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GENERALIZATION OF THE ELVIS PROBLEM
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Abstract. The (classical) Elvis problem refers to a particular type of minimum time problem in which the control
dynamics are piece-wise constant and isotropic on two mediums separated by an interface. The somewhat imperti-
nent nomenclature refers to an observation by Timothy Pennings [1] whose dog (named Elvis) enjoyed fetching an
object thrown from the shore of Lake Michigan into the water. Elvis was observed to retrieve the object by going in
a path that resembled how light would refract (according to Snell’s Law) in isotropic mediums. The problem is first
generalized to allow for anisotropic velocity sets that are closed, convex, bounded and with 0 in its interior. Tools
of Convex Analysis are employed to characterize optimum movement. Further generalizations are then considered
with potentially having faster movement on the interface and with more than two mediums.
Keywords. Anisotropic mediums; Convex Optimization; Fully Convex Control; Minimum time problems.
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1. INTRODUCTION

Suppose that M0, M1 ⊆ R2 are two open half-spaces with a common defining vector n ∈ R2

and level r ∈ R:

M0 := H<r
n :=

{
x :=

(
x
y

)
: x, y ∈ R, 〈n,x〉< r

}
(where 〈·, ·〉 is the usual inner product) and M1 := H>r

n (similarly defined) with closures inter-
secting at Σ := H=r

n := H≤r
n
⋂

H≥r
n . We use this notation later for half-spaces in Rn, but first

consider n = 2, n =

(
0
1

)
, r = 0 so that M0 is the lower half-plane, M1 the upper half-plane and

Σ the x-axis (see Fig. 1).
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FIGURE 1. The angles of incidence and Snell’s Law

1.1. Classical Elvis problem. Each half-space is endowed with a speed parameter ri (i = 0, 1)
that dictates how fast Elvis can move in that medium, and it is assumed Elvis can go that speed in
any direction (the mediums are isotropic). Let F0 := r0B (where B is the unit ball) and F1 := r1B

be the respective velocity sets on M0, M1. Given x0 =

(
x0
y0

)
∈M0 and x1 =

(
x1
y1

)
∈M1, the

classical Elvis problem is to find a feasible path connecting x0 to x1 in minimal time, whereby
feasible means velocities of the path can be taken from F0 while it is in M0 and from F1 while
in M1. The path has to cross the interface Σ at some point y. The shortest time it can leave x0
and get to y is T0(y) := 1

r0

∥∥y−x0
∥∥, and similarly the shortest time to move from y into M1 and

arrive at x1 is T1(y) := 1
r1

∥∥x1− y‖. The goal is then to minimize T (y) := T0(y)+T1(y) over

y ∈ Σ. A reduction is possible since y =

(
x
0

)
is on the x-axis, and the problem becomes an

elementary calculus problem of minimizing

T (x) =
1
r0

√
(x− x0)2 + y2

0 +
1
r1

√
(x1− x)2 + y2

1

over x ∈ R. Taking the derivative, setting it equal to 0, and solving for x̄ produces the classical
Snell’s Law:

1
r0

x̄− x0√
(x̄− x0)2 + y2

0

=
1
r1

x1− x̄√
(x1− x̄)2 + y2

1

⇒ sin(θ0)

r0
=

sin(θ1)

r1
,

where θ0, θ1 are the angles of incidence. See Figure 1. This condition is also sufficient for
optimality of x̄ due to the convexity of T (·), but one should note that Snell’s Law by itself does
not provide an obvious means to find the solution x̄ – calculus did that.
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1.2. Generalized Elvis problem. We first generalize this problem from balls to using so-called
Elvis velocity sets F ⊆ Rn that are nonempty, closed, convex, bounded, and contain 0 in its
interior. Given v ∈Rn and such F, the shortest time to traverse from 0 to v using velocities from
F is recorded by the gauge function

γ F(v) := inf
{

t > 0 :
1
t

v ∈ F
}
= inf{t > 0 : v ∈ tF} .

With general Elvis velocity sets Fi associated to Mi and xi ∈ Mi (i = 0, 1), we consider the
(anisotropic) problem

inf
[
γ F0(y−x0)+ γ F1(x1−y)

]
over y ∈ Σ.

(
Px0,x1

)
This is a convex optimization problem for which the tools of Convex Analysis are amply suited
for a complete investigation. In fact, one may say this is a prototype of a Convex Optimization
problem with the objective function and constraints separated in a manner that Fenchel Duality
transparently applies. Related to our formulation is Gauge Optimization, introduced by Freund
[2] and further developed by Friedlander et al. [3], but these do not appear to be directly relevant
to our development since our objective function is the sum of gauges with an affine constraint.

Our main theorem provides optimality conditions for a given y to solve
(
Px0,x1

)
:

Theorem 1. A necessary and sufficient condition for y ∈ Rn to solve
(
Px0,x1

)
is the existence

of ζ 0, ζ 1 ∈ Rn satisfying

ζ 0 ∈ ∂γF0

(
y−x0

)
,

−ζ 1 ∈ ∂γF1

(
x1−y

)
, and

ζ 0 +ζ 1 ∈ −NΣ(y).

The current paper fills in details of the recent conference paper [9]. A full explanation of
the notation is given in the next section, as well as a review of Convex Analysis (CA). We
are attempting to make the paper self-contained except for five main theorems of CA which
are stated as Theorems 2-6. Most of Proposition 2 is quoted from [10] but is proved here as
well; it offers a variety of equivalent primal/dual charaterizations of the subgradients of gauge
functions with their polars. Section 3 begins with a discussion of how

(
Px0,x1

)
is related to a

minimum time control problem, and the proof of Theorem 1 is contained in Section 3.2. A
derivation of the classical Snell’s Law based on Theorem 1 is provided in Section 3.3 followed
in Section 3.4 by a slightly different interpretation of Snell’s Law. Polars of Elvis velocity
sets are also Elvis velocity sets and Section 4 explores how they can be computed in several
circumstances. Section 5 considers special cases of

(
Px0,x1

)
restricted to R2 and Section 6

discusses further generalizations.

2. PRELIMINARIES IN CONVEX ANALYSIS

There are many good texts in Convex Analysis and Optimization [4, 5, 6, 7, 8]. Detailed
proofs of Theorems 2-6 below can be found in these and many other texts. Here we offer a
simplified introductory review that focuses mainly on bounded convex sets; in particular, issues
involving relative interiors and recession properties will be deferred to future work.
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The extended real numbers are denoted by R :=R∪{±∞} and have natural arithmetic prop-
erties and order relations. The one convention that could be ambiguous but biases our approach
to minimization problems and convexity is ±∞∓∞ =+∞. Only 0 · (±∞) remains undefined.

The set of all nonempty closed and convex sets of Rn is denoted by C , and recall this means
S ∈ C if and only if S 6= /0 is closed and satisfies

x0,x1 ∈ S, 0≤ λ ≤ 1 ⇒ (1−λ )x0 +λx1 ∈ S. (2.1)

Associated to any function f (·) : Rn→ R is its effective domain dom( f ) := {x : f (x) < +∞}
and its epigraph epi( f ) := {(x,r)> : f (x)≤ r} ⊆ Rn+1. One says f (·) is (i) lower semicontin-
uous (lsc) if epi( f ) is closed; (ii) proper if epi( f ) 6= /0 and {x}×R 6⊆ epi( f ) ∀x ∈ Rn; and (iii)
convex if epi( f ) is a convex set of Rn+1. The set of all lsc, proper, convex functions is denoted
by F .

Associated to any set S⊆ Rn is the indicator function IS(·) : Rn→ R defined by

IS(x) =

{
0 if x ∈ S
+∞ if x 6∈ S.

One has IS(·) ∈F if and only if S ∈ C . The distance function dS(·) : Rn→ R is given by

dS(z) = inf
{
‖z− s‖ : s ∈ S

}
and is Lipschitz continuous of rank one. The set of projections of z ∈ Rn into S consists of

projS(z) :=
{

s ∈ S : dS(z) = ‖s− z‖
}
.

One has S ∈ C if and only if dS(·) ∈F if and only if projS(z) is a singleton for all z ∈ Rn.

2.1. The Separation Theorem. The backbone of convex (perhaps all) optimization is

Theorem 2 (Separation Theorem). Suppose S ∈ C and z 6∈ S. Then there exists ζ ∈ Rn satis-
fying

sup
{
〈ζ ,y〉 : y ∈ S

}
< 〈ζ ,z〉. (2.2)

Suppose S ∈ C . The normal cone NS(x) to S at x ∈ S is the set of ζ ∈ Rn satisfying

〈ζ ,y−x〉 ≤ 0 ∀y ∈ S. (2.3)

If x 6∈ S, then NS(x) = /0 by definition. A standard proof of the Separation Theorem takes
ζ := z−x where {x}= projS(z). It is easy to see then that ζ ∈NS(x) and the function y 7→ 〈ζ ,y〉
is maximized over y ∈ S at x. Moreover, the boundary is characterized:

x ∈ bdry(S) if and only if NS(x) 6= /0 and 6= {0}.
The closed convex hull co(S) of any set S ⊆ Rn is the smallest C -type set containing S. The
inner representation of co(S) takes the form

co(S) = cl

{
n

∑
i=0

λixi :
{

xi
}n

i=0 ⊆ S,
{

λi
}n

i=0 ∈ Λn

}
(2.4)

= cl

{
k

∑
i=0

λixi : k ∈ N,
{

xi
}k

i=0 ⊆ S,
{

λi
}k

i=0 ∈ Λk

}
.
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Here Λk :=
{
{λi
}k

i=0 : ∑
k
i=0 λi = 1, λ ≥ 0

}
refers to the unit k–simplex and Carathéodory’s

Theorem says there is no loss of generality using only k = n. The Separation Theorem provides
a dual way to characterize co(S) with an outer representation:

co(S) =
⋂{

H≤r
ζ

: ζ ∈ Rn, r ∈ R satisfy S⊆ H≤r
ζ

}
. (2.5)

The associated normal concept for convex functions f (·) ∈F is the subgradient ∂ f (x)⊆Rn

defined as

∂ f (x) :=
{

ζ ∈ Rn :
(

ζ

−1

)
∈ Nepi( f )

(
x

f (x)

)}
.

The subgradient inequality writes this out as

ζ ∈ ∂ f (x) ⇔ f (y)≥ f (x)+ 〈ζ ,y−x〉 ∀y ∈ Rn. (2.6)

If f (·) ∈F and x 6∈ dom( f ), then clearly ∂ f (x) = /0. When S ∈ C , one has

∂ IS(x) = NS(x) ∀ x ∈ Rn.

2.2. The Involutive Theorem. The Legendre-Fenchel conjugate is defined by

f ∗(ζ ) = sup
x∈Rn

{
〈ζ ,x〉− f (x)

}
(2.7)

and belongs to F when f (·) is proper. We are only interested here when f (·) ∈F , in which
case, f ∗(·) ∈F and its conjugate f ∗∗(·) returns to f (·):

Theorem 3 (Involutive Theorem). If f (·) ∈F , then for all x ∈ Rn, we have

f (x) = f ∗∗(x) = sup
ζ∈Rn

{
〈ζ ,x〉− f ∗(ζ )

}
. (2.8)

Let f (·) ∈F . For any x,ζ ∈ Rn, one always has

f (x)+ f ∗(ζ )≥
〈
ζ ,x
〉
.

The next result characterizes when equality holds.

Theorem 4. Suppose f (·) ∈F and x, ζ ∈ Rn. The following are equivalent:
(a) ζ ∈ ∂ f (x);
(b) x attains the supremum of sup

y∈Rn

{
〈ζ ,y〉− f (y)

}
;

(c) x ∈ ∂ f ∗(ζ );
(d) ζ attains the supremum of sup

ξ∈Rn

{
〈ξ ,x〉− f ∗(ξ )

}
;

(e) f (x)+ f ∗(ζ ) = 〈ζ ,x〉.

2.3. Optimization and Convex Calculus. A feature of the subgradient inequality (2.6) is that
a point x is a global minimum of f (·) if and only if 0 ∈ ∂ f (x). A convex optimization problem
has the form

inf f (x) subject to x ∈ S. (P)
where f (·) ∈F and S ∈ C . We assume this is the case and in addition dom( f ) = Rn. Then
( f + IS)(·) ∈ F and will have a global minimum at x (and thereby solve (P)) if and only if
0 ∈ ∂ ( f + IS)(x). We next see how a sum rule can be applied to obtain information directly



6 C.A. GRAHAM, C.K. PEARSON, P.R. WOLENSKI

involving the data f (·) and S. The following result holds in greater generality than stated here,
but is all that we will (at first) require.

Theorem 5 (Sum Rule). Suppose f (·), g(·) ∈F and dom( f ) = Rn. Then ( f +g)(·) ∈F and
ζ ∈ ∂

(
f +g

)
(x) if and only if there exists ζ 1 ∈ ∂ f (x) and ζ 2 ∈ ∂g(x) satisfying ζ = ζ 1 +ζ 2.

Corollary 1. A point x solves (P) if and only if there exists ζ ∈ ∂ f (x) with −ζ ∈ NS(x).

Proof. We have seen x solves (P) if and only if 0 ∈ ∂ ( f + IS)(x). The Sum Rule says this holds
if and only if there exist ζ 1 ∈ ∂ f (x) and ζ 2 ∈ ∂ IS(x) with ζ 1+ζ 2 = 0. The result follows since
∂ IS(x) = NS(x). �

Another somewhat surprising result is the following.

Theorem 6. Suppose f (·) ∈F and dom( f ) = Rn. For x ∈ Rn, if ∂ f (x) = {ζ} (a singleton),
then f (·) is differentiable at x and ζ = ∇ f (x). Moreover, if ∂ f (x) is a singleton for all x ∈ Rn,
then f (·) is continuously differentiable on Rn.

2.4. Polars; Gauge and support functions. Suppose S ∈ C . The polar S◦ of S is defined by

S◦ :=
{

ζ : 〈ζ ,y〉 ≤ 1 ∀y ∈ S
}
.

One always has 0 ∈ S◦, S◦ ∈ C and S⊆ S◦◦. A less obvious fact is

Proposition 1. For any S⊆ Rn.

co
{
{0},S

}
= S◦◦

(
=
{

y : 〈ζ ,y〉 ≤ 1 ∀ζ ∈ S◦
})

. (2.9)

Proof. The inclusion ⊆ in (2.9) is clear as just noted, so consider the opposite inclusion. Sup-
pose z 6∈ co

{
{0},S

}
=: S̃, and set x := projS̃(z) and ζ := z−x 6= 0. Recall (2.3) says y 7→ 〈ζ ,y〉

is maximized over y ∈ S̃ at y = x.
Case 1 〈ζ ,x〉 = 0: Then 〈ζ ,y〉 ≤ 0 for all y ∈ S̃, and so rζ ∈ S◦ for all r > 0. We make the
choice r = 2

‖ζ‖2 , and thus 1 < 2 = 〈rζ ,ζ 〉= 〈rζ ,z〉. Therefore z 6∈ S◦◦.

Case 2 〈ζ ,x〉 6= 0: Then 〈ζ ,x〉> 0 since 0 ∈ S̃. Set r := 1/〈ζ ,x〉> 0 and note rζ ∈ NS̃(x). For
all y ∈ S̃, we have

〈rζ ,y−x〉 ≤ 0 ⇒ 〈rζ ,y〉 ≤ 〈rζ ,x〉= 1

which implies rζ ∈ S◦. On the other hand,

0 < 〈rζ ,ζ 〉= 〈rζ ,z−x〉 ⇒ 〈rζ ,z〉> 〈rζ ,x〉= r〈ζ ,x〉= 1

and therefore again conclude z 6∈ S◦◦.
The two cases combine to validate (2.9). It follows immediately from (2.9) that if 0 ∈ S, then

S = S◦◦. �

We consider two further assumptions that are “dual” to each other in the sense that

0 ∈ int(F) ⇔ F◦ is bounded, and similarly,

F is bounded ⇔ 0 ∈ int(F◦).
(2.10)

The proofs of these facts are elementary. The collection of all nonempty, closed, convex,
bounded sets containing 0 in the interior is denoted by C0. These are called Elvis velocity
sets. It is clear that F ∈ C0⇔ F◦ ∈ C0.
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Two further F -type functions associated with F ∈ C are the gauge γF(·) and support σF(·)
functions given by

γF(v) = inf
{

t > 0 :
1
t

v ∈ F
}
= inf{t > 0 : v ∈ tF}

σF(ζ ) = sup
{
〈ζ ,v〉, v ∈ F

}
= I∗F(ζ ).

It is immediate both γF(·) and σF(·) are positive homogeneous, which means γF(tv) = tγF(v)
for all v ∈ Rn, t ≥ 0, and similarly for σF(·). A few more observations are

(i) γF◦(ζ ) = σF(ζ ) = (IF)
∗(ζ ) ∀ζ ∈ Rn;

(ii) If 0 ∈ F, then γF(v) = σF◦(v) ∀v ∈ Rn;
(iii) If F ∈ C0, then dom

(
γF
)
= Rn = dom

(
γF◦
)

and d(x,y) := γF(x−y) defines a distance-
like function on Rn but possibly without symmetry.

Indeed, (i) follows since

γF◦(ζ ) = inf
{

t > 0 :
1
t

ζ ∈ F◦
}
= inf

{
t > 0 :

〈
1
t

ζ ,v
〉
≤ 1 ∀v ∈ F

}
= inf{t > 0 : 〈ζ ,v〉 ≤ t ∀v ∈ F}= sup

v∈F
〈ζ ,v〉

= σF(ζ ) = sup
v∈Rn

{
〈ζ ,v〉− IF(v)

}
= (IF)

∗(ζ ).

Part (ii) follows from part (i) by interchanging F and F◦, which now is valid because (2.9)
holds. The first part of (iii) is immediate since 0 ∈ int(F) and 0 ∈ int(F◦), and so consider the
last statement. Of course one may have d(x,y) 6= d(y,x), but the triangle inequality holds: For
x, y, z ∈ Rn, we have (by homogeneity and convexity)

d(x,y) = γF(x−y) = 2γF

(
x− z

2
+

z−y
2

)
≤ 2

[
γF(x− z)

2
+

γF(z−y)
2

]
= d(x,z)+d(z,y).

Our theory can be developed with bounded velocity sets F ∈ C with 0 ∈ F (rather than
0 ∈ int(F) as in [11], and will be in future work. The generalizations discussed in later sec-
tions will allow optimum movement on the boundary and will necessarily require similar ve-
locity sets in lower dimensions. As is common in CA theory, results valid on Rn have versions
modified to relative affine spaces. Three advantageous properties of C0 accrue with the addi-
tional requirements (2.10), which justify singling them out for this introductory presentation.
Firstly, the gauge functions are finite-valued and the boundary of F is easily identified as equal-
ing {v : γF(v) = 1} (and similarly with F◦); secondly, the Sum Rule can be invoked without
any further restriction; and thirdly, the main tools contained in the following proposition can be
stated without recourse to extended arithmetic and recession functions.

Proposition 2. Let F ∈ C0. One has

∂γF(0) = F◦ and ∂γF◦(0) = F.

For any nonzero v, ζ ∈ Rn, the following statements are equivalent:
(a) 〈ζ ,v〉= γF(v)γF◦(ζ ).
(b) v

γF(v)
maximizes u→ 〈ζ ,u〉 over u ∈ F.

(c) ζ ∈ NF

(
v

γF(v)

)
= ∂σF

(
v

γF(v)

)
= ∂γ∗F◦

(
v

γF(v)

)
.
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(d) ζ

γF◦(ζ )
maximizes ξ → 〈ξ ,v〉 over ξ ∈ F◦.

(e) v ∈ NF◦
(

ζ

γF◦(ζ )

)
= ∂σF◦

(
ζ

γF◦(ζ )

)
= ∂γ∗F

(
ζ

γF◦(ζ )

)
.

(f) v
γF(v)

∈ ∂γF◦(ζ ).

(g) ζ

γF◦(ζ )
∈ ∂γF(v).

Proof. Recall ζ ∈ F◦ if and only if 1≥ 〈ζ ,v〉 for all v ∈ F, and this holds if and only if

1≥ sup
06=v∈Rn

〈
ζ ,

v
γF(v)

〉
⇔ γF(v)≥ 〈ζ ,v〉 ∀v ∈ Rn.

Since γF(0) = 0 and by the subgradient inequality (2.6), the last inequality is equivalent to
ζ ∈ ∂γF(0). A similar argument shows ∂γF◦(0) = F.

Now suppose v, ζ ∈Rn are any nonzero elements of Rn. The positive homogeneity of gauge
functions implies

γF

(
v

γF(v)

)
= 1 = γF◦

(
ζ

γF◦(ζ )

)
.

Therefore v
γF(v)

∈ F and ζ

γF◦(ζ )
∈ F◦. Assume (a). We have (using the above Observation (i))

that 〈
ζ ,

v
γF(v)

〉
= γF◦(ζ ) = σF(ζ ) = sup

u∈F
〈ζ ,u〉

which says (b) holds. The steps are reversible, so in fact (a) and (b) are equivalent. Theorem 4(a)
and (b) say these are also equivalent to ζ ∈ ∂ IF

(
v

γF(v)

)
= NF

(
v

γF(v)

)
, which is (c). The same

reasoning with the roles of (v,F) and (ζ ,F◦) switched shows the equivalence with parts (d) and
(e). Finally, Theorem 4(a) and (c) imply the equivalence of (c) and (f), and of (e) and (g). �

2.5. Strict convexity and smooth boundary. Notions of strict convexity (for sets and func-
tions) can be stated more generally than is being presented here, but we keep it simple by
restricting ourselves to Elvis velocity sets that have finite-valued gauge functions.

Let F ∈ C0. Then F is strictly convex provided ∀v ∈ bdry(F),

v = (1−λ )v0 +λv1, v0, v1 ∈ F, 0 < λ < 1 ⇒ v = v0 = v1.

This means there are no “flat” spots on the boundary of F. This property is equivalent to

γF(v0) = 1 = γF(v1), v0 6= v1 ⇒ γF(vλ )< 1 ∀λ ∈ (0,1)

where vλ := (1−λ )v0 +λv1.
A dual property is that F has smooth boundary, which means ∂σF◦(ζ ) is a singleton for

all 0 6= ζ ∈ Rn. Recall Theorem 6 which says this is equivalent to γF◦(·) being continuously
differentiable away from 0. In conjunction with Proposition 2, this says for all v ∈ bdry(F),
NF(v) = R+ ·ζ is a single ray that is continuous in v 6= 0, hence the name “smooth boundary”.
It is a dual property because Observation (ii) implies

F is strictly convex ⇔ F◦ has smooth boundary

F has smooth boundary ⇔ F◦ is strictly convex .
(2.11)

We will not need the corresponding differentiable/strict convex statements for f (·), f ∗(·) ∈F .
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3. THE GENERALIZED ELVIS PROBLEM

3.1. Reachable sets. We now return to the Elvis problem and first briefly explain its relation-
ship with control theory. Our preoccupation with generalized Elvis problems would be less
interesting without this connection and motivation.

It is well-known that a controlled dynamic equation

ẋ(t) = f
(
t,x(t),u(t)

)
a.e. t ∈ [t0, t1]

u(t) ∈ U(t) a.e. t ∈ [t0, t1]

x(t0) = x0

can be equivalently reformulated as a differential inclusion (DI)

ẋ(t) ∈ F
(
t,x(t)

)
a.e. t ∈ [t0, t1]

x(t0) = x0
(3.1)

where the data (DI) multifunction is F(t,x) =
{

f (t,x,u) : u ∈ U(t)
}

. The trajectory x(·) in
both systems is absolutely continuous, and by equivalence we mean the state trajectories of
the two systems coincide. The (DI) theory can thus be developed with sole attention on the
state trajectories x(·) and suppress mentioning the control variable u at all; this amplifies the
importance of various data assumptions.

Of fundamental importance to studying (3.1) is the reachable set (from time t0 to time t1 ≥ t0
and from x0 ∈ Rn) defined as

Rt0,t1(x0) :=
{

x(t1)
∣∣∣∣ x(·) satisfies (3.1)

}
.

Uniqueness theorems characterizing the time-parameterized multifunctions x |⇒ Rt0,t1(x) were
first proven in [12] and alternatively and independently in [13] and [14]. There are also vari-
ations. Even for differential equations, however, an additional property on the data (like a
Lipschitz assumption) is required to obtain uniqueness results. Similarly with differential in-
clusions, one usually requires the multifunction x|⇒ F(t,x) be Lipschitz with respect to the
Hausdorff metric; another approach uses a weaker “one-sided” Lipschitz condition [15]. In
particular, certain state-discontinuities of multifunctions F(t, ·) are problematic with regard to
uniqueness issues and in identifying the boundary of Rt0,t1(x0).

Our approach to the Elvis problem is to consider piece-wise constant multifunctions on two
open half-space mediums M0 = H<r

n , M1 = H>r
n with a common interface Σ := cl(M0)

⋂
cl(M1).

Assume F(t,x) ≡ Fi ∈ C0 when x ∈Mi and for the moment, leave its value on Σ undefined.
(See Section 5.1 where this is discussed in detail). Such multifunctions have the simplest type
of discontinuity, and for any autonomous problem (i.e. F(·) is independent of t), there is no loss
in generality in taking t0 = 0 in (3.1) and denoting Rt0,t1(x0) as just RT (x0) (where T := t1− t0).

We call a trajectory x(·) : [0,T ]→ Rn time-optimum provided x(T ) ∈ bdry
(
RT (x0)

)
. Since

we are assuming 0 ∈ int(F), this is equivalent to x(t) ∈ bdry
(
Rt(x0)

)
for all 0≤ t ≤ T .

Suppose a medium M is open with a constant velocity set F ∈ C0. Fix x0 ∈M, v ∈ F, and
suppose T > 0 is sufficiently small so that x0 +T F⊆M. Then x(t) := x0 + tv (0≤ t ≤ T ) is a
trajectory and is time-optimum if and only if v∈ bdry(F). Moreover, all points in RT (x0) can be
reached by such a simple straight-line trajectory. To see this, suppose associated to x1 ∈RT (x0)
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is a trajectory x(·) := [0,T ]→M with x(T ) = x1 and ẋ(t) ∈ F has exactly two values v0 6= v1.
Set ti = m

{
t : ẋ(t) = vi

}
(i = 0, 1) where m(·) is Lebesgue measure on [0,T ]. Then

x1 = x0 +
∫ T

0
ẋ(s)ds = x0 + t0v0 + t1v1 = x0 +T

(t0
T

v0 +
t1
T

v1

)
= x0 +T v

where v :=
( t0

T v0 +
t1
T v1
)
. Of course v belongs to F by convexity. Hence if x1 can be reached

with a trajectory with two distinct velocities, it can be reached by a trajectory with only one
velocity. If γF(v) < 1, then it will be able to be reached in a time strictly less than T by
using the velocity v/γF(v) ∈ F. The argument can be modified to include any finite number of
velocities, and since such functions are dense in L1[0,T ], every point in RT (x0) can be reached
by a straight-line trajectory, as claimed.

In the case x1 ∈ bdry
(
RT (x0)

)
, the straight-line trajectory x(t) = x0 + tv realizing x1 will be

time-optimum, and that holds if and only if v ∈ bdry(F). Moreover, it is unique if and only if
∂γF◦(v) is a singleton. Hence all straight-line time-optimum trajectories are unique if and only
if F is strictly convex.

3.2. The Problem and its optimality conditions – proof of Theorem 1. So now we are given
two half-spaces M0 := H<r

n , M1 := H>r
n of Rn each having an associated Elvis velocity set F0,

F1 ∈ C0, and the intersection of their closures is the hyperplane Σ := cl(M0)∩ cl(M1) = H=r
n .

For given x0 ∈M0 and x1 ∈M1, the generalized Elvis problem
(
Px0,x1

)
is equivalent to

inf
y∈Rn

{
γF0(y−x0)+ γF1

(
x1−y)+ IΣ(y)

} (
Px0,x1

)
One notes this matches Pennings’ formulation if M0 is the lower half-space, M1 the upper, and
F0 = r0B, F1 = r1B.

It is easy to see there exists at least one optimum solution y to
(
Px0,x1

)
. Thus

0 ∈ ∂

[
γF0((·)−x0)+ γF1

(
x1− (·))+ IΣ(·)

]
(y).

Recall Observation (iii) says dom
(
γF0

)
= Rn = dom

(
γF1

)
, and so the Sum Rule is applicable

and produces vectors ζ 0, ζ 1 ∈ Rn satisfying

ζ 0 ∈ ∂
[
γF0

(
(·)−x0

)]
(y), (3.2)

ζ 1 ∈ ∂
[
γF1

(
x1− (·)

)]
(y), and (3.3)

ζ 0 +ζ 1 ∈ −∂
(
IΣ

)
(y) =−NΣ(y).

The following lemma interprets (3.2) and (3.3).

Lemma 7. Suppose f (·) ∈F and x̄ ∈ Rn.

(a) Let g1(x) := f (x− x̄) and suppose y ∈ dom(g1). Then g1(·) ∈F and

∂g1(y) = ∂ f (y− x̄).

(b) Let g2(x) := f (x̄−x) and suppose y ∈ dom(g2). Then g2(·) ∈F and

∂g2(y) =
{

ζ : −ζ ∈ ∂ f (x̄−y)
}
.
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Proof. Consider (a). It is clear that g1(·) ∈F . By (2.6) we have

ζ ∈ ∂g1(y) ⇔ g1(x)≥ g1(y)+ 〈ζ ,x−y〉 ∀x ∈ Rn

⇔ f (x− x̄)≥ f (y− x̄)+ 〈ζ ,x−y〉 ∀x ∈ Rn

⇔ f (z)≥ f (y− x̄)+ 〈ζ ,z− (y− x̄)〉 ∀z ∈ Rn

⇔ ζ ∈ ∂ f (y− x̄).

Now consider (b), and it is clear g2(·) ∈F . Again by (2.6), we have

ζ ∈ ∂g2(y) ⇔ g2(x)≥ g2(y)+ 〈ζ ,x−y〉 ∀x ∈ Rn

⇔ f (x̄−x)≥ f (x̄−y)+ 〈ζ ,x−y〉 ∀x ∈ Rn

⇔ f (z)≥ f (x̄−y)+ 〈−ζ ,z− (x̄−y)〉 ∀z ∈ Rn

⇔ −ζ ∈ ∂ f (x̄−y).

This is (b). �

Using the lemma on (3.2),(3.3) provides necessary and sufficient conditions for y to solve(
Px0,x1

)
as the existence of ζ 0, ζ 1 ∈ Rn satisfying

ζ 0 ∈ ∂γF0

(
y−x0

)
, (3.4)

−ζ 1 ∈ ∂γF1

(
x1−y

)
, and (3.5)

ζ 0 +ζ 1 ∈ −NΣ(y). (3.6)

We now draw on Proposition 2(g) to deduce

γF◦0(ζ 0) = 1 = γF◦1(−ζ 1). (3.7)

The Maximum Principle (Proposition 2(b)) also holds:

v 7→ 〈ζ 0,v〉 is maximized over v ∈ F0 at v = v0 (3.8)

v 7→ 〈−ζ 1,v〉 is maximized over v ∈ F1 at v = v1, (3.9)

where

v0 :=
y−x0

γF0(y−x0)
∈ F0 and v1 =

x1−y
γF1(x1−y)

∈ F1

are the velocities used while an optimum straight-line trajectory is in their respective regions.

3.3. Derivation of the classical Snell’s Law. Although we derived Snell’s Law from elemen-
tary calculus in Section 1, we next see how our optimality conditions can do the same thing.

Recall n = 2, M0 (resp. M1) the lower (resp. upper) half-plane, Σ the x-axis, F0 = r0B,
F1 = r1B, where r0, r1 > 0 are the speed parameters. Recall F◦i =

1
ri

B for i = 0, 1. By (3.7), the
ζi’s in (3.4)-(3.6) can be represented by an angle θi ∈ [0,2π) with

ζ 0 =
1
r0

(
sin(θ0)
cos(θ0)

)
and −ζ 1 =

1
r1

(
sin(θ1)
cos(θ1)

)
.

Conditions (3.8), (3.9) imply the optimum velocities are

v0 = r0

(
sin(θ0)
cos(θ0)

)
and v1 =−r1

(
sin(θ1)
cos(θ1)

)
,
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which geometrically explain the angles θ0, θ1 — see Figure 1. Now NΣ(y) equals the cone that
is the y-axis, and so (3.6) implies

ζ 0 +ζ 1 ∈
{(

0
y

)
: y ∈ R

}
.

Therefore the first component of ζ 0 +ζ 1 is equal to 0, or that

sin(θ0)

r0
=

sin(θ1)

r1
.

3.4. Interpretation of Snell’s Law in R2. The problem as stated in
(
Px0,x1

)
had fixed initial

point x0 ∈M0 and terminal point x1 ∈M1 and asked to find y ∈ Σ through which a trajectory
would pass in least time. One can make a reduction, as is done classically with centered balls, if

bdry(F) has a smooth convex parameterization: F=

{(
x
y

)
: a≤ x≤ b and − f (x)≤ y≤ f (x)

}
where f (·) : [a,b]→ R+ is continuous convex and smooth on (a,b). Or the roles of x and y can
be switched, or modified nonsymmetric cases can be considered. If this is so, then the problem
can be solved by elementary calculus. This is the case for ellipses whose centers lie on one of
the axes. However, finding optimum points y more generally seems quite difficult since param-
eterizations and reductionist formulas are not available. We consider a simple algorithm in [16]
based on our optimality conditions. Here we suggest a modified formulation of the problem
which in essence finds all solutions passing through a point y ∈ Σ that are optimal for a point
x1 ∈M1.

Turning the problem on its head, we start with a given x0 and y ∈ Σ and note the least time to
go from x0 to y is γF0(y−x0) (assuming this is the Fast-to-Slow scenario - see Section 5.2). The
question is then how can (if possible) the trajectory enter M1 with velocities from F1 in such a
way that the endpoint of the trajectory will remain on the boundary of the reachable set? If x1
is such an endpoint, then y solves problem

(
Px0,x1

)
.

4. CALCULATING SOME POLARS

Before going into further details on solving generalized Elvis problems, this section presents
techniques and examples to calculate the polar of a given F ∈ C0. This can be surprisingly
more difficult than it may first appear because gauge functions do not lend themselves to easy
computation. However, support functions can be easily found since they themselves are defined
as the value of a convex optimization problem. We can hence find the polar through using
Observation (i). We provide details in Section 4.3.

4.1. Norms. If ‖ · ‖ is any norm on Rn, then the dual space Rn associated with (Rn,‖ · ‖) has a
dual norm ‖ · ‖∗ defined by

‖ζ‖∗ = sup
‖x‖=1

∣∣〈ζ ,x〉∣∣
If F :=

{
x ∈ Rn : ‖x‖ ≤ r

}
=: rB is an r-ball (r > 0) centered at 0 in this norm, then

F◦ :=
{

ζ ∈ Rn : ‖ζ‖∗ ≤ 1
r

}
.

If F = x0+ rB (where ‖x0‖< r) is a non-centered ball, then F◦ has no simple formula. If ‖ ·‖ is
differentiable away from 0, then F◦ can be calculated by the methods provided in Section 4.3. At
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the opposite extreme, if F has the structure of a polytope (Section 4.4), then F◦ can be obtained
with a simple formula. The unit balls in the 1 or ∞-norms are like this.

4.2. Ellipsoids. A filled-in centered ellipse in R2 with axis lengths a, b has the form

F :=
{(

x
y

)
:

x2

a2 +
y2

b2 ≤ 1
}
. (4.1)

We’ll see below that

F◦ :=
{(

α

β

)
: a2

α
2 +b2

β
2 ≤ 1

}
(4.2)

Similar statements for an ellipsoid in Rn hold as well:

F :=

x =

x1
...

xn

 ∈ Rn :
n

∑
i=1

x2
i

a2
i
≤ 1

 ⇒ F◦ =

ζ =

ζ1
...

ζn

 ∈ Rn :
n

∑
i=1

a2
i ζ

2
i ≤ 1


The formulas for polars of non-centered and rotated ellipsoids are considerably more com-

plicated, but nonetheless can be calculated by similar means (at least in dimension 2) as demon-
strated in the next section.

4.3. Parameterized smooth manifolds. Now suppose an Elvis velocity set has the form

F :=
{

x ∈ Rn : f (x)≤ 0
}

(4.3)

where f (·) : Rn → R is C1 and convex. The polar F◦ can be found (at least in principle) by
recalling Observation (i) that says γF◦(ζ ) = σF(ζ ). We have

ζ ∈ F◦ ⇔ σF(ζ ) = γF◦(ζ )≤ 1.

We can (in some instances) explicitly find σF(ζ ) by solving the convex optimization problem

inf
v∈Rn
〈−ζ ,v〉 subject to v ∈ F.

(
Pζ

)
and noting σF(ζ ) =− inf

(
Pζ

)
.

4.3.1. Ellipses in R2. Consider the case where f (·) : R2→ R is given by

f (x) := f
(

x
y

)
:=

x2

a2 +
y2

b2 −1,

(a 6= 0, b 6= 0), and so F in (4.3) is the ellipse as in (4.1). Let ζ ∈ R2. To calculate σF
(
ζ
)
, we

first find argmin
(
σF
(
−ζ
))

by solving the convex optimization problem inf
{
〈−ζ ,v〉 : v ∈ F

}
.

Written in coordinates ζ =:
(

α

β

)
, v =:

(
x
y

)
, this is

inf
[
−αx−βy

]
subject to

x2

a2 +
y2

b2 −1≤ 0.

The Lagrangian L(·, ·) : R2×R→ R is

L
((

x
y

)
,λ

)
=−αx−βy+λ

[
x2

a2 +
y2

b2 −1
]
.
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Necessary (and sufficient) conditions consist of the existence of λ ≥ 0 and the vanishing of the
gradient of L

(
·,λ
)

with respect to v:

0 = ∇x,yL
((

x̄
ȳ

)
,λ

)
=

(
−α +

2x̄λ

a2 ,−β +
2ȳλ

b2

)
⇒ αa2

2x̄
= λ =

βb2

2ȳ

or that ȳ = βb2

αa2 x̄. Using x̄2

a2 +
ȳ2

b2 = 1 gives x̄2 = a4α2

a2α2+b2β 2 and ȳ2 = b4β 2

a2α2+b2β 2 . Hence

σF(ζ ) =

〈(
α

β

)
,

(
x̄
ȳ

)〉
=

a2α2√
a2α2 +b2β 2

+
b2β 2√

a2α2 +b2β 2
=
√

a2α2 +b2β 2.

As mentioned previously, F◦ =
{

ζ : σF(ζ )≤ 1
}

, and therefore (4.2) holds.

4.4. Polytopes. A polytope F is a bounded set of the form

F =
k⋂

i=1

H≤ri
ζ i

where ζ 1, . . . ,ζ k ∈ Rn and r1, . . . ,rk ∈ R. We can assume ‖ζ i‖ = 1 for each i by adjusting ri.
Note

0 ∈ F ⇔ ri ≥ 0 ∀ i and 0 ∈ int(F) ⇔ ri > 0 ∀ i.
A polytope F is finitely generated ([4], Theorem 19.1) when there are finite many points v1, . . . ,v`
(taken here as the extreme points of F) so that F = co{v1, . . . ,v`}.
Theorem 8. Let F be a polytope with 0 ∈ int(F), and suppose the external and internal repre-
sentations are

F =
k⋂

i=1

H≤ri
ζ i

= co{v1, . . . ,v`},

where each ‖ζ i‖= 1, ri > 0, and {v1, . . . ,v`} is the set of extreme points. Then the polar F◦ has
external and internal representations as

F◦ =
⋂̀
j=1

H≤1
v j

= co
{

1
r1

ζ 1, . . . ,
1
rk

ζ k

}
. (4.4)

Proof. Let S equal the right hand side of (4.4). Clearly for each i = 1, . . . ,k we have for all v∈ F
that 〈

ζ i,v
〉
≤ ri ⇔

〈
1
ri

ζ i,v
〉
≤ 1

which implies 1
ri

ζ i ∈ F◦. That S ⊆ F◦ follows from the convexity of F◦. On the other hand,
suppose ξ 6∈ S, and let v := ξ −projS(ξ ). Then there exists 1≤ i0 ≤ k for which〈

1
ri0

ζ i0,v
〉
= sup

ζ∈S
〈ζ ,v〉< 〈ξ ,v〉. (4.5)

Since 0∈ int(F), v can be re-scaled to belong to F (replace v by v/γF(v)), and by so doing, (4.5)
remains valid with the left side equal to 1. This shows ξ 6∈ F◦ and we conclude F◦ = S. It is
clear that S is contained in the intersection in (4.4), and also that the intersection is contained in
F◦. This implies the equality of all three sets as in (4.4). �

Corollary 2. With F as in Theorem 8, we have 0 ∈ int
(

co
{

1
r1

ζ 1, . . . ,
1
rk

ζ k

})
.
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v1v2

v3 v4

ζ 1

ζ 2

ζ 3

ζ 4

F

ζ 1

ζ 2

ζ 3

ζ 4

v1v2

v3 v4

F◦

FIGURE 2. Duality between ∞ and 1 norms

4.4.1. The infinity and one norms in R2. We saw in Section 4.1 the unit ball of a norm has its
polar equal the unit ball in the dual norm. In particular, the ∞ and one norms in R2 are polar to
each other. This can also be seen from Theorem 8 as illustrated in the following simple example
- see Figure 2.

F = B∞ =
4⋂

i=1

H≤1
ζ i

= co
{

v j : j = 1, . . . ,4
}
, where

{
ζ i : i = 1, . . . ,4

}
=

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
and

{
v j : j = 1, . . . ,4

}
=

{(
1
1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
1
−1

)}

Then F◦ = B1 =
4⋂

j=1

H≤1
v j

= co
{

ζ i : i = 1, . . . ,4
}

.

5. EXAMPLES IN R2

We now restrict attention to R2 and let n =

(
0
1

)
∈ R2. As in the classical Elvis problem, the

two regions are the lower half-plane M0 := H<0
n and the upper half-plane M1 := H>0

n , and the
interface is the x-axis Σ := H=0

n . The dynamics allow for general Elvis velocity sets F0, F1 ∈ C0.
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Recall one main concern is determining which points lie on the boundary of the reachable
set RT (x0). We also desire every reachable set to be closed, which is equivalent to saying there
is a time-optimum arc connecting any two points x0, x1 ∈ R2. If x0 ∈M0 and x1 ∈M1, such
an optimum arc always exists (we’ll discuss this further below). If the terminal point x1 instead
lies in cl(M0) then other possibilities can occur. We shall introduce structural conditions on
how an arc can move on Σ that are sufficient so that existence always holds.

We occasionally abuse notation in dealing with elements in Σ. The formal representation of

an element y ∈ Σ⊆ R2 is y =

(
x
0

)
, but when ordering or taking min/max of elements of Σ, we

are only referring to their first component. This should be clear from the context. For example,

if z =
(

x
y

)
∈R2, the Σ-projection projΣ(z) may refer only to x instead of its technical definition

as
(

x
0

)
. Similar considerations are in effect for elements of the tangent space TΣ.

5.1. Discussion regarding interface velocity. An issue deferred earlier was how movement
on the interface Σ should be treated. There are several cases to consider with many possibilities
and generalizations, and our point of view is influenced by distinguishing between the minimal
time optimum control problem (that involves minimizing over an infinite dimensional space of
arcs) and the reformulated convex optimization problem (Px0,x1) (that reduced the problem to
minimizing over a finite dimensional point y ∈ Σ).

Recall the tangent space TΣ at every y ∈ Σ has the form R×{0}, which of course is a copy of
Σ itself. Suppose a constant velocity set FΣ ⊆ TΣ is given and is Elvis relative to Σ. This means
FΣ = [vL

Σ
,vR

Σ
]×{0} where vL,R

Σ
∈ R are Left and Right endpoints of an interval that satisfies

vL
Σ
< 0 < vR

Σ
. The global definition of the velocity multifunction F(·) : R2 ⇒ R2 is

F(x) :=


F0 if x ∈M0

FΣ if x ∈ Σ

F1 if x ∈M1

which has closed convex values but is not necessarily upper semicontinuous. The latter means
the graph gr(F) :=

{
(x,v) : v∈ F(x)

}
is not necessarily closed. This can put the data outside of

the standard existence theorem for Differential Inclusions but nonetheless admits feasible arcs
connecting any two points in R2.

The greatest horizontal velocity toward the Right (resp. Left) direction in Mi (i = 0, 1) is

vR
i := max

{
v : v ∈ Fi∩TΣ

}
(resp. vL

i := min
{

v : v ∈ Fi∩TΣ

}
).

If vR
Σ
< min{vR

0,v
R
1
}

, then for any choices of both x0 and x1 lying on Σ with x0 < x1, the min
time problem connecting them will not have an optimum solution – a minimizing sequence
could be defined slightly off Σ which limits to an arc lying on Σ that is not a trajectory of F(·).
Hence it is natural to impose the structural condition

vL
Σ ≤min

{
vL

0,v
L
1
}

and vR
Σ ≥max

{
vR

0,v
R
1
}
. (5.1)

This is the minimal requirement on the Σ-velocity set FΣ that assures RT (x0) will be closed for
all x0 ∈R2 and T ≥ 0, but several situations need to be considered since the behavior of optimum
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t = γF0(y−x0)

v0 =
y−x0

t

ζ 0

v0

F0

−ζ 1

v1

F1

ζ 0

v0

`
F◦0

F◦1

−ζ 1

`

v1

y

v1

x1 = y+(T − t)v1

x0

Σ

FIGURE 3. F-S scenario with centered ellipses

solutions will differ. An underlying assumption in all is that (5.1) holds. With x0 ∈M0, a main
issue is how a trajectory can move optimally into M1.

5.2. Fast-to-Slow horizontal movement. We first consider in this section the simplest case
where the interface maximal velocities equal vL,R

0 and are larger in magnitude than vL,R
1 , which is

the Fast-to-Slow (F-S) scenario. That is, the interface velocity FΣ satisfies vL,R
Σ

= vL,R
0 , and which

satisfies (5.1). A feasible trajectory x(·) can move horizontally on Σ with velocity belonging to
FΣ, although in this case an optimum trajectory need not do so; such a trajectory lies in cl

(
M0
)
,

and its endpoint can be reached with a straight line trajectory in at least that time.

5.2.1. Construction of optimum trajectories. We describe a procedure to build optimum tra-
jectories originating from x0 ∈ M0. For any y ∈ Σ, the least time to go from x0 to y is t :=
γF0(y− x0) and the optimum velocity is v0 := y−x0

t (see Figure 3). The issue then is how to
enter M1 with a velocity v1 ∈ F1 so that for T > t the point x1 := y+ (T − t)v1 belongs to
bdry

(
RT (x0)

)
. Choose ζ 0 ∈ NF0(v0) (note 〈ζ 0,n〉 > 0) normalized to satisfy γF◦0(ζ 0) = 1.

There exists ζ 1 ∈ −ζ 0 + NΣ(y) with γF1(−ζ 1) = 1 and choose (any) v1 ∈ NF◦1(−ζ 1) with
〈n,v1〉 ≥ 0 and γF1(v1) = 1. The requirement 〈n,v1〉 ≥ 0 is to ensure the trajectory will not re-
enter M0, and by Proposition 2, the other conditions are equivalent to γF◦1(−ζ 1) = 1 = γF1(v1)

and−ζ 1 ∈NF1(v1). For T > t, a point x1 ∈ y+(T−t)v1 is such that it belongs to bdry
(
RT (x0)

)
,

or equivalently, y solves
(
Px0,x1

)
.

5.2.2. Example with centered ellipses. Figure 3 shows an example where there is a symmetry
across both x and y-axes, although Elvis velocity sets may have neither. Without the y sym-
metry, one may have fast-to-slow in one direction and slow-to-fast in the other. Without the x
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t0 = γF0(yt0 −x0)
t = γF0(yt −x0)

T = γF0(yT −x0)

v0 =
yt−x0

t

ζ 0

v0

F0

VT
0

v0VT
0

F1 V1

ζ 0

F◦0

−ζ 1

−ζ 1

F◦1 V1

yt

V1

x0

yt0 yT

yt +(T − t)V1

T − t

V1 =

{(
1
v

)
: 0≤ v≤ 1

}

Σ

FIGURE 4. F0 = B1 and F1 = B∞ and where 0 < t0 ≤ t ≤ T

symmetry, the critical velocity getting on Σ may differ substantially from the critical velocity
getting off Σ. One reason to first consider the case n = 2 is that there are only two directions
(Left and Right) to check behavior for getting on and off Σ. The situation in dimension n > 2
promises to be much more complicated and will be the topic of future research.

5.2.3. Example without strict convexity. An example without strict convexity is illustrated in
Figure 4 where F0 = B1 (the unit ball in the 1-norm) and F1 = B∞ (the unit ball in the ∞-norm).
The points labelled as yt +(T − t)V1 are on bdry(RT (x0)) and can be reached optimally at time
T by passing through any yt , t0 ≤ t < T and then using velocities from V1 for time T − t. The
optimum velocities for time 0≤ t capable of reaching yT are labeled as VT

0 , and this set expands
as T increases. The entire reachable set at time T > t0 is not convex and equals

RT (x0) =

[
y0 +

[
(T − t0)F1

⋂
cl(M1)

]]⋃[[
x0 +T F0

]⋂
cl(M0)

]
.

5.3. Slow-to-Fast horizontal movement. A Slow-to-Fast (S-F) scenario to the right (resp.
left) is when vR

0 < vR
1 (resp. vL

0 > vL
1). We now analyze feasible movement on Σ to the right by

allowing a trajectory to have the velocity vR
1 while on Σ.

5.3.1. Restriction in classical setting. In the classical setting (where Fi = riB, i = 0, 1), this
means r0 < r1 and Snell’s Law says every optimum trajectory from x0 ∈ M0 hitting Σ is re-
stricted by ∣∣sin(θ0)

∣∣≤ ∣∣∣∣r0

r1
sin(θ1)

∣∣∣∣< 1.
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t = γF0(y−x0)

v0 =
y−x0

t

ζ
c
0

ζ 0

vc
0

v0

F0

−ζ
c
1

−ζ 1

vc
1

v1

F1

ζ
c
0

ζ 0

vc
0

`

v0

F◦0

F◦1

−ζ
c
1

`

−ζ 1

vc
1

v1

vc
1

yc

y
v1

x1 = y+(T − t)v1

x0

Σ

FIGURE 5. Slow to Fast scenario

The generalized Elvis problem has a corresponding condition that restricts the horizontal com-
ponents

∣∣projTΣ
(ζ 0)

∣∣ of an optimum multiplier ζ 0.

5.3.2. The critical velocity. A velocity vector vc
0 ∈ F0 with projTΣ

(v0) maximal among all v0 ∈
F0 that satisfy (3.4)-(3.6) (for some y ∈ Σ, ζ 0, ζ 1) is called a critical velocity, and can be found
as follows; see Figure 5.

Let vc
1 ∈ F1 be so that projTΣ

(vc
1) = vR

1. There exists ζ
c
1 with −ζ

c
1 ∈ NF1(v

c
1) and normalized

to satisfy γF1(−ζ
c
1) = 1. Let ` := projTΣ

(−ζ
c
1), and choose ζ

c
0 ∈ F0 satisfying γF0(ζ

c
0) = 1

and ` = projTΣ
(ζ c

0). A critical velocity (to the right) is obtained by choosing vc
0 ∈ NF◦0(ζ

c
0)

normalized to also satisfy γF0(v
c
0) = 1. A similar construction produces one to the left if vL

0 > vL
1.

Suppose vc
0 ∈ F0 is critical (to the right) and yc :=

(
yc

0

)
= x0+ t0vc

0 ∈ Σ where t0 := γF0(y
c−

x0). Then any point x1 := yc+(T−t0)vc
1 with vc

1 ∈ bdry(F1)
⋂

TΣ will belong to bdry
(
RT (x0)

)⋂
Σ.

Suppose y :=
(

y
0

)
∈ Σ satisfies projΣ(x0)≤ y < yc and t := γF0(y−x0). Set v0 := y−x0

γF0(y−x0)
.

The same procedure described in Section 5.2.1 can be applied here to find v1 ∈ F1 that satisfies
x1 := y+(T − t)v1 ∈ bdry

(
RT (x0)

)
. See Figure 5.

5.3.3. Re-entering M0 optimally. If a trajectory uses the critical velocity von
0 to reach yc ∈ Σ at

time ton and then proceeds along Σ using vc
1 for time t > ton, it will remain on bdry

(
Rt(x0)

)
. See

Figures 6 and 7. It will also remain optimum by re-entering M0 at time toff with a critical velocity
voff

0 for an additional time T > toff provided T − toff > 0 is small. How small is determined
by when this optimum trajectory first intersects x0 + T F0, the latter set being points directly
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ton = γF0(y
on−x0)

von
0 = yon−x0

ton

ζ
on
0

von
0

F0

ζ
off
0

voff
0

−ζ
c
1vc

1F1

ζ
on
0

von
0

F◦0 ζ
off
0

voff
0

F◦1

−ζ
c
1 vc

1

yon

vc
1

yoff = yon +(toff− ton)vc
1

voff
0

The trajectory can move
optimally back into M0

x0

x1 = yoff +(T − toff)voff
0

Σ

FIGURE 6. Re-entering M0 optimally: 0 < ton < toff < T ≤ γF0(x1−x0)

reachable from x0 at time T while staying in M0. At this point, the trajectory can no longer be
optimally prolonged: If the trajectory x(·) satisfies

x(T ) ∈
[
x0 +T F0

]⋂[
bdry

(
RT (x0)

)]
and prolongs itself with either of the previously optimum velocities voff

0 or x(T )−x0
γF0(x(T )−x0)

, it will be

absorbed into the interior of Rt(x0) for t > T . This behavior is similar to that which happens at a
conjugate point in the Calculus of Variations. See Figure 6 where the symmetry of F0 simplifies
the calculation of voff

0 since it equals −von
0 . Figure 7 uses translated ellipses and demonstrates

the calculation of voff
0 more generally.

6. FURTHER GENERALIZATIONS.

We mentioned earlier that there are several advantages to requiring Elvis velocity sets to have
0 ∈ int(F). In our view and for the purpose of introducing CA to perhaps a new audience, this
special case deserves direct analysis as we have given in this paper. However, as we now sketch
pursuing greater generality, additional issues arise.

6.1. The interface is a highway. One generalization of the Elvis problem is to allow for the
interface Σ to act like a highway in which movement can be faster than the surrounding medi-
ums. Our presentation in Section 2 of CA has to be modified so that Elvis velocity sets can have
lower dimension and there is a natural way to do this using relative interiors. We plan to publish
rigorous details elsewhere, but sketch the main idea here in dimension two.
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ton = γF0(y
c−x0) F0 von
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ζ
on
0

voff
0

ζ
off
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0
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0

F◦1
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1
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1
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` := x-projTΣ
(−ζ 1) restricts

ζ
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0 (used getting on Σ) and

ζ
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0 (used when leaving Σ)

x0

x1

Σ

FIGURE 7. Re-entering M0 optimally with translated ellipses

Suppose FΣ⊆TΣ is an Elvis velocity set relative to Σ, which recall means FΣ = [vL
Σ
,vR

Σ
]×{0}.

The “highway” property is the case where strict inequalities in (5.1) hold; that is,

vL
Σ < min{vL

0,v
L
1}< 0 < max{vR

0,v
R
1}< vR

Σ. (6.1)

The polar F◦
Σ
⊆ R2 is

[
1

vL
Σ

, 1
vR

Σ

]
×R, but only the part on the x-axis is relevant here.

Suppose x0 ∈M0 and x1 ∈M1 is sufficiently to the right so that projΣ(x1) > yc. The right
polar value 1

vR
Σ

plays the role that ` played in earlier examples. It first restricts how a right-
moving optimum trajectory enters Σ with critical velocity von

0 ∈ F0. The trajectory can then
move optimally on Σ with velocity vR

Σ
. By so doing there are options at any future time to move

into M1 and stay optimum with a critical velocity vc
1 ∈ F1 or re-enter M0 optimally for small

additional time with a critical velocity voff
0 ∈ F0. See Figure 8. The generalized Snell’s Law

(3.6) applied twice (first getting on Σ and then getting off Σ) is saying

` :=
1
vR

Σ

= projTΣ
(ζ on

0 ) = projTΣ
(ζ off

0 ) = projTΣ
(−ζ

c
1).

One has yoff := yon+
(
T − ton

)
vR

Σ
∈ bdry

(
RT (x0)

)
for T > ton, and yoff remains on Σ. A trajectory

can enter M1 optimally at any time toff > ton by using a critical velocity vc
1 from F1. In this case

x1 := yoff +(T − toff)vc
1 belongs to bdry

(
RT (x0)

)
for all T > toff. Alternatively, it can re-enter

M0 optimally by using the critical velocity voff
0 ∈ F0 at least for a short while. Specifically,

x1 := yoff +(T − toff)voff
0 belongs to bdry

(
RT (x0)

)
for all toff < T ≤ γF0(x1−x0).

6.2. More than two regions. It is interesting to generalize to more than two regions, but ad-
ditional requirements are needed for our approach to be applicable and be effective. We shall
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FIGURE 8. Σ is a highway

address this problem in complete detail in future work, but here restrict attention to dimension
n = 2 with mediums the four quadrants

M2=

{(
x
y

)
: x < 0, y > 0

}
M1=

{(
x
y

)
: x > 0, y > 0

}
M3=

{(
x
y

)
: x < 0, y < 0

}
M4=

{(
x
y

)
: x > 0, y < 0

}
endowed with an Elvis velocity set Fi ∈ C0. The boundaries Σi j are labelled and defined by

Σ ji = Σi j := cl(Mi)
⋂

cl(M j) (1≤ i, j ≤ 4).

We illustrate the problem by taking the initial point x0 to lie in M3 and the terminal point x1 in
M1. There are now two ways an optimum trajectory can go from x0 to x1 – either going through
cl(M2) or through cl(M4). We can find the optimum path over all those paths that go through
cl(M2) by solving

inf
y1,y2∈Rn

{
γF3(y1−x0)+ γF2

(
y2−y1)+ γF1

(
x1−y2)+ IΣ23(y1)+ IΣ12(y2)

}
.

(
P3→2→1

x0,x1

)
Similarly we can find the optimum path over all those paths that go through cl(M4) by solving

inf
y1,y2∈Rn

{
γF3(y1−x0)+ γF4

(
y2−y1)+ γF1

(
x1−y2)+ IΣ34(y1)+ IΣ14(y2)

}
.

(
P3→4→1

x0,x1

)
Our notation 3→ i→ 1 (i = 2, 4) is to specify the path-regions that a trajectory traverses. A
third option is the path 3→ 1, but it has only one feasible (and therefore optimum) solution. It
could be globally an optimum, but how can one tell?
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M3

M2

M1

M4

x0

x1

y1

y2

Path: 3→ 2→ 1

y1 = y2

Path: 3→ 1

y1

y2

Path: 3→ 4→ 1

FIGURE 9. Four regions

Optimality conditions can be formulated for each problem similar to (3.4)-(3.6). The only
potential issue in applying our techniques is the application of the sum rule, but nonetheless
this is valid since 0 belongs to the intersection of the relative interiors; see [4], Theorem 23.8.
The point is, however, we want to solve the problem of going from x0 to x1 in the best time
any which way (i.e. globally). The desired solution must solve both

(
P3→2→1

x0,x1

)
and

(
P3→4→1

x0,x1

)
simultaneously if it is feasible for both.

The possibility that y1 = y2 in either problem is not ruled out, and if satisfied by both means
the globally optimum trajectory goes through the origin. The path 3→ 1 admits a feasible
trajectory for both but this path is not by itself an interesting restriction since there is only
one path that goes directly from M3 to M1. This suggests that optimality conditions should be
formulated with a partial ordering on paths with regard to feasibility.

The global optimization problem has roughly the structure of a bi-level optimization problem
but in which the upper level is a discrete problem (feasible paths are determined) and the lower
level a convex one (once the path is specified, our approach solves it). We have not encountered
such problems elsewhere in the literature.

7. CONCLUSION

We presented an introduction to Convex Analysis based on solving generalized Elvis prob-
lems. Our approach required Elvis velocity sets F (in addition to being closed and convex) to
be bounded with 0 ∈ int(F). The latter two assumptions are dual to each other in the sense
that F satisfies them if and only if its polar F◦ also satisfies them. This suggests duality theory
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can be further developed within this basic set-up. Further generalizations were also sketched
proposing future research directions.
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