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Abstract. In this paper, on the basis of quasiderivatives, we consider the state observation and estimation problems
for linear time-varying systems of ordinary differential equations. The quasiderivatives are defined for some lower
triangular matrix, and the simplest rules of the quasidifferentiation are described. The conditions for linear inde-
pendence of continuous quasidifferentiable functions are established in terms of the Wronski matrix. The method
for constructing state estimators for linear time-varying systems based on the quasidifferentiability of the coeffi-
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for the existence of an exponential observer and describe a constructive method for designing such observers.
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1. INTRODUCTION

The state estimation for deterministic linear finite-dimensional observation systems is based
on the assumption that the system has a certain type of observability. In the time-invariant case,
the complete observability of the system guarantees the existence of an asymptotic estimator [1].
It is clear that the problem is significantly more complicated for systems with variable coeffi-
cients. For time-varying linear systems, there exist several concepts of observability, including
complete observability [2], differential observability [3]–[8], uniform observability [4]–[10],
uniformly complete observability [11], observability via resolving operations [2], approximate
observability [12], uniform pointwise observability[13], observability in the class of Chebyshev
function systems [14], Hessenberg observability[15], etc. The notion of uniformly complete ob-
servability reflects the specific properties necessary for the existence of asymptotic estimators
most adequately [11]. But it is very difficult to verify it in terms of the coefficients of the origi-
nal observation system, and it is therefore inefficient from the constructive standpoint. We also
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note that the form of information about the output function is important when constructing state
estimation procedures; for example, it is important whether we know only the function itself, or
its successive derivatives, or its values at a given sequence of points, etc.

The problem of estimating the states of observation systems from available information has
been intensively studied because of its importance in various plant positioning systems [1, 2],
[9]–[22]. When constructing feedback controls, one usually needs to know the system state
vector. However, the direct measurement of the state vector in real-world situations may be
hindered by technical restrictions, the impossibility to organize the observation process, or ex-
tremely high costs. The possible errors in the observation channel distorting the exact value of
the state vector must be taken into account as well.

The notion of uniform observability apparently plays the most important role in the state
estimation theory from the constructive standpoint; this notion was first introduced in [10] in
terms of the observability matrix as a purely technical tool for constructing canonical forms.
Uniform observability was systematically studied in [4]–[9] based on its definition in terms of
output functions.

The construction of asymptotic state estimators implies the construction of a dynamical sys-
tem whose input is fed with the output function of the original system, while the state of the
estimator must asymptotically approximate the state of the original system in some sense. The
approach proposed in this paper is based on the quasidifferentiation technique, which permits
significantly weakening the well-known smoothness requirements imposed on the coefficients
when constructing exponential state estimators.

Currently, known conditions of the observability and controllability for linear time-varying
systems of ordinary differential equations are formulated either implicitly by using the funda-
mental matrix or explicitly by the observability and controllability matrices [2, 3, 8] and [23]–
[26]. However, a fundamental matrix is usually unknown, and its calculation is quite a chal-
lenge; on the other hand, the existence of the observability matrices requires a high smoothness
of the coefficients [2, 26]. Therefore, an important objective is to obtain new efficient condi-
tions of the controllability and observability with minimal assumptions on the differentiability
of system parameters.

The functions that define the coefficients of the dynamical systems may violate the classical
differentiability assumptions, and that may lead to improper use of the obtained mathemati-
cal results. However, there is a need to explore the time-varying systems that do not satisfy
differentiability assumptions, for example, in studies of nonlinear systems by the linearization
method. As the research has shown, the quasiderivative concept allows us to extend the class of
the systems for which we can set effective (in terms of the systems’ coefficients) necessary and
sufficient conditions for the observability, controllability, stability, and existence of canonical
forms. The quasidifferentiation methodology makes possible determination [6] and exploration
of the classical property of the uniform observability for a broader class of systems than in
previous studies.

2. ASYMPTOTIC STATE OBSERVES

Consider a linear time-varying system of ordinary differential equations

dx(t)
dt

= A(t)x(t), (2.1)
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where x(t) is the column state n-vector at time t. The independent variable t varies on the
interval T = [t0, t1], and the entries of the n× n matrix A(t) are continuous on T . Assume that
system (2.1) permits measuring a scalar output function y(t) related to the state x(t) by

y(t) = c(t)x(t), t ∈ T, (2.2)

where c(t) is a given row n-vector with continuous components on T .
We identify each such system (2.1), (2.2) with the corresponding pair (A,c) and denote the

set of all such pairs by Σn; i.e., Σn =C(T,Rn×n)×C(T,Rn). Here C(T,Rn×n) is the set of con-
tinuous n×n matrix functions, and C(T,Rn) is the set of row n-vector functions with continuous
components on T .

Let X be a compact set in Rn. If some initial state x0 = x(t0) ∈ X is realized in system (2.1)
at time t0, then it generates a solution x(t) = x(t,x0) and hence an output signal y(t) = y(t,x0),
t ∈ T , according to (2.2).

In what follows, we assume that the independent variable t ranges in the set of nonnegative
real numbers, i.e., T = R+, and the set X of initial states coincides with Rn.

Consider the approach to the problem of estimating the state vector of an observation system
based on the construction of a dynamical system, called an observer (estimator) of the solu-
tion w(t), which converges to the state x(t) of the original system for any initial states in the
following sense: lim

t→∞
‖x(t)−w(t)‖= 0.

In other words, the state vector of the estimator w(t) serves as an approximate estimate of
the state x(t) of the original observation system, and the vector w(t) can be used to construct
feedback controls. In the literature, estimators were constructed for observation systems with
sufficiently smooth coefficients [1, 10], [18]–[22] or output functions [20]. In this paper, in-
stead of the differentiability of the outputs, we use their quasidifferentiability with respect to
some lower triangular matrix P(t). This permits significantly strengthening the already known
results. The matrix P(t) can be obtained constructively for systems written in upper Hessenberg
form and hence for all systems reducible to the Hessenberg form by linear nonsingular changes
of variables. In this connection, we present a criterion for the reducibility of the original sys-
tem to the Hessenberg form and propose an algorithm for constructing the Hessenberg form.
Our approach is based on the notion of P-uniform observability for systems with quasidifferen-
tiable output functions, which permits constructing the canonical Frobenius form under certain
conditions.

Following [1, 10], the system of differential equations

dw(t)
dt

= A(t)w(t)+ k(t)
(
y(t)− c(t)w(t)

)
, t ∈ T = R+, (2.3)

with an arbitrary column n-vector k(t) (the vector of gain factors) will be called an estimator of
states of system (2.1), (2.2), because, for any τ ∈R+ and x0 ∈Rn defining the initial conditions
x(τ) = w(τ) = x0, the solutions x(t) = x(t,τ,x0) and w(t) = w(t,τ,x0) of respective systems
(2.1) and (2.3) coincide for all t ≥ τ . Therefore, if relation x(τ) = w(τ) = x0 is satisfied, then
the state of the observer (2.3) is exactly described by the solutions of system (2.1).

Since the initial state x0 of system (2.1) is unknown by the statement of the observation
problem, we see that one cannot construct the exact solution x(t) using the estimator (2.3).
Therefore, it is natural to consider the problem of determining a gain vector k(t) for which the
solution w(t) of the observer system (2.3) asymptotically approximates (estimates) the solution
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x(t) = x(t,τ,x0) for an arbitrary x0 ∈Rn that generates the output function y(t) given by system
(2.1), (2.2). In this case, the initial state of the observer system can be taken arbitrarily.

Let ε(t) be the estimation error, i.e., the difference ε(t) = x(t)−w(t). From systems (2.1) and
(2.3), we find that the estimation error ε(t) satisfies the time-varying linear system of differential
equations

dε(t)
dt

=
(
A(t)− k(t)c(t)

)
ε(t), t ∈ T = R+. (2.4)

Then the problem of asymptotic estimation of states of system (2.1) is equivalent to the prob-
lem of determining the gain vector k(t) for which ε(t)→ 0 as t→∞. If the rate of approximation
of the vector x(t) by the vector w(t) is important when the state x(t) is estimated (i.e., the esti-
mation error ε(t) must tend to zero with a prescribed rate, for example, exponentially), then the
choice of the gain coefficient k(t) must ensure the desired rate of approximation.

Let us give a definition of so-called exponential estimators. Let ρ be a positive number. We
say that the observer (2.3) exponentially estimates the state of system (2.1) with a rate ρ if the
estimation error satisfies the inequality ‖ε(t)‖ ≤ Cρ,τ exp(−ρ(t − τ)), t ≥ τ, where Cρ,τ is a
positive constant. In what follows, we describe a constructive method for determining expo-
nential state estimators for P-uniformly observable systems based on the method of Frobenius
forms for systems with quasidifferentiable coefficients.

3. NOTION OF QUASIDERIVATIVES

Here the quasiderivative is defined by following [27] – [31].
Let T = [t0, t1] be a segment of the real line R, and let p be a given nonnegative integer. We

denote by Up(T ) the set of all lower triangular (p+1)× (p+1) matrices P(t) with continuous
on T elements pki(t), k, i ∈ {0,1, . . . , p} such that pkk(t) 6= 0, t ∈ T , k ∈ {0,1, . . . , p}.

Let us take a matrix P(t) from the set Up(T ). Then for a continuous function w : T → R the
quasiderivatives

0
Pw(t), 1

Pw(t), . . . , p
Pw(t)

of the order 0,1, . . . , p with respect to the matrix P(t) are defined by the following recurrence
rules:

0
Pw(t) = p00(t)w(t), 1

Pw(t) = p11(t)
d
(0

Pw(t)
)

dt
+ p10(t)

(0
Pw(t)

)
, . . . ,

k
Pw(t) = pkk(t)

d
(k−1

P w(t)
)

dt
+

k−1

∑
i=0

pki(t)
(i

Pw(t)
)
, k ∈ {2,3, . . . , p}. (3.1)

It is assumed that the operation of the differentiation in formulas (3.1) can be performed and
result in continuous functions. In the case p = 0, quasidifferentiable means that the product
p00(t)w(t) is continuously differentiable.

To explain the notion of quasiderivatives, let us consider the system of equations

dx1(t)
dt

= α0(t)x3(t),
dx2(t)

dt
= x1(t)+α1(t)x3(t),

dx3(t)
dt

= x2(t)+α2(t)x3(t),

with continuous functions α0(t), α1(t), α2(t). We have x2(t) =
dx3(t)

dt −α2(t)x3(t). Obviously,
x2(t) is continuously differentiable function, but functions dx3(t)

dt and α2(t)x3(t) are not. So
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we may call expression dx3(t)
dt −α2(t)x3(t) as the quasiderivative 1

Px3(t) of function x3(t) with
respect to the matrix

P(t) =

 1 0 0
−α2(t) 1 0
−α1(t) 0 1

 .

We denote by CP(T ) the family of all continuous functions that have continuous quasideriva-
tives (3.1) with respect to a given matrix P ∈ Up(T ). Clearly, every p times continuously dif-
ferentiable function is quasidifferentiable with respect to the identity (p+1)× (p+1) matrix.
However, it is easy to demonstrate that some nondifferentiable in the usual sense function could
be quasidifferentiable with respect to some matrix P ∈Up(T ). Let f1 and f2 be two functions
from the set CP(T ). From formulas (3.1), it follows that

i
P
(
λ1 f1(t)+λ2 f2(t)

)
= λ1

(i
P f1(t)

)
+λ2

(i
P f2(t)

)
, i ∈ {0,1, . . . , p},

for any real values λ1, λ2. So CP(T ) is a vector space over the real numbers.
For the sake of simplicity, we skip rules on how to derive quasiderivatives for the product of

the functions. However, we note that

0
P
(

f1(t) f2(t)
)
=

0
P f1(t) 0

P f2(t)
p00(t)

,

1
P
(

f1(t) f2(t)
)
=

1
p00(t)

(
1
P f1(t) 0

P f2(t)+ 0
P f1(t) 1

P f2(t)
)

−
p11(t)

d p00(t)
dt

+ p10(t)p00(t)

p2
00(t)

0
P f1(t) 0

P f2(t)

if the derivatives exist. Let us assume that P(t), R(t) ∈Up(T ) are matrices such that their sum
Q(t) = P(t)+R(t) also belongs to the set Up(T ). Then i

Q f (t) = i
P f (t)+ i

R f (t), and for any
nonzero λ ∈ R the equality i

λP f (t) = λ
(i

P f (t)
)

is fulfilled, i ∈ {0,1, . . . , p}. Unlike the usual
derivatives, a quasiderivative 1

PC of a constant C is not equal to zero, generally speaking. Let
us consider n real scalar functions fi ∈CP(T ), i ∈ {1,2, . . . ,n}, where p≥ n−1, and let f be a
vector function with entries f1, f2, . . . , fn. The matrix PW ( f )(t) = PW ( f1, f2, . . . , fn)(t) of the
rows

(
0
P fi(t), 1

P fi(t), . . . ,n−1
P fi(t)

)
, i ∈ {1,2, . . . ,n} is called the Wronski matrix relatively to

matrix P(t). The proofs of the following theorems are given in [6].

Theorem 3.1. If there is t∗ ∈ T such that det PW ( f1, f2, . . . , fn)(t∗) 6= 0, then system of func-
tions f1(t), f2(t), . . . , fn(t) are linearly independent on T .

Theorem 3.2. System of functions f1(t), f2(t), . . . , fn(t) are linearly independent on each
interval (τ0,τ1)⊂ T if and only if

det PW ( f1, f2, . . . , fn)(t) 6= 0 (3.2)

on the set of points t that is everywhere dense in T .

Let Pn( f ) = Pn( f1, f2, . . . , fn) be a subset of the set Un(T ) such that fi ∈ CP(T ),
i ∈ {1,2, . . . ,n} for any matrix P ∈Pn( f ). Analysis of (3.1) and (3.2) raise the following
question. Let P(t) and R(t) be the elements of the set Pn( f ). Is there some t∗ ∈ T such that the
matrix PW ( f )(t∗) is nonsingular and the matrix RW ( f )(t∗) is degenerate?
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Theorem 3.3. [6] For each t ∈ T all matrices PW ( f )(t), P ∈Pn( f ) are either degenerate or
not degenerate simultaneously.

Application of the quasidifferentiability produces the nontrivial problem of finding at least
one element P(t) of set Up(T ) with respect to which the output functions of a system of ob-
servation are quasidifferentiable. Here we will describe one class of observation systems with
a scalar output for which this problem is easily solved. Then we will show how to construct
matrix P(t) for a broader class of equations by using the invariant of the set of the outputs under
linear nonsingular transformations on the space of the states.

The linear time-varying system of observation
dx(t)

dt
= H(t)x(t), y(t) = g(t)x(t) (3.3)

is said to have upper Hessenberg form if continuous on the interval T n×n matrix H(t) and row
vector g(t) are defined as follows:

H(t) =



r11(t) r12(t) r13(t) . . . r1, n−1(t) r1n(t)

r21(t) r22(t) r23(t) . . . r2, n−1(t) r2n(t)

0 r32(t) r33(t) . . . r3, n−1(t) r3n(t)
...

...
...

...
...

...

0 0 0 . . . rn−1, n−1(t) rn−1, n(t)

0 0 0 . . . rn, n−1(t) rnn(t)


, (3.4)

g(t) =
(
0 0 0 . . . 0 r10(t)

)
.

Assume, that
rk,k−1(t) 6= 0, t ∈ T, k ∈ {1,2, . . . ,n}. (3.5)

Let us construct (n+1)× (n+1) matrix

P(t) =



1
r10(t)

0 0 . . . 0 0

− rnn(t)
rn,n−1(t)

1
rn,n−1(t)

0 . . . 0 0

−
rn−1,n(t)

rn−1,n−2(t)
−

rn−1,n−1(t)
rn−1,n−2(t)

1
rn−1,n−2(t)

. . . 0 0

. . . . . . . . . . . . . . . . . .

−r2n(t)
r21(t)

−
r2,n−1(t)

r21(t)
−

r2,n−2(t)
r21(t)

. . .
1

r21(t)
0

−r1n(t) −r1,n−1(t) −r1,n−2(t) . . . −r11(t) 1



, (3.6)

which, obviously, belongs to the set Un(T ).
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Simple arguments validate the following lemma.

Lemma 3.4. If conditions (3.5) are met, then each output function y(t) of system (3.3) in upper
Hessenberg form has n quasiderivative k

Py(t), t ∈ T, k ∈ {0,1, . . . ,n} with respect to matrix P(t)
in form (3.6).

4. QUASIDIFFERENTIABILITY AND UNIFORM OBSERVABILITY

In the classical statement [2], the complete observability problem and the closely related
differential observability problem [3] are stated as existence problems requiring a one-to-one
correspondence between the output signals y(t,x0), t ∈ T and the initial conditions x0 = x(t0)
generating them. Coefficient conditions for various types of observability of system (2.1), (2.2)
are, as a rule, expressed in terms of the classical observability matrix S(t) [2, 26] which, under
certain conditions, is formed from the rows si(t) constructed by the recursion scheme

s0(t) = c(t), si(t) = si−1(t)A(t)+
dsi−1(t)

dt
, i ∈ {1,2, . . . ,n−1}.

It is well known [2] that if the classical observability matrix S(t) of system (2.1), (2.2) is
nonsingular at some point t∗ ∈ T (and hence system (2.1), (2.2) is completely observable on
T ), then one can use the value of the output signal and its successive derivatives at time t∗ to
obtain the vector x(t∗) in an algebraic way. But determining the vector x(t) at points t other
than t∗ leads to a rather difficult problem of integration of a time-varying system of ordinary
differential equations. Obviously, the problems of integration can be avoided if one requires
the matrix S(t) to be nonsingular for all t ∈ T . We also note that, by the statement of the ob-
servability problem, only the output function but not its derivatives are known, and determining
its successive derivatives is a rather complicated computational problem [22]. In what follows,
we give the definition [4] - [9] of uniform observability in terms of the output function via its
successive quasiderivatives.

Let us consider system (A,c) ∈ Σn. Also by YT (A,c), let us denote the set of all its output
functions

YT (A,c) =
{

y ∈C(T,R) : y(t) = c(t)F(t)x0, t ∈ T, x0 ∈ Rn},
where F(t) is a fundamental matrix of system (2.1), normalized at the point t0.

Let P(t) be a given matrix in the set Um(T ). We say that system (2.1), (2.2) is of the class
{P,m} and write (A,c) ∈ {P,m} if each of its output functions y(t,x0), t ∈ T , y ∈ YT (A,c) has
continuous quasiderivatives of order m with respect to the matrix P(t). If P(t) = En (where En
is the n×n identity matrix), then we say that system (2.1), (2.2) is a system of the class n−1.

It was proved in [6] that system (2.1), (2.2) is of the class {P,n− 1} if and only if for each
k ∈ {0,1, . . . ,n−1} the row vector functions

s0(t) = p00(t)c(t), sk(t) = pkk(t)
(

sk−1(t)A(t)+
dsk−1(t)

dt

)
+

k−1

∑
i=0

pki(t)si(t) (4.1)

exist and are continuous.
One can readily verify the relations

sk(t)x(t) = k
Py(t), k ∈ {0,1, . . . ,n−1}, t ∈ T,
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which, with regard to the notation

SP(t) =


s0(t)
s1(t)
. . .

sn−1(t)

 , Y (t,x0) =


0
Py(t,x0)

1
Py(t,x0)

. . .
n−1
P y(t,x0)

 ,

leads to the system of equations

SP(t)x(t) = Y (t,x0), t ∈ T

for the state vector x(t).
Let Pn−1(A,c)⊂Un−1(T ) be the set of matrices P with respect to which system (2.1), (2.2)

is of the class {P,n−1}. Clearly, for each matrix P∈Pn−1(A,c) one can define the matrix SP(t)
by formulas (4.1). It was proved in [6] that for each t ∈ T all matrices SP(t), P ∈Pn−1(A,c)
are simultaneously singular or simultaneously nonsingular. The matrix SP(t) will be called the
observability matrix for system (2.1), (2.2) of the class {P,n−1}.

Definition 4.1. System (2.1), (2.2) of the class {P,n− 1} is said to be P-uniformly observ-
able on T if for each x0 ∈ X the output functions y(t) = y(t,x0), y ∈ YT (A,c) have continuous
quasiderivatives with respect to the matrix P and the mapping

x(t)→
(0

Py(t),1
Py(t), . . . ,n−1

P y(t)
)

(4.2)

is injective for each t ∈ T .

By the above cited property of the observability matrix SP(t) thus constructed, the injectivity
of the mapping (4.2) is independent of the choice of the matrix P ∈Pn−1(A,c).

Note that the property of P-uniform observability will be substantially used in what follows
when constructing asymptotic estimators of observation systems. Therefore, let us present a
criterion for P-uniform observability [6].

Theorem 4.2. System (2.1), (2.2) of the class {P,n−1} is P-uniformly observable on T if and
only if rank SP(t) = n for each t ∈ T .

5. CONSTRUCTION OF THE FROBENIUS FORM

Several problems of mathematical control theory can be studied rather easily if the original
linear time-varying observation system (A,c) can be transformed to a Frobenius form (A0,c0)

A0(t) =


0 0 0 . . . 0 α0(t)
1 0 0 . . . 0 α1(t)
0 1 0 . . . 0 α2(t)
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 αn−1(t)

 , c0 =
(
0 0 0 . . . 1

)

by an appropriate transformation group G . Here the functions αi(t) are of the class C(T,R),
i ∈ {0,1, . . . ,n−1}.

We point out that methods known in the literature for constructing Frobenius forms are based
on the use of the classical observability matrix S(t), which only exists for sufficiently smooth
systems [23]. Assume that G is the group of all n× n matrices G(t) of the class C1(T,Rn×n)
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that are nonsingular for each t ∈ T . The action of the group G on the pair (A,c) from Σn is
defined in a standard way as

G∗ (A,c) =
(
G−1AG−G−1 dG

dt
, cG

)
, G ∈ G . (5.1)

By O(A,c) we denote the orbit of the system (A,c) ∈ Σn with respect to the action of the
group G explained above. It is easily seen that if in the orbit O(A,c) of a system (A,c) ∈ Σn
there exists a pair (A0,c0) in Frobenius form, then it is unique. Therefore, the transformation
G ∈ G for which G∗ (A,c) = (A0,c0) is unique as well.

If the matrix P0 ∈Un(T ) is defined as

P0(t) =



1 0 0 . . . 0 0
−αn−1(t) 1 0 . . . 0 0
−αn−2(t) 0 1 . . . 0 0

...
...

... . . . ...
...

−α1(t) 0 0 . . . 1 0
−α0(t) 0 0 . . . 0 1


,

then one can readily verify that the observability matrix S0
P0
(t) for the pair (A0,c0) is a backward

identity matrix (i.e., a matrix with units on the secondary diagonal and zeros elsewhere). Since
the backward identity matrix is nonsingular, we see that the system (A0,c0) is P0-uniformly
observable on T .

Suppose, that system (A,c) transformed to a Frobenius form (A0,c0) with respect to the group
G . Then the matrix G(t) of the transformation G ∗ (A,c) = (A0,c0) connects the observability
matrices of the systems (A,c) and (A0,c0) by the relation G(t) = S−1

P (t)S0
P(t) [6]. Using the

matrix P0(t) and the properties of the backward identity matrix, we see that the inverse matrix
of G(t) has the form

G−1(t) =
(
s′n−1(t) s′n−2(t) . . . s′0(t)

)
,

where the rows si(t) are constructed by formulas (4.1) with the matrix P0(t).
Since the action (5.1) of the group G must preserve the asymptotic properties of the observer,

it is natural to study when the matrix G(t) of the transformation G ∗ (A,c) = (A0,c0) belongs
to the Lyapunov group Ln [5], i.e., to the group of invertible continuously differentiable n×n
matrices bounded on R+ together with their inverses.

The above considerations imply the following assertion.

Lemma 5.1. Assume that the system (A,c) has a Frobenius form (A0,c0) with respect to the
actions of a transformation group G . For the matrix of the transformation G∗ (A,c) = (A0,c0)
belong to the Lyapunov group, it is necessary and sufficient that the observability matrix SP0(t)
of the system (A,c) belongs to the Lyapunov group.

An analysis of the relation (
G−1AG−G−1 dG

dt
,cG
)
= (A0,c0)

shows that, to reduce the pair (A,c) to the system (A0,c0) by using the group G , it is necessary
to satisfy the conditions c ∈C1(T,Rn) and c(t) 6= 0, t ∈ T . We assume in what follows that they
are satisfied.
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In what follows, a key role is played by the representation of the nonsingular continuously
differentiable n× n matrix G ∈ G in the form of a product of a continuously differentiable or-
thogonal matrix Go(t) and an upper triangular matrix G∆(t), G(t) = Go(t)G∆(t), t ∈ T , where
Go ∈ OL n and G∆ ∈ G∆, and G∆, OL n are subgroups of the group G , respectively, consist-
ing of all upper triangular and orthogonal matrices for each t ∈ T . The existence of such a
representation is a straightforward consequence of the Perron triangularization theorem [32].

If the matrix G(t) belongs to the Lyapunov group, then each of the matrices Go(t) and G∆(t)
obviously belongs to this group.

Using the expansion G(t) = Go(t)G∆(t), we can rewrite the relation G ∗ (A,c) = (A0,c0) as
follows: (

G′o(t)A(t)+
dG′o(t)

dt

)
Go(t) = G∆(t)A0(t)G−1

∆
(t)+

dG∆(t)
dt

G−1
∆
(t)

and c(t)Go(t) = c0G−1
∆
(t) (where the prime stands for transposition).

Simple matrix calculations show that the mapping (A0,c0) → G−1 ∗ (A0,c0) leads to the
observation systems (H,c∗) with n-vector functions c∗(t) =

(
0 0 . . . 0 r10(t)

)
and matrices

H(t) =
(
ri j(t)

)n
i, j=1 in the upper Hessenberg form (3.3), (3.4); i.e., ri j(t)≡ 0, t ∈ T , for i > j+1

i, j ∈ {1,2, . . . ,n}, and the functions ri j(t) have the following additional properties:

ri+1, j ∈C1(T,R), ri+1,i(t) 6= 0, t ∈ T, i ∈ {0,1, . . . ,n−1}.

Assume that G ∗ (A,c) =
(
GoG∆ ∗ (A,c)

)
= (A0,c0) for some matrix G ∈ G . By pn(t),

pn−1(t), . . ., p1(t) we denote the first, second, . . . ,n-th row, respectively, of the matrix G′o(t),
and by gi j(t) we denote the entries of the matrix G∆(t). It is well known [6] that the functions
pi(t), i ∈ {1,2, . . . ,n} can be determined by the recursion formulas

p1(t) = c(t)‖c(t)‖−1, b10(t) = ‖c(t)‖, ‖c(t)‖ 6= 0, (5.2)

bn+1−i,n+1− j(t) =
(

pi(t)A(t)+
d pi(t)

dt

)
p′j(t), j ∈ {1,2, . . . , i}, i ∈ {1,2, . . . ,n−1}, (5.3)

bn+1−i,n−i(t) = ‖pi(t)A(t)+
d pi(t)

dt
−

i

∑
k=1

bn+1−i,n+1−k(t)pk(t)‖, (5.4)

pi+1(t) = b−1
n+1−i,n−i(t)

(
pi(t)A(t)+

d pi(t)
dt
−

i

∑
k=1

bn+1−i,n+1−k(t)pk(t)
)
, (5.5)

and the functions gi j(t) , i.e., the entries of the matrix G∆(t), by the recursion rules

gnn(t) =
1

‖c(t)‖
, gi−1,i−1(t) =

gii(t)
bi,i−1(t)

, gi, j+1(t) =
j

∑
k=1

bik(t)gk j(t)−
dgi j(t)

dt
, (5.6)

where the calculations are successively carried out for the indexing sets

i = 1, j ∈ {2,3, . . . ,n−1}; i = 2, j ∈ {3,4, . . . ,n−1}; . . . ; i = n−1, j = n−1.

The components of the n-vector function α(t) =
(
α0(t),α1(t), . . . ,αn−1(t)

)′ determining the
Frobenius form (A0,c0) are calculated by the formulas

αn−1(t) =

n
∑
j=1

bn j(t)g jn(t)−
dgnn(t)

dt

gnn(t)
,
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αn−k(t) =

n
∑
j=1

bn+1−k, j(t)g jn(t)−
k−1
∑
j=1

gn+1−k,n+1− j(t)αn− j(t)−
dgn+1−k,n(t)

dt

gn+1−k,n+1−k(t)
, (5.7)

where k ∈ {2,3, . . . ,n}. We point out that the existence of these functions imposes a number of
restrictions on the elements of the pair (A,c). These restrictions are the continuous differentia-
bility of the rows p1(t), p2(t), . . . , pn(t) and the entries gi j(t) and the inequalities bi,i−1(t) 6= 0,
which must be satisfied for all indices i ∈ {1,2, . . . ,n}.

Note that, under the condition of existence of the orthogonal matrix Go(t), the coefficients of
the system (H,c∗) = Go ∗ (A,c) in the upper Hessenberg form for the pair (A,c) are determined
as follows:

ri j(t) = bn−i+1,n− j+1(t), i ∈ {1,2, . . . ,n}; j ∈ {i−1, . . . ,n}.

Theorem 5.2. A pair (A,c) has a Frobenius form (A0,c0) with respect to the action of the
Lyapunov group if and only if the functions gi j(t), pi(t), i ∈ {1,2, . . . ,n}; j ∈ {i, i+1, . . . ,n} are
continuously differentiable and bounded on the set T and the inequalities

bi,i−1(t) 6= 0, ρ1 ≤ |gii(t)| ≤ ρ2 i ∈ {1,2, . . . ,n}, t ∈ T

are satisfied for some positive numbers ρ1, ρ2.

Proof. Necessary and sufficient conditions for the existence such matrix G that

G∗ (A,c) = (A0,c0)

follow from the theorem 3.5 in [6], and the additional condition

ρ1 ≤ gii(t)≤ ρ2, i ∈ {1,2, . . . ,n}

guarantees that the upper triangular matrix G∆ constructed from the functions gi j(t) belongs to
the Lyapunov group. The latter ensures that the transformation G(t) = Go(t)G∆(t) belongs to
this group. The proof of the theorem is complete.

The above reasoning justifies the following method for determining the canonical form. We
use formulas (5.2)–(5.6) to obtain the functions bi j(t), the row vectors p1(t), p2(t), . . . , pn(t),
and the entries gi j(t). Based on relations (5.7), we determine the coefficients

αk(t), k ∈ {0,1, . . . ,n−1}

of the Frobenius form. If the conditions for the calculations by these formulas are violated, then
there is no Frobenius form (A0,c0) with respect to the group G for the system (A,c).

As was already noted, the lower triangular matrices P(t) with respect to which the output
functions of system (2.1), (2.2) are at least n times continuously quasidifferentiable play an
important role in observability problems. The construction used in the preceding section allows
us to indicate one such matrix. Assume that the functions bi j(t) are defined by formulas (5.2) –
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(5.4) and bi,i−1(t) 6= 0, i ∈ {1,2, . . . ,n}, t ∈ T. Set

P(t) =



b−1
10 (t) 0 . . . 0 0

−bnn(t)b−1
n,n−1(t) b−1

n,n−1(t) . . . 0 0

−bn−1,n(t)b−1
n−1,n−2(t) −bn−1,n−1(t)b−1

n−1,n−2(t) . . . 0 0
. . . . . . .

−b2n(t)b−1
21 (t) −b2,n−1(t)b−1

21 (t) . . . b−1
21 (t) 0

−b1n(t) −b1,n−1(t) . . . −b11(t) 1


. (5.8)

Theorem 5.3. If the matrix P(t) of the form (5.8) is constructed for the pair (A,c), then each
output function y(t), t ∈ T of system (2.1), (2.2) is n times continuously quasidifferentiable with
respect to the matrix P(t).

The proof of this theorem was given in [6].

6. CONSTRUCTION OF A ρ -EXPONENTIAL STATE ESTIMATOR

Assume that for system (2.1), (2.2) there exists a Frobenius form (A0,c0) with respect to the
actions of the Lyapunov group Ln and G(t) is a transformation for which the relation

G∗ (A,c) = (A0,c0)

is satisfied. The coefficients of the Frobenius form (A0,c0) form a column n-vector α(t). Take
distinct real numbers λ1, λ2, . . ., λn satisfying the inequality λi < ρ for a given positive number
ρ and construct the polynomial

(ξ −λ1)(ξ −λ2) · · ·(ξ −λn) = ξ
n−βn−1ξ

n−1−·· ·−β1ξ −β0.

Assume that β is the column n-vector with components (β0,β1, . . . ,βn−1).
In the time-varying system of differential equations (2.4) satisfied by the estimation error

ε(t) = x(t)−w(t), the gain factor k(t) can be determined by the formula

k∗(t) = G(t)
(
α(t)−β

)
. (6.1)

Theorem 6.1. Assume that the functions gi j(t), pi(t), i ∈ {1,2, . . . ,n}; j ∈ {i, i + 1, . . . ,n}
constructed by formulas (5.2) – (5.6) are continuously differentiable and bounded on the set T
and inequalities (5.8) are satisfied for some positive numbers ρ1, ρ2 and for any t ∈ T. Then
system (2.3) with the gain factor k(t) of the form (6.1) is a ρ-exponential estimator for system
(2.1) - (2.2).

Proof. Under the assumptions of the theorem, we use the row vectors p1(t), p2(t), . . . , pn(t) and
the functions gi j(t) (i = 1,2, . . . ,n; j = i, i+ 1, . . . ,n) to construct the orthogonal matrix Go(t)
and the upper triangular matrix G∆(t). By theorem 5.2, the matrix G(t) = Go(t) ∗G∆(t) is the
matrix of a Lyapunov transformation that takes the pair (A,c) to the Frobenius form (A0,c0).

From system ε̇(t) =
(
A(t)− k∗(t)c(t)

)
ε(t), after the change of variables ε(t) = G(t)z(t), we

obtain the following system of differential equations for the vector function z(t):

ż(t) = G−1(t)
(

A(t)−G(t)
(
α(t)−β

)
c(t)
)

G(t)z(t)−G−1(t)Ġ(t)z(t).
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Since G−1(t)A(t)G(t)−G−1(t)Ġ(t) = A0(t), and c(t)G(t) = c0, we have a time-invariant
linear system of ordinary differential equations

ż(t) =
(
A0(t)− (α(t)−β )c0)z(t) =


0 0 0 . . . 0 β0
1 0 0 . . . 0 β1
. . . . . . . . . .
0 0 0 . . . 0 βn−2
0 0 0 . . . 1 βn−1

z(t)

with given characteristic numbers λ1, λ2, . . ., λn, λi <−ρ , i∈ {1,2, . . . ,n}. Since the Lyapunov
transformation preserves the exponential stability of the system, we see that the estimator (2.3)
with the gain factor (6.1) is a ρ-exponential estimator for system (2.1), (2.2). The proof of the
theorem is complete. An essential point in the construction of the gain factor k(t) of the expo-
nential estimator (2.3) is the construction of the Frobenius form and the corresponding trans-
formation in the Lyapunov group. Since this Frobenius form exists [5, 6] only for P-uniformly
observable systems (2.1), (2.2), the first natural question is the problem of quasidifferentiability
of the output functions of the pair (A,c) with respect to some matrix P ∈Un. By theorem 5.3,
the assumptions of theorem 6.1 guarantee the quasidifferentiability of all output functions of
system (2.1), (2.2) with respect to the matrix P of the form (6.1).

7. CONCLUSIONS

The current states of a system are crucial to know in many problems in the theory of con-
trolled motions, for instance, when control actions are based on a feedback. In many cases, the
coordinates of the objects cannot be directly observed (measured); however, there is an informa-
tion about their states, given by some output function (signal). The essence of the observability
problem is to determine whether it is possible to unambiguously infer current (or initial) states
of a system from the observations.

The existent coefficient conditions for the observability are based on the high degree of
smoothness of either the coefficients [2, 3, 8, 26] or the output functions [5]. In this paper
we use the quasidifferentiability (rather than the differentiability) of the output functions with
respect to some lower triangular matrix P(t). This allows us to establish explicit conditions for
various types of observability that significantly strengthen known ones. Matrix P(t) is easily
obtained for systems in upper Hessenberg form and thus for all systems that can be transformed
into Hessenberg form by linear variables substitutions. Thereby we also give the criteria of
reducibility to Hessenberg form and the method of its construction.

On the basis of quasiderivatives we consider the state estimation problems for linear time-
varying systems of ordinary differential equations. Conditions for linear independence of con-
tinuous quasidifferentiable functions are established in terms of the Wronski matrix. The
method for constructing state estimators for linear time-varying systems based on the quasidif-
ferentiability of the coefficients is proposed. For uniformly observable systems with quasidif-
ferentiable coefficients, we obtain conditions for the existence of an exponential observer and
describe a constructive method for designing such observers.
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