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Abstract. The theory of abstract convexity, also known as convexity without linearity, is an extension of classical
convex analysis. There are a number of remarkable results, mostly concerning duality, and some numerical meth-
ods, however, this area has not found many practical applications yet. In this paper, we study the application of
abstract convexity to function approximation. Another important research direction addressed in this paper is the
connection with the so-called axiomatic convexity.
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1. INTRODUCTION

Abstract convexity appears as a natural extension of the classical convex analysis when linear
and affine functions (elementary functions) are “replaced” by other types of functions. This is
why abstract convexity is also known as “convexity without linearity”.

It was demonstrated that many results from the classical convex analysis: conjugation, dual-
ity, subdifferential related issues can be extended to “non-linear” settings [26, 32]. In [26] the
authors provide a very detailed historical review of the theory and it turned out that the origins
of this environment comes back to early 70s, while some specific issues were already in place
in the 50s of the twentieth century.

Despite very productive work done in the development of abstract convexity, there are still
several directions for improvement. From the onset of abstract convex theory, much effort has
been devoted to studying duality, leading to very elegant generalisations of classical convexity
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results. On the other hand, the geometric aspects of convexity have not received as much atten-
tion. Additionally, the theory remains “abstract” and needs practical applications. One of the
goals of this paper is to provide some applications and develop a framework on the properties
that the elementary functions have to satisfy to be efficient in applications. The application
we study is the generalised Chebyshev approximation problem, which consists in uniformly
approximating a function f using a certain family of functions. In the classical (and convex)
case of polynomial approximation, the approximating function is linear in its coefficients (the
decision variables of the problem). We extend this classical case to more general cases. We
formulate the problem and show how it can be approached using abstract convexity. Further-
more, when the approximating function is quasiaffine in the decision variables, we propose an
algorithm for solving the approximation problem.

There are a number of difficulties to develop efficient computational methods. The first step
is to choose the set of elementary functions. This set should be simple enough to construct fast
and efficient methods. On another hand, this set has to generate accurate approximations to the
functions from the applications. In some cases, the choice of elementary functions is reasonably
straightforward (see section 3), but this is rather exceptional and in most applications, the choice
of a suitable class of elementary functions is a difficult task.

A deep and detailed study on abstract convexity and related issues can be found in [32]
and also in [30]. A detailed survey of methods of abstract convex programming can be found
in [2]. Many more contributions and developments and results on duality and methods are not
mentioned in this paper, but the most recent state of the developments in abstract convexity and
a comprehensive literature review can be found in [6].

The paper is organised as follows. In section 2 we provide the essential background of ab-
stract convexity and axiomatic convexity. In the same section, we underline connections and
possible cross-feeding between these two types of convexity. Then, in section 3 we illustrate
how abstract convexity and axiomatic convexity can be applied to function approximation. Sec-
tion 4 illustrates the results of numerical experiments. Finally, section 5 provides conclusions
and future research directions.

2. ABSTRACT CONVEXITY

2.1. Definitions and preliminaries. Considering the set of all real-valued functions acting on
the domain X ⊆ Rn, denoted by F and defined by F := { f : X → R}. We called the set of
abstract linear functions to any subset of functions L ⊆ F . Following, we introduce some
known definitions to state the abstract convexity concept. Suppose that we defined the set of
abstract linear functions L⊆F .

Definition 2.1. The vertical closure of L, H := {l+c : l ∈ L,c ∈R} is the set of abstract affine
functions.

Definition 2.2 (Abstract Convexity [30]). A function f is said to be L-convex if there exists a
set U ⊂ H such that for any x ∈ X , f (x) = supu∈U u(x). Such functions are also called abstract
convex with respect to L.

In this paper, we denote the set of all L-convex functions by FL.



APPLICATIONS AND ISSUES IN ABSTRACT CONVEXITY 3

Definition 2.3 (Support Set [30]). The L-support set of a function f ∈ F is defined as:
suppL f := {l ∈ L : l ≤ f}, where l ≤ f means that l(x) ≤ f (x),∀x ∈ X . The support sets of
L-convex functions are called L-convex sets.

Therefore, informally, convexity without linearity simply means that the “role” of linear func-
tions of the classical convex analysis is held by functions from a certain class. The first (and for
some applications, this is the most important) question is how to choose the set of elementary
functions.

The next definition, which will be detailed and used in the next subsection, “helps” the chosen
of a “better” set of abstract linear functions.

Definition 2.4 (Supremal generator [14, 30]). Let F be a set of functions defined on a set X . A
set L ⊂F is called a supremal generator of F if each f ∈F is abstract convex with respect
to L.

2.2. Quasiconvexity. The notion of quasiconvexity plays an essential role in abstract convex-
ity. We are now going to explain why.

The notion of quasiconvexity was originally introduced in [11], where the author studied the
behaviour of functions with convex sublevel sets, but the term quasiconvexity was introduced
much later.

Definition 2.5. Let D be a convex subset of Rn. A function f : D→ R is quasiconvex if and
only if its sublevel set Sα = {x ∈ D | f (x)≤ α} is convex for any α ∈ R.

There are several equivalent definitions of quasiconvex functions, but the one we use is con-
venient for our study.

Definition 2.6. A function f : D→R, where D is a convex subset ofRn, is called quasiconcave
if − f is quasiconvex.

Definition 2.7. Functions that are both quasiconvex and quasiconcave are called quasiaffine
(quasilinear).

Note the following important observations.
• Quasiconvex functions do not need to be continuous.
• In the case of univariate functions, quasiaffine functions are monotone functions.

If a function is quasiaffine onRn (unconstrained problems) then, from the definition, its level
sets must be half-spaces, and it is clear that the hyperplanes defining these half-spaces need
to be parallel. In the presence of constraints, this observation is not valid and we provide an
example in section 4.

There are many studies dedicated to quasiconvex functions and quasiconvex optimisation [5,
9, 10, 14, 30, 31]. In these studies, the notion of quasiconvexity appears as one of the possible
generalisations of convexity.

2.3. Quasiconvex functions and supremal generators. Theorem 7.13 from [14] states the
following.

Theorem 2.8. The set of all lower semicontinuous quasiaffine functions forms a supremal gen-
erator of the set of all lower semicontinuous quasiconvex functions.



4 R. DÍAZ MILLÁN, N. SUKHORUKOVA AND J. UGON

Essentially, this theorem states that in the case of quasiconvex minimisation problems, quasi-
affine functions “replace” the role of linear functions in classical convex settings. Therefore, the
choice of elementary functions is clear (all quasiaffine functions). One main advantage is that
the sublevel sets of “new” elementary functions are half-spaces and this is similar to classical
convex analysis.

In the rest of this section, we clarify the “roles” of quasiaffine functions in the new abstract
convex settings. Then section 4 contains the results of computational experiments and illustra-
tions.

2.4. Relation to Axiomatic Convexity. Axiomatic Convexity aims at generalising the notion
of convexity using only set-theoretic definitions. Good reviews can be found in [33, 34]. Given
a set X , a family C of subsets of X is called a convexity if it follows the following axioms:

(1) /0 and V belong to C ;
(2) Any arbitrary intersection of sets from C is in C : if D⊂ C ,⋂

A∈D

A ∈ C

(3) The nested union of sets from C is in C : given a family of sets D ⊂ C that is totally
ordered by inclusion then ⋃

A∈D

A ∈ C .

The pair (X ,C ) is called a convex structure (or (abstract) convex space).
These axioms (in particular axioms 1 and 2) ensure the existence of the convex hull of any

set S⊂ X , namely the smallest convex set containing S:

coC S =
⋂
{A ∈ C : S⊂ A}.

If F is finite, then coC F is called a polyhedron.
Axiomatic Convexity, also called abstract convexity by [34], has found applications in com-

binatorial geometry [13, 18], among others. A family C that satisfies the first two axioms above
is called a closure space, or ∩-stable [15].

There are clear connections between abstract convexity as defined by Definition 2.3 and ax-
iomatic convexity. Indeed, the notion of abstract convex function (Definition 2.2) first appeared
in [15] in the context of closure spaces. The families of sets considered in [15] were the closures
of the set of sublevel sets of a given family of functions.

Abstract convex functions (Definition 2.2) and Abstract convex sets (Definition 2.3) were
then formally introduced by [17], who showed the equivalence between these sets and the ones
considered by [15]. Below we formalise some results on the correspondence between abstract
convex sets and closure spaces. Let us start by noting that the support set of any (not necessarily
L-convex) function is L-convex. Indeed, the support set of f is also the support set of its L-
convex envelope, which is convex.

Proposition 2.9. Consider a family of functions L. Then, the set of L-convex sets form a closure
space. Furthermore, every closure space is isomorphic to such a set.

Proof. Consider a family of functions L and let C be the set of L-convex sets. We first show
that L is closed with respect to inclusion. Indeed, let D ⊂ C be an arbitrary set of L-convex
sets. For each A ∈D, let fA(x) = supl∈A l(x) and consider the function f (x) = infA∈D fA(x). We
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will show that ∩A∈DA = supp f , which implies that ∩A∈DA is L-convex (note that supp f is the
support set of the lower convex envelope of f ).

supp f = {l ∈ L : l(x)≤ inf
A∈D

fA(x)∀x ∈ X}

= {l ∈ L : l(x)≤ fA(x)∀A ∈ D,x ∈ X}
= ∩A∈D{l ∈ L : l(x)≤ fA(x),∀x ∈ X}= ∩A∈DA.

The first axiom is clearly verified by C from the fact that /0 is the support set of supl∈ /0 l and
L is the support set of supl∈L l.

The second part of the statement is obtained by considering the set L of indicator functions
of the sets in the closure space. More precisely, let C be a closure space, and consider the set
L = {iA : A ∈ C } where

iA(x) =

{
0 if x ∈ A,
+∞ otherwise.

Then, L is also the set of L-convex functions. Indeed, let D⊂ C . Define U = {iA : A ∈ D} ⊂ L
and f = supl∈U l = supA∈D iA. Then f (x) = 0 if and only if x ∈ A for all A ∈ D. That is,
f = i∩A∈DA. The isomorphism between the set of support sets of functions from L and C is
evident. �

Note that in practice it is not necessary to consider the entire set of indicator functions, but
only the set of indicator functions of a basis of C (i.e., a set of functions whose closure is C ),
which corresponds to a suppremal generator of the corresponding abstract functions. It can also
easily be seen that the set of domains of the L-abstract functions defined as in the above proof,
as well as the set of 0-sublevel sets, is precisely C .

On the other hand, not all families of abstract convex sets are convexity structures.

Example 2.10. Let L be the set of linear functions on R, and consider the functions fα defined
by fα(x) = α|x|, for α > 0. These functions are L-convex, and induce a nested sequence of
L-convex sets Sα = suppL fα = {x→ βx : β ∈ [−α,α]}.

However,

U =
⋃

α<1

Sα = {x→ βx : β ∈ (−1,1)}

is not a L-convex set. Indeed, f1 = supl∈U l is the smallest L-convex function whose support set
contains U , but the function x→ x ∈ supp f1 \U , which shows that U cannot be the support set
of f1 and therefore of any L-convex function. This shows that the set of L-convex sets is not a
convex structure.

Let us introduce the notion of a strict support set, which will enable us to address this issue.
The L-strict support set of a function f is defined as:

supp f = {l ∈ L : l(x)< f (x),∀x ∈ dom( f )}.

We define the family of sets CL as follows.
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Definition 2.11 (convexity extension).

C f
L := {A ∈ L : supp f ⊆ A⊆ supp f}

CL :=
⋃
f∈L

C f
L .

We call the set CL the convexity extension of the set of support sets of L-convex functions.

Proposition 2.12. For any family of functions L, the convexity extension of L, CL, forms a
convexity structure.

Proof. Since CL contains all L-convex sets, it contains a closure space and therefore by Propo-
sition 2.9, it contains the sets /0 and X .

To see why the second axiom is satisfied consider an arbitrary family of sets D⊂CL. For each
A ∈ D, there exists a L-function fA such that supp fA ⊆ A⊆ supp fA. Define f = coL infA∈D fA.
Since A⊆ supp fA for any A, we have that⋂

A∈D

A⊂
⋂

A∈D

supp fA = supp f ,

where the last equality was shown in the proof of Proposition 2.9. Additionally, we have:

supp f = {l ∈ L : l(x)< inf
A∈D

fA(x)∀x ∈ X}

⊂ {l ∈ L : l(x)< fA(x)∀A ∈ D,x ∈ X}
= ∩A∈D{l ∈ L : l(x)< fA(x)∀x ∈ X} ⊂ ∩A∈DA.

Therefore supp f ⊆ ∩A∈DA⊆ supp f , we conclude that ∩A∈DA is in CL.
Finally, to see that the third axiom is also satisfied, let D be an ordered family of sets from

C . For each A ∈ D, we define fA as above. The nested nature of the sets in D implies that for
A,A′ in D, if A≤D A′, then

fA ≤ fA′. (2.1)

Let S = ∪A∈DA and f = supA∈D fA.
It is clear that S ⊂ supp f , since for any u ∈ S there exists A ∈ D such that u ∈ supp fA. Then

u ≤ fA ≤ f . Now, consider u /∈ S. Then u /∈ ∪A∈D supp fA, and so there exists x ∈ X such
that u(x) ≥ fA(x) for any A ∈ D, and therefore that u(x) ≥ supA∈D fA(x) = f (x). Therefore
u /∈ supp f . This implies that supp f ⊆ S⊆ supp f , and therefore S is in CL and CL is a convexity
structure. �

Remark 2.13. Propositions 2.9 and 2.12 imply an equivalence relation between sets of abstract
linear functions according to the convexity structure (axioms 1-3) or closure space (axioms 1,2)
the induced abstract convex sets are isomorphic to.

Axiomatic convexity has been applied to obtain generalisations of well-known geometric re-
sults in convexity theory. Of particular interest to this paper are generalisations of Carathéodory’s
theorems. Much research has been devoted to investigating this topic. We refer to [34] for a
review of classical results in the area.
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Definition 2.14 ([34, Definition 1.5]). In a given Convexity structure C , a set F is Carathéodory
dependent if coC F ⊆

⋃
a∈F coC (F \{a}), and Carathéodory independent otherwise.

Then we can define the Carathéodory number of a convex structure C as the largest cardi-
nality of a Carathéodory independent set (i.e., any set F with cardinality greater than c(x) is
Carathéodory dependent). The Carathéodory numbers of several important classes of convexity
structures are known and discussed in the literature [34].

Generalisations of Helly’s and Radon’s theorems were obtained similarly. The Carathéodory
number enables the following generalisation of Carathéodory’s classical result:

Proposition 2.15 ([34, Theorem 1.7]). Consider a convexity structure (C ,X) with Carathéodory
number c(x), and let A⊂C be a convex set from C . Then, for any x ∈ A there exists a set F ⊂ A
such that |F | ≤ c(x) and x ∈ coF. This is the best possible.

3. APPLICATION TO APPROXIMATION

3.1. Problem formulation. We are working with uniform (Chebyshev) approximation. Define
a function g : Rk×X → R, where X ⊂ Rn is a compact set and k > 0,n > 0 are integers. The
approximation problem is:

min
A∈Rk

sup
x∈X
| f (x)−g(A,x)|. (3.1)

In (3.1) A is the set parameters of approximation (e.g., polynomial coefficients), that are the
decision variables for the optimisation problems. For example, in the case of polynomial ap-
proximation, we choose the polynomial coefficients in such a way that the maximal deviation
over X is minimal.

In many computer-based applications, this set is a finite grid defined on a convex compact set.
If we define L = {A→ g(A,x) : x ∈ X}, then it is clear from formulation (3.1) that the objective
function of this problem is HL-convex.

In the case when the approximation function g(A, t) is a polynomial (and its coefficients
are subject to optimisation), the optimality conditions are based on maximal deviation points
(Chebyshev theorem, see [7]). In the case of univariate function approximation, the conditions
are based on the notion of alternating sequence.

Theorem 3.1 (Chebyshev). A polynomial of degree at most n is optimal in uniform (Chebyshev)
norm if and only there are n+2 alternating points.

Essentially, the approximations here are presented as linear combinations of known univariate
functions. These functions are called basis functions. In the case of polynomials, the basis func-
tions are monomials, but other classes of basis functions can be used. The decision variables
are the coefficients (parameters) of the linear combinations of basis functions. The correspond-
ing optimisation problems are convex as the supremum of linear forms. Theorem 3.1 can be
proved using convex analysis and the number of alternative points (n+ 2) obtained through
Carathéodory’s theorem. In other words, the following conjecture is true, in the case when L is
a set of linear functions:

Conjecture 3.2. For a function from L to be an optimal approximation in the uniform norm, it
is enough that it is optimal at c(CHL)+1 extreme points.
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We also conjecture that this is best possible, in the sense that the statement is generally not
true if we replace c(CHL)+1 with c(CHL).

If true, this conjecture could form the basis for algorithms for best approximation, such as a
generalisation of Vallée-Poussin’s procedure [12]. Later in this section, we discuss an example
of families L in the context of this conjecture.

One possible generalisation to polynomial approximation is rational approximation, that is,
approximation by the ratio of two polynomials, whose coefficients are subject to optimisation.
Note that in some cases, the degree of the denominator and numerator can be reduced without
compromising the accuracy:

∑
n
j=0 a jt

j
i

∑
m
k=0 bktk

i
=

∑
n−ν

j=0 a jt
j
i

∑
m−µ

k=0 bktk
i

,

where d = min{ν ,µ} is called the defect. Then the necessary and sufficient optimality condi-
tions are as follows [1].

Theorem 3.3. A rational function in Rn,m with defect d is the best polynomial approximation
of a function f ∈ C0(I) (the space of continuous functions over I) if and only if there exists a
sequence of at least n+m+2−d points of maximal deviation were the sign of the deviation at
these points alternates.

Therefore, similar to polynomial approximation, these conditions are based on the number of
alternating points.

In connection to Conjecture 3.2, c(CHL) is n+m+ 2. If n and m are the degrees of the
corresponding polynomials, then the total number of the decision variables is n+ 1+m+ 1 =
n + m + 2. However, one of the decision variables can be fixed (otherwise one can divide
the numerator and denominator by the same number). Therefore, there are n+m+ 1 “free”
variables and we add one more for c(CHL) (similar to Carathéodory’s theorem from classical
convex analysis). The proof of this conjecture is out of the scope of the current paper: this result
is non-trivial due to the effect of the defect.

Rational approximation was a very popular research area in the 1950s-70s [1, 4, 21, 28, 29]
(just to name a few).

If the basis functions are not restricted to monomials, the approximations are called gener-
alised rational approximations. The term is due to Cheney and Loeb [8].

One way to approach rational approximation is through constructing “near optimal” solu-
tions [25]. This approach is very efficient and therefore very popular. The extension of this
approach to non-monomial basis functions and multivariate approximation remains open (an
extension to complex domains can be found in [24]).

An alternative way is based on modern optimisation techniques. This approach is preferable
when the basis of functions is not restricted to univariate monomials and when a deeper theo-
retical study is required. The corresponding optimisation problems are quasiconvex and can be
solved using general quasiconvex optimisation methods.

Rational and generalised rational functions are quasiaffine as ratios of linear forms [5, 19, 27].
The corresponding optimisation problems can be solved efficiently by applying a simple, but
robust approach called the bisection method for quasiconvex functions [5].
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In [27], the authors used a well-known bisection method for quasiconvex functions (see [5])
to solve these problems. In [23], the authors used a projection-type algorithm for solving these
problems.

3.2. Bisection method. Bisection method for quasiconvex functions [5] can be used efficiently
for rational and generalised rational approximation, including multivariate settings [22, 27]
when the compact set X is finite. Can we use abstract convexity to extend this method to a
wider class of approximations? The answer is positive. This method can be extended to any
type of approximation if these approximations are quasiaffine with respect to the approxima-
tion parameters (that is, the decision variables of the corresponding optimisation problem), if
we know how to find their sub-level sets. The reasoning is provided in the rest of this section.

The problem can be formulated as follows:

minimise z̃ (3.2)

subject to

f (x)− AT G(x)
BT H(x)

≤ z̃, x ∈ X , (3.3)

AT G(x)
BT H(x)

− f (x)≤ z̃, x ∈ X , (3.4)

BT H(x)≥ δ , x ∈ X , (3.5)

where z̃ is the maximal deviation and δ is a small positive number. The functions G and H
are vector-valued functions, such that their components are basis functions for the numerator
and denominator respectively. In other words, the functions g(A,x) = AT G(x) and h(B,x) =
BT H(x) are linear functions of the decision variables of the problem. Problem (3.2)-(3.5) is not
linear.

The idea of this method is based on the fact that all the sublevel sets of quasiconvex functions
are convex and therefore the sublevel sets of quasiaffine functions are half-spaces. Essentially,
this means that the constraint set (3.3)-(3.5) for a fixed z̃ is an intersection of a finite number of
half-spaces (X is a finite grid) and therefore it is a polytope.

The algorithm starts with an upper and lower bound (u and l) for the maximal deviation, then
the sublevel set for the maximal deviation at the level z = u+l

2 is a convex set and the algorithm
checks if this set is empty. If it is empty, then the upper bound is updated to z, otherwise, the
lower bound is updated to z. The algorithm terminates when the upper and lower bounds are
within the specified precision.

In general, checking if the convex set (sublevel set of the maximal deviation) is empty or not
may be a difficult task (convex feasibility problems). There are a number of efficient methods
([3, 20, 35, 36, 37] just to name a few), but there are still several open problems here. The
discussion of these problems is out of the scope of the current paper.

In the case of multivariate generalised rational approximation, however, this problem (convex
feasibility) can be reduced to solving a linear programming problem [22]. The denominator of
the approximation does not change the sign. Assume, for simplicity, that it is positive, then the
problem of checking the feasibility is equivalent to solving the following problem:

minimise ũ (3.6)
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subject to
f (x)BT H(x)−AT G(x)≤ zBT H(x)+ ũ, x ∈ X , (3.7)
AT G(x)− f (x)BT H(x)≤ zBT H(x)+ ũ, x ∈ X , (3.8)

BT H(x)≥ δ , x ∈ X , (3.9)
where z = 1

2(u + l) is the current bisection point (bisecting the possible values of maximal
deviation).

If an optimal solution ũ≤ 0, the corresponding sublevel set of the maximal deviation function
is not empty (update the upper bound), otherwise the set is empty (update the lower bound). If
X is a finite grid, then (3.6)-(3.9) is a linear programming problem and can be solved efficiently
at each step of the bisection method.

To summarise, an efficient implementation of the bisection method for quasiconvex functions
can be extended to approximation by any type of quasiaffine function. Indeed, if rational ap-
proximations are replaced by any other quasiaffine functions (with respect to the approximation
parameters, which are also the decision variables), then each constraint in (3.3)-(3.4) represents
a sublevel set of a quasiaffine functions, which is a half-space. Therefore, the problem is re-
duced to solving linear programming problems. The main problem is how to find this polytope
(that is, how to find sublevel sets of an arbitrary quasiaffine function). In the case of rational
and generalised rational approximation, this problem is simple, but not for some other types of
quasiaffine approximations. In Section 4, we give more examples where the construction of this
polytope is straightforward (composition of monotone and affine or ratios of affine functions).

One possibility for constructing sublevel sets for smooth quasiaffine approximation is to use
their gradients (if it is not vanishing). In the rest section, we give an example demonstrating
that this approach may be complicated if there are constraints (even simple linear constraints).
In particular, this approach will not work even in the case of rational approximation due to the
requirement for the denominator to be strictly positive.

3.3. Approximation by a quasiaffine function. Suppose that instead of a generalised rational
approximation one needs to approximate by a function from a different class, but the approxi-
mations are quasiaffine functions with respect to the decision variables. Then the problem is as
follows:

minimise z̃ (3.10)
subject to

f (x)−g(A,x)≤ z̃, x ∈ X , (3.11)
g(A,x)− f (x)≤ z̃, x ∈ X , (3.12)

where g(A,x) is a quasiaffine function with respect to A. Since the sublevel sets of quasiaffine
functions are half-spaces, the constraint set (3.11)-(3.12) is a polytope, since X is a finite grid.

Remark 3.4. A finite number of linear constraints may be added to (3.10)-(3.12), while the
constraint set remains a polytope.

Therefore, the constraint set (for any fixed z̃), with or without additional linear constraints,
is a polytope and we only need to check if this polytope is non-empty. However, we still need
an efficient approach to finding this polytope. In the case when the approximations are smooth
functions, one can use the gradient as a possible normal vector to the hyperplanes, providing that
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it is not a zero vector. In section 4 we study the examples where the quasiaffine approximations
can be decomposed as a composition of strictly monotone and affine (quasiaffine) functions.
Other situations may be harder.

Note that if a function is quasiaffine on the whole space, then the sublevel sets are half-
spaces, whose boundary hyperplanes are parallel. Otherwise, two hyperplanes will intersect. If
there are additional (even linear) constraints, this observation may not be valid anymore. The
following example illustrates that this may happen even in a very simple case of two variables.

Example 3.5. Consider f (x,y) = x
y , where y > 0. The sublevel sets are

Sα = {(x,y) :
x
y
≤ α,y > 0},

where α is a given real number. Then Sα can be described as

{x−αy≤ 0, y > 0}.

Each sublevel set is still a half-space, but the corresponding hyperplanes (in this example they
correspond to level sets) are not parallel. These hyperplanes intersect at (0,0), but this point is
excluded from the domain due to the requirement for the denominator y to be strictly positive.

This example demonstrates that the computation of sublevel sets for quasiaffine functions
may be challenging. In the next section, we give some examples of the classes of approxima-
tions that can be handled efficiently. We also provide the results of the numerical experiments.

4. NUMERICAL EXPERIMENTS

4.1. Strictly monotone function in composition with an affine function. In this example we
approximate the function

f (x,y) = (−x+ y3 + x4)4 (4.1)

by a quasiaffine function in the form

g(A,x,y) = (a1 +a2x+a3y+a4x2 +a5y2 +a6xy)3, (4.2)

where A = (a1,a2,a3,a4,a5,a6) are the decision variables, x and y form a grid on [−1,1] with
the step-size 0.1. Function g(A,x,y) is quasiaffine as a composition of a monotonous (cubic)
function and an affine function (see [5, 30] for details). The optimal coefficients are (rounded
to two decimal places):

A = (−1.88,−0.75,0.31,3.29,0.98,−0.74),

the maximal absolute deviation is 8.01 (to two decimal places).
Figure 1 represents the function f (x,y), figure 2 depicts the best found approximation and

figure 3 contains the deviation function f (x,y)−g(A,x,y), which is the error of approximation.
Function f (x,y) is almost flat with an abrupt increase around point (−1,1). Visually, the

approximation resembles the shape of the original function and the magnitude of the deviation
confirms that the approximation is reasonably good.
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FIGURE 1. Function f (x,y) = (−x+ y3 + x4)4.

FIGURE 2. Approximation g(A,x,y) = (a1 +a2x+a3y+a4x2 +a5y2 +a6xy)3.

4.2. Strictly monotone function in composition with a rational function. In this example,
we approximate the same function

f (x,y) = (−x+ y3 + x4)4 (4.3)



APPLICATIONS AND ISSUES IN ABSTRACT CONVEXITY 13

FIGURE 3. Deviation (error) function f (x,y)− g(A,x,y) = (−x+ y3 + x4)4−
(a1 +a2x+a3y+a4x2 +a5y2 +a6xy)3.

by a quasiaffine function in the form

g1(A,x,y) =
(

a1 +a2x+a3y+a4x2 +a5y2

1+a6xy

)3

, (4.4)

where, similar to the previous example, A = (a1,a2,a3,a4,a5,a6) are the decision variables (the
number of decision variables is the same as in the previous example), x and y are on a grid [−1,1]
with the step-size 0.1. Function g1(A,x,y) is quasiaffine as a composition of a monotonous
(cubic) function and an affine function (see [5] for details). The purpose of approximation is to
use lower degree polynomials in the composition. The optimal coefficients are (rounded to two
decimal places):

A = (−1.66,−0.93,1.05,2.87,0.98,1),

the maximal absolute deviation is 11.48 (to two decimal places).
Figure 4 contains the best found approximation and figure 5 depicts the deviation function

f (x,y)−g1(A,x,y), which is the error of approximation.
The new approximation still resembles the shape of the original function, but the maximal

deviation is higher.

4.2.1. Deep learning applications. At first glance, the class of a composition of a monotone
univariate function with an affine or rational function is restrictive. However, it has many practi-
cal applications, including deep learning, where compositions of univariate activation functions
and affine transformations are the main components of the models [16]. Most common choices
for activation functions are sigmoid functions, ReLU and Leaky ReLU (the last two functions
are simply non-decreasing piecewise linear functions with two linear pieces).
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FIGURE 4. Approximation g1(A,x,y) = (a1+a2x+a3y+a4x2+a5y2

1+a6xy )3.

FIGURE 5. Deviation (error) function f (x,y)− g(A,x,y) = (−x+ y3 + x4)4−(
a1+a2x+a3y+a4x2+a5y2

1+a6xy

)3
.

5. CONCLUSIONS

The goal of this study is to demonstrate that abstract convexity (in the sense of “convex-
ity without linearity”) has several applications in different branches of mathematics, including
approximation theory. This application appears naturally in the new settings.
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The results of the numerical experiments demonstrate that our approach is computationally
efficient. The applications lead to practical applications as well. One potential application is
data science and deep learning.

We also touched on the connections between “abstract convexity” and “axiomatic convexity”.
These areas have many overlappings that can be seen as a new way of looking at the problems,
in particular, function approximation.
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16 R. DÍAZ MILLÁN, N. SUKHORUKOVA AND J. UGON

[23] R.D. Millan, N. Sukhorukova, J. Ugon, An algorithm for best generalised rational approximation of continu-
ous functions, Set-Valued Var. Anal. 30 (2022), 923–941.

[24] Y. Nakatsukasa, L.N. Trefethen, An algorithm for real and complex rational minimax approximation, SIAM
J. Sci. Comput. 42 (2020) A3157–A3179.

[25] Y. Nakatsukasa, O. Sete, L.N. Trefethen, The aaa algorithm for rational approximation, SIAM J. Sci. Comput.
40 (2018) A1494–A1522.

[26] D. Pallaschke, S. Rolewicz, Foundations of Mathematical Optimization: Convex Analysis without Linearity,
volume 388, Springer, 1997.

[27] V. Peiris, N. Sharon, N. Sukhorukova, J. Ugon, Generalised rational approximation and its application to
improve deep learning classifiers, Appl. Math. Comput. 389 (2021) 125560.

[28] A. Ralston, Rational chebyshev approximation by remes’ algorithms, Numer. Math. 7 (1965) 322–330.
[29] T.J. Rivlin, Polynomials of best uniform approximation to certain rational functions, Numer. Math. 4 (1962)

345–349.
[30] A.M. Rubinov, Abstract Convexity and Global Optimization, volume 44, Springer, 2013.
[31] A. M. Rubinov, B. Simsek, Conjugate quasiconvex nonnegative functions, Optimization 35 (1995) 1–22.
[32] I. Singer, Abstract Convex Analysis / Wiley-Interscience and Canadian Mathematics Series of Monographs

and Texts, Wiley, New York, 1997.
[33] V.V. Soltan, Introduction to the Axiomatic Theory of Convexity, Sthiinka, Kishinev, 1984. In Russian.
[34] M.L.J. van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, New York, 1993.
[35] Y. Yang, Q. Yang, Some modified relaxed alternating projection methods for solving the two-sets convex

feasibility problem, Optimization 62 (2013) 509–525.
[36] A.J. Zaslavski, Subgradient projection algorithms and approximate solutions of convex feasibility problems,

J. Optim. Theory Appl. 157 (2013) 803–819.
[37] X. Zhao, M.A. Kobis, On the convergence of general projection methods for solving convex feasibility prob-

lems with applications to the inverse problem of image recovery, Optimization 67 (2018) 1409–1427.


	1. Introduction
	2. Abstract Convexity
	2.1. Definitions and preliminaries
	2.2. Quasiconvexity
	2.3. Quasiconvex functions and supremal generators
	2.4. Relation to Axiomatic Convexity

	3. Application to approximation
	3.1. Problem formulation
	3.2. Bisection method
	3.3. Approximation by a quasiaffine function

	4. Numerical experiments
	4.1. Strictly monotone function in composition with an affine function.
	4.2. Strictly monotone function in composition with a rational function.

	5. Conclusions
	References

