the basis of two keywords:

• Of course, Glowinski.
• Splitting. This can be found in much of Glowinski’s activity. In particular, we will recall

operator splitting techniques for the solution of the Navier-Stokes and other equations.

I had the fortune to enjoy a beautiful period in INRIA-Rocquencourt, France, from 1979
to 1982.

My first contact with Glowinski was in November 1979. My Professor in Spain, A. Valle,
had previously sent a letter asking him to accept me as PhD student and he had kindly said yes.

In France, the initial hard days were followed by happy days: first, the PhD Thesis months un-
der Glowinski’s direction, ended with the defense in 1981; then, a short postdoc period (1981–
1982).

In fact, Glowinski and I did not gather together very often, not too much time per meeting.
But now I feel that everything was extremely useful and fruitful.

E-mail address: cara@us.es.
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He taught me to distinguish important from unimportant things. For example, with him I
understood that P1 finite elements must be preferred to P2 or P3 elements as much as possible; I
also grasped the relevance of the Inf-Sup condition; the need of a good choice of the gradient,
that is, the scalar product in descent methods for extremal problems, etc.

I also learned to be insistent when trying to give an answer to a question and thus apply
different viewpoints to solve a problem. For instance, it was a good idea to view nonlinear
elliptic systems as optimal control probems for linear PDE’s and, accordingly, to incorporate
control techniques to the computation of the solution(s).

Furthermore, he was for me an excellent bridge to establish contacts with many other people:
H. Berestycki, A. Marrocco, O. Pironneau, F. Hecht, . . . And then F. Murat, J. Simon, J.-

P. Puel and J.-M. Coron.
I am deeply grateful to all of them.

This paper is organized as follows.
In Section 2, I will describe briefly the first two problems I was involved in, both suggested

by Glowinski during my PhD Thesis period.
Section 3 deals with splitting methods. First, we will explain some general ideas that motivate

the techniques. Then, we will recall their applications to Navier-Stokes and similar problems:
alternate direction methods of the Peaceman-Rachford, Strang and θ -scheme kinds; simulta-
neous (i.e parallel) direction methods in time and space, etc. Finally, we will mention recent
applications to some fully nonlinear PDE’s, more precisely the Monge-Ampère and the Gauss
curvature equations.

2. THE OLD TIMES

This section is devoted to recall contributiona to the solution of two problems proposed to
me by Glowinski.

2.1. Vortex rings analysis and computation. Let us consider the rectangle Ω = (0,L1)×
(−L2,L2), let us assume that W,η > 0 and F ∈C0(R) is a non-decreasing function satisfying

F(s) = 0 ∀s≤ 0 and F(s)≤Cs ∀s > 0.

Let us consider the following vortex ring problem, introduced in [18, 31]:
Find u = u(x) and K > 0 such that

−∆u = F(u−Wx1−K), x ∈Ω

u
∣∣
Γ0

= 0, ∂nu
∣∣
Γ1

= 0∫
Ω

|∇u|2 dx = η .

(2.1)

Here, Γ0 and Γ1 respectively denote the vertical and horizontal edges of ∂Ω and ∂nu = ∇u ·n
stands for the normal derivative of u.

The following interpretation is in order:
• z := u−Wx1−K is the stream function of a plane vortex ring.
• The associated vortex ring region is given by {x ∈Ω : u(x)−Wx1−K > 0}.
• W and η are respectively the (vertical) speed and the kinetic energy of the ring.
• K must be viewed as the flux amount that flows between the axis {x1 = 0} and the ring.
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The main assumption used in [18, 31] to deduce the model is that vorticity is parallel to
stream potential. It is also interesting to exchange the roles of W and K in the problem, that is,
to try to find u and W for given K.

Several theoretical and numerical results for (2.1) can be found in [4]. There are also other
similar confinement problems arising in plasma physics for which similar results can be ob-
tained; see [3, 12, 32] and others.

In particular, let us recall the following two algorithms for the computation of a solution:

ALG 1 (fixed-point):
(1) Choose u0

(2) For given n≥ 0 and un, find un+1 and Kn+1 with
−∆un+1 = F(un−Wx1−Kn+1), x ∈Ω

un+1∣∣
Γ0

= 0, ∂nun+1∣∣
Γ1

= 0∫
Ω

|∇un+1|2 dx = η

ALG 2 (least-squares + gradient descent):
(1) Choose u0

(2) For given n≥ 0 and un, find un+1 and Kn+1 = K(un+1), with

un+1 = un−ρ
nzn, zn = J′(un), ρ

n = arg min ρ≥0J(un−ρzn)

Here, we have used the notation

J(v) :=
1
2

∫
Ω

|(−∆)−1(∆v+F(v−Wx1−K))|2 dx

and, for every v, K(v) stands for the quantity K satisfying∫
Ω

|∇(−∆)−1(F(v−Wx1−K))|2 dx = η .

In practice, we use finite dimensional versions of ALG 1 and ALG 2. Thus, we introduce a
traingulation Th of Ω and the associated P1-Lagrange finite element space

Wh := {wh ∈C0(Ω) : wh|K ∈ P1(K) ∀K ∈Th, wh|Γ0 = 0}.

For instance, at each step in ALG 1, we search for a couple (un+1
h ,Kn+1

h ) ∈Wh×R such that
∫

Ω

∇un+1
h ·∇wh dx =

∫
Ω

F(un
h−Wx1−Kn+1

h )wh dx∫
Ω

un+1
h F(un

h−Wx1−Kn+1
h )dx = η .

The results of some numerical experiments are shown in Fig. 1. The data are the following:
Ω = (0,L1)× (−L2,L2) with L1 = L2 = 5; F(s) = s+; η = 10 and several values of W .

2.2. Semiconductor process and device modeling. There are two typical systems related to
semiconductor technology. They are usually identified as process modeling (the simulation of
the fabrication process) and device modeling (the description of the electric behavior); see [29]
for details.
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FIGURE 1. Vortex rings corresponding to W = 0.005, W = 0.015 and W = 0.02
(from left to right). Streamlines u−Wx1−K = Const. These experiments, as
well as the following, have been performed with the help of the Freefem package
(http://www.freefem.org//ff++).

Let Ω ∈ RN be a parallelepiped, let T > 0 be given and let us set Q := Ω× (0,T ), Σ :=
∂Ω× (0,T ). As before, we consider a partition {Γ0,Γ1} of ∂Ω. The semiconductor process
modeling problem in Q is to find u and v with

ut−∇ · (D11(u,v)∇u+D12(u,v)∇v) = 0 in Q
vt−∇ · (D21(u,v)∇u+D22(u,v)∇v) = 0 in Q
u = uΓ(x) on Γ0× (0,T )
D11(u,v)∂nu+D12(u,v)∂nv = 0 on Γ1× (0,T )
D21(u,v)∂nu+D22(u,v)∂nv = 0 on Σ× (0,T )
u|t=0 = v|t=0 = 0 in Ω.

(2.2)

The unknowns u and v must be viewed as concentrations of impurities (for instance As, B, . . . ).
On the other hand, in device modeling problems, we find similar systems, where u and v

are now electron and hole concentrations, some semilinear right hand sides must be added and
a new variable ψ = (−∆)−1(N + v− u) (the electric potential) and a new equation appear;
see [30].

In the most simple model, the diffusion coefficients Di j have the following structure:

D11 = a11

(
1+

u√
(u− v)2 +4

)
, D12 =−a12

u√
(u− v)2 +4

(2.3)

and similar expressions hold for D22 and D21.

http://www.freefem.org//ff++
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For the numerical solution of (2.2), we first introduce an approximation in time; this leads to
a family of stationary nonlinear problems of the form

βu−∇ ·σu = f (x), σu = D11(u,v)∇u+D12(u,v)∇v in Ω

βv−∇ ·σv = g(x), σv = D21(u,v)∇u+D22(u,v)∇v in Ω

u = uΓ(x) on Γ0
σu ·n = 0 on Γ1,
σv ·n = 0 on ∂Ω,

(2.4)

where β > 0.
Then, the problems (2.4) are replaced by appropriate approximations in space. Specifically,

as in Section 2.1, we introduce a triangulation Th and the spaces

Xh := {wh ∈C0(Ω) : wh|K ∈ P1(K) ∀K ∈Th}
and

Vh := {wh ∈ Xh : wh|Γ0 = 0}
and we search for a couple (uh,vh) with uh ∈ uΓ +Vh, vh ∈ Xh and

α

∫
Ω

(uhwh+vhzh)dx+
∫

Ω

(
D11(uh,vh) D12(uh,vh)
D21(uh,vh) D22(uh,vh)

)(
∇uh
∇vh

)
·
(

∇wh
∇zh

)
dx

=
∫

Ω

( f wh+gzh)dx

∀(wh,zh) ∈Vh×Xh.

(2.5)

The nonlinear finite dimensional system (2.5) can be solved, among other possibilities, by
an extrapolated Gauss-seidel-Newton algorithm; see [7, 13, 28], where results on the existence
and numerical approximation as well as realistic simulations can be found.

The results of an experiment are displayed in Fig. 2–4. There, the domain is a Silicium half-
plate; the impurities are injected through the upper side on the left (on the right an oxide layer
avoids penetration) and are assumed to e zero on the lower edge. The data are the following:
Ω = (0,5)×(0,5), Γ0 = [0,5]×{0,5}, Γ1 = {0,5}×(0,5); uΓ(x) = fu(x1)x2/5, with fu(x1) =
1.76 for x1 ≤ 2.3, fu(x1) = 1.76 · (12.5− 5x1) for 2.3 < x1 < 2.5 and fu(x1) = 0 elsewhere;
the Di j are as in (2.3), with a11 = 1, a12 = a21 = 0.01, a22 = 0.05.

FIGURE 2. Final computed u. Curves u = Const. for t = 0.5 (left) and t = 1.5 (right).
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FIGURE 3. Final computed u. Curves u = Const. for t = 3 (left) and t = 6 (right).

FIGURE 4. Final computed u. Curves u = Const. for t = 9 (left) and t = 12 (right).

3. SPLITTING

Splitting techniques were used by Glowinski (in a broad sense) in connection with many
problems. About 100 papers, many of them in collaboration with Bristeau, Périaux, Perrier,
Pironneau, Dean, Pan, . . . contain related results. They concern

• Domain decomposition methods,
• Fictitious domain and embedding domain methods,
• Numerical control (with J.-L. Lions, Carthel, He, . . . ),
• Operator-splitting for nonlinear PDE’s and more precisely

– For incompressible and compressible Navier-Stokes,
– For many other PDE’s: Bingham, Oldroyd, nonlinear waves, obstacle problems,

Monge-Ampère, . . .

The main ideas dealing with operator splitting methods can be explained as follows.
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Assume that we want to compute (an approximato of) the solution y : [0,T ] 7→Y to an initial-
value problem of the form {

yt +A(y, t) = f (t), t ∈ [0,T ]
y(0) = y0

(3.1)

where Y is a (finite or infinite dimensional) vector space, A = A(y, t) is a time dependent (linear
or nonlinear) operator on Y and f : [0,T ] 7→ Y and y0 ∈ Y are given.

It is assumed that A can be written in the form

A = A1(y, t)+A2(y, t)

and, also, that for some reason (3.1) it is much easier to work with A1 or A2 separately than
to consider these operators together. Then, it seems reasonable to try to get advantage of this
property.

Thus, for example, it can be interesting to introduce the following time-approximation scheme,
where τ = T/M and M is a large integer:

(1) Take y0 = y0.
(2) Then, for any given m = 0,1, . . . ,M−1 and ym, do the following:

• Compute ym+1/2, with

ym+1/2− ym

τ/2
+A1(ym+1/2, tm+1/2)+A2(ym, tm) = f (tm+1/2).

• Compute ym+1, with

ym+1− ym+1/2

τ/2
+A1(ym+1/2, tm+1/2)+A2(ym+1, tm+1) = f (tm+1).

This is a particular example of operator splitting method: the so called Peaceman-Rachford
scheme. It produces the approximations y0,y1/2,y1,y3/2, . . . of y at times 0,τ/2,τ,3τ/2, . . . In
accordance with the previous assumption on A1 and A2, it can be of great interest for many
problems involving ordinary and partial differential equations.

For a complete description of operator splitting methods, thier behavior and their applications
in several contexts, see [21] and the references therein.

3.1. Some alternating direction methods. In this section, I will recall some applications of
splitting techniques to the numerical integration of the Navier-Stokes system.

It is well known that these PDE’s describe the behavior of a fluid under realistic conditions.
They take the form

ut−ν∆u+(u ·∇)u+
1
ρ

∇p = f, ∇ ·u = 0 in Q, (3.2)

where again Q = Ω× (0,T ), Ω ⊂ RN is a non-empty bounded connected open set, T > 0 and
the unknowns are the velocity field u = (u1, . . . ,uN) and the pressure p (N = 2 or N = 3).

Here, f = ( f1, . . . , fN) must be viewed as a density of external forces and ν and ρ are posi-
tive constants respectively related to the kinematic viscosity and the mass density of the fluid.
For simplicity, we will assume that (3.2) is completed with zero Dirichlet (no-slip) conditions
on Σ = ∂Ω× (0,T ) and initial conditions for u at t = 0.
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For the numerical solution of (3.2), it is usual to first discretize or approximate in time and
then approximate the resulting stationary problems in space, usually applying a finite element
technique.

For the time discretization, a first splitting algorithm proposed by Glowinski to go from tn

to tn+1 was the following: first, solve in the spatial domain Ω the Burgers-like system
1

τ/2
(un+1/2−un)−ν∆un+1/2+(un+1/2 ·∇)un+1/2= fn+1/2− 1

ρ
∇pn

un+1/2|∂Ω = 0
(3.3)

and then look for the solution to the Stokes-like problem
1

τ/2
(un+1−un+1/2)−ν∆un+1+

1
ρ

∇pn+1= fn+1−(un+1/2·∇)un+1/2, ∇ ··un+1 = 0

un+1|∂Ω = 0
(3.4)

This can be viewed as an alternate direction method (ADI) of the Peaceman-Rachford type;
see [20], Ch. 2, p. 52.

Some similar previous algorithms were introduced by Chorin, Témam and others in [8, 9,
34, 35]. They are known generically as projection methods. Note however that, in (3.3)–(3.4),
nonlinearity is conserved. In fact, this is maybe the most representative aspect of Glowinski’s
work.

In a second step, (3.3) and (3.4) must be replaced by appropriate finite dimensional approx-
imations. First, both systems can be reduced to collections of relatively simple Poisson-like
problems of the form {

−α∆w+βw = F in Ω

w = 0 on ∂Ω
(3.5)

where α,β > 0.
Thus, among many other possibilities, the nonlinear system (3.3) can be reformulated as a

least-squares problem and related conjugate gradient algorithms can be applied. On the other
hand, for the solution of (3.4), we can use Lagrangian techniques and iterative algorithms of the
Uzawa or Arrow-Hurvicz kind. In both cases, the task is ultimately reduced to solve problems
of the class (3.5).

Finally, the numerical solution of (3.5) can be accomplished with “classical” finite element
methods.

A more ellaborate splitting scheme for time discretization follows some previous ideas of
Strang [33]. It is the following: first, we go from tn to tn+1/4 by solving the Stokes-like problem

1
τ/4

(un+1/4−un)−ν∆un+1/4+
1
ρ

∇pn+1/4= fn+1/4−(un ·∇)un, ∇·un+1/4 = 0

un+1/4|∂Ω = 0.
(3.6)

Then, we solve the nonlinear system
1

τ/2
(un+3/4−un+1/4)−ν∆un+3/4+(un+3/4 ·∇)un+3/4= fn+3/4− 1

ρ
∇pn+1/4

un+3/4|∂Ω = 0.
(3.7)
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Finally, to go from tn+3/4 to tn+1, we solve the second Stokes-like problem
1

τ/4
(un+1−un+3/4)−ν∆un+1+

1
ρ

∇pn+1= fn+1−(un+3/4 ·∇)un+3/4, ∇ ·un+1 = 0

un+1|∂Ω = 0.
(3.8)

Obviously, the numerical solution to the resulting systems can be achieved as before.
The convergence of splitting algorithms has been analyzed by several authors; see for in-

stance [19, 25, 27]. In particular, in the case of (3.2), this was done in [16].
More precisely, assume that Ω ⊂ RN is a polygonal or polyhedrical domain and, again,

that (3.2) is completed with homogeneous Dirichlet boundary conditions for u on Σ and the
initial condition

u|t=0 = u0 in Ω,

where u0 ∈ L2(Ω)N , ∇ ·u0 = 0 in Ω and u ·n = 0 on ∂Ω.
Let {Th}h>0 be a regular family of triangulations of Ω.
Assume that the approximations in time (3.3)–(3.4) and (3.6)–(3.8) are introduced for any

small τ > 0 with the nonlinear terms in (3.3) and (3.7) modified respectively by

(un+1/2 ·∇)un+1/2 +
1
2
(∇ ·un+1/2)un+1/2

and

(un+3/4 ·∇)un+3/4 +
1
2
(∇ ·un+3/4)un+3/4.

Let the corresponding stationary problems be approximated in space for every small h > 0
using standard mixed P2-P1 finite elements for u and p. Let us denote by (un

h, pn
h) the corre-

sponding solutions.
For fixed τ and h, we denote by uτ,h the piecewise linear continuous function satisfying

uτ,h(tn) = un
h

for all n.
Then, the following result holds:

Theorem 3.1. There exists a constant C0 depending on u, f and ν such that, if τ,h→ 0 and τ

and h are constrained to satisfy
τ

h2 ≤C0,

at least for a subsequence, one has weak convergence in L2(0,T ;H1
0 (Ω)N) and strong conver-

gence in L2(Ω× (0,T ))N of the uτ,h to a solution u. Furthermore, if N = 2 and k/h2→ 0, the
whole sequence {uτ,h} converges strongly in L2(0,T ;H1

0 (Ω)N) to the unique solution.

A generalization of the Strang ADI algorithm introduced by Glowinski in [20] is as follows:
fix θ ∈ (0,1/3]; then, in order to go from tn to tn+1, we solve two Stokes problems and one
Burgers problem according to the formulæ

1
θτ

(un+θ−un)−ν∆un+θ+
1
ρ

∇pn+θ = fn+θ−(un ·∇)un, ∇·un+θ = 0

un+θ |∂Ω = 0,
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1

(1−2θ)τ
(un+1−θ−un+θ )−ν∆un+1−θ+(un+1−θ ·∇)un+1−θ = fn+1−θ− 1

ρ
∇pn+1−θ

un+1−θ |∂Ω = 0,
1

θτ
(un+1−un+1−θ )−ν∆un+1+

1
ρ

∇pn+1= fn+1−(un+1−θ ·∇)un+1−θ , ∇·!un+1 = 0

un+1|∂Ω = 0.
This is usually known as the θ -scheme; see [20] for its description and analysis and related

experiments.
The numerical results that can be obtained by applying these splitting techniques are re-

markable. See Fig. 5 and 6 for the flow of a fluid around a cylinder at Reynolds number
Re = 800. The data are the following: Ω = O\B, with O = B((0,0);3)∪((0,4)×(−3,3)), B =
B((0,0);0.2); T = 50; ν = 0.00125, ρ = 1; u0(x)= (cos(π/6), ,sin(π/6)) near ∂O and u0(x)=
0 near ∂B (initial data); u(x, t) = (cos(π/6),sin(π/6)) on ∂O× (0,T ) (velocity field “at infin-
ity”); u(x, t) = 0 on ∂B× (0,T ) (velocity field on the cylinder surface).

FIGURE 5. The flow around a body. Re = 800. Mesh and pressure.

Splitting techniques have also been applied with success to many other nonlinear PDE sys-
tems. For instance, they work very well for the variable density Navier-Stokes equations

ρ t +∇ · (ρu) = 0
ρ(ut +(u ·∇)u)−µ∆u+∇p = ρf
∇ ·u = 0,

where the mass density ρ is unknown.
Thus, we have displayed in Fig. 7 the evolution of the density in a stratification phenomenon:

starting from an unnatural initial data for ρ , we see that, under the action of gravity, heavy
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FIGURE 6. The flow around a body. Re = 800. Velocity field.

particles go down and lightweight particles climb to reach a stationary state after some time. The
data are the following: Ω = (0,1)× (0,3); µ = 0.025; f(x) = (0,−10); u0(x) = 0 and ρ0(x) =
1+33x2 (initial data); u(x, t) = 0 on ∂Ω× (0,T ).

More details on the behavior of the solutions to the variable density Navier-Stokes equations
can be found in [15].

3.2. Simultaneous direction methods and parallelization. The previous splitting schemes
have been modified in other more recent works to incorporate parallelization issues.

More precisely, with appropriate variants it is possible to reduce the solution to (3.2) to a
large family of elementary otdinary differential problems that can theoretically be solved in
parallel as long as suitable hardware means are at our disposal.

The process can be the following:

(1) Parallelization in the time variable — Now, to go from tn to tn+1, we solve in parallel
the nonlinear problem

1
τ
(un,a−un)−ν∆un,a +(un,a ·∇)un,a = fn+1− 1

ρ
∇pn

un,a|∂Ω = 0
(3.9)

and the linear system
1
τ
(un,b−un)−ν∆un,b +

1
ρ

∇pn,b = fn+1− (un,a ·∇)un,a, ∇·un,b = 0

un,b|∂Ω = 0
(3.10)
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FIGURE 7. Evolution of the density along the time interval (0,60).
From left to right and top to bottom: ρ(· , t) at times t =
0 (initial state),1.15,2.175,3.75,6.3,10.875,59.925 and, finally, p at time
t = 59.925.
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and then we proceed with the coordination step

un+1 =
1
2
(un,a +un,b), pn+1 = pn,b. (3.11)

(2) Parallelization in the space variable — As before, the previous Burgers-like and Stokes-
like problems can be reduced to families of scalar Poisson problems (3.5). Each of
them can be decomposed to give a collection of ordinary differential problems and a
simultaneous directions algorithm allows to compute a numerical solution.

Specifically, let us fix ω ∈ (0,2) and κ ∈ (0,1), let us introduce the notation Pw :=
−α∆w+ βw and set P = P1 + · · ·+PN with Pi := −α∂i + β/N. Then, we start from
U0 and, for each m ≥ 0, we solve in parallel until convergence the two-point boundary
value problems{

(1+κPn)Um+1,n = (1−κ ∑ j 6=n Pj)Um +κ f

Um+1,n = 0 at the endpoints
(3.12)

for n = 1, . . .N, together with the coordination steps

Um+1 =
ω

N

N

∑
n=1

Um+1,n +(1−ω)Um. (3.13)

A complete formulation, a convergence analysis and several satisfactory numerical experi-
ments can be found in [1, 10, 11].

In particular, the following result is proved in [11]:

Theorem 3.2. The conclusions in Theorem 3.1 still hold for the time approximation (3.9)–(3.11)
with the nonlinear term modified by

(un,a ·∇)un,a +
1
2
(∇ ·un,a)un,a

and the spatial approximation given by (3.12)–(3.13).

It can be shown that, even with a moderate number of processors, there is a considerable
computational gain of this method. For instance, for the 2D cavity problem with Re = 4000,
the parallel efficiency associated to an experiment with 8 processors is 0.6. This means that
the computational time is around 1/5 of the time corresponding to the (sequential) Peaceman-
Rachford scheme (3.3)–(3.4).

Again, the scheme leads to very good numerical results. Some of them are shown in Fig. 8–
12.

FIGURE 8. The streamlines for the step test, with Re = 191.
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FIGURE 9. The 2D cavity test with Re = 4000 — Streamlines. Upper velocity
is parallel to e1.

FIGURE 10. The 2D cavity test with Re = 4000 — Isobars. Upper velocity is
parallel to e1.

3.3. Splitting and Monge-Ampère equations. In this section, I will recall a numerical method
introduced by Glowinski to solve the stationary Monge-Ampère equation in two and three di-
mensions, see [22, 23].
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It will be seen that one of the main ideas is to reformulate the problem as the search of a
time-independent solution to a nonlinear evolution system and, then, perform suitable splitting.

The problem under consideration is the following:{
detD2u = f (x) in Ω

u = g(x) on ∂Ω.
(3.14)

Once more, Ω ⊂ RN is a bounded connected open set (N = 2 or N = 3) and, for instance,
f ∈ L2(Ω) and g ∈ H3/2(∂Ω), with f ≥ 0 and g≥ 0.

The Monge-Ampère equation can be applied to the resolution of problems in differential
geometry, optimal transportation, theoretical physics, etc.; see for instance [2, 17, 24], where the
existence and regularity properties of the solutions have also been discussed. Several attemps
to produce efficient numerical approximations can be found in [6, 36].

In order to solve (3.14), the first step is to rewrite the problem in the equivalent form{
−∇ ·

(
cof (D2u)∇u

)
=−2 f (x) in Ω

u = g(x) on ∂Ω,
(3.15)

where cof (D2u) denotes the co-factor matrix of D2u.
Then, with the help of a small parameter ε > 0, the system is approximated by a regularized

mixed problem for u and p := D2u:
−∇ · ((εI+ cof (p))∇u) =−2 f (x) in Ω

u = g(x) on ∂Ω

p−D2u = 0 in Ω.
(3.16)

(a) x1 = 0.5 (b) x2 = 0.5 (c) x3 = 0.5

FIGURE 11. The 3D cavity test with Re = 1000 — Isobars. Upper velocity is
parallel to e1.

To solve (3.16), the following time-dependent analog is considered:
ut−∇ · ((εI+ cof (p))∇u) =−2 f (x) in Ω× (0,+∞)
u = g(x) on ∂Ω× (0,+∞)

pt + γ(p−D2u) = 0 in Ω× (0,+∞)
u|t=0 = u0, p|t=0 = p0 in Ω,

(3.17)
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FIGURE 12. The 3D cavity test with Re = 1000 — Velocity field. Upper veloc-
ity is parallel to e1.

with carefully chosen γ > 0, u0 and p0.
Finally, a splitting method is applied to integrate in time and compute a stationary solution.

More precisely, to go from tn to tn+1, we first solve the linear elliptic problem
un+1−un

τ
−∇ ·

(
(εI+ cof (pn))∇un+1)=−2 f (x) in Ω

un+1 = g(x) on ∂Ω

(3.18)

and then we take
pn+1 = P+

(
e−γτpn +(1− e−γτ)D2un+1) , (3.19)

where P+ is a pointwise projector on the convex cone of symmetric positive semi-definite N×
N matrices.

The reader can find in [22] and [23] details on the spatial approximation of these problems.
Several numerical experiments can also be found there.

These arguments can be adapted to the numerical solution of other fully nonlinear elliptic
equations. One of them is the so called Gauss curvature problem{

detD2u = K(x)(1+ |∇u|2)1+N/2 in Ω

u = g(x) on ∂Ω.
(3.20)

Here, the motivation is the search of a N + 1-dimensional manifold described by an equa-
tion of the form xN+1 = u(x) whose Gaussian curvature K = K(x) and boundary shape are
prescribed. For some theoretical and numerical results, see [5, 26].

Steps similar to those above, lead to the following iterates: to go from tn to tn+1, first solve
un+1−un

τ
−∇·

(
(εI+cof (pn))∇un+1)=−2K(x)(1+|∇un+1|2)1+N/2 in Ω

un+1 = g(x) on ∂Ω

(3.21)
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FIGURE 13. The computed solution to (3.20) in the ball B((0,0);5) with K(x)=
K0(25−|x|2), g(x) = g0x2, K0 = 10−4 and g0 = 2 ·10−3.

and then take pn+1 as in (3.19).
A rather natural way to compute the solution to (3.21) is to consider an equivalent least-

squares reformulation and carry out (for example) conjugate gradient iterates. This reduces the
task to the solution of a (large) family of linear elliptic problems that can be approximated as in
the previous sections, in a completely standard way. Some numerical results obtained this way
are exhibited in Fig 13 and 14. A more complete analysis, with 2D and 3D experiments, will
appear in [14].
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