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Abstract. In this paper, we survey some recent applications of the generic approach to selected optimization
problems, such as minimization of convex functionals and stochastic feasibility problems. We also overview a few
recent developments related to the residuality properties of certain classes of convex functions, the abundance of
which is known to be crucial in many optimization algorithms for which the elements of a certain class can be used
as good approximates of given convex functions.
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1. INTRODUCTION

The generic approach has already been successfully applied in many areas of analysis and
the theory of dynamical systems (see, for example, [9, 10, 11, 13, 14, 26, 32, 35]), as well as
in the Calculus of Variations and Optimization Theory (see, for example, [6, 8, 16, 21, 28, 29,
33, 34]). By applying this approach, we can investigate certain properties for the whole space
and not just for a few elements in it. In this paper, we survey such applications to selected
optimization problems and review some recent results regarding the existence of generic sets of
certain classes of convex functions. This work is based on [1, 2, 3, 4, 5].

The following definition is one of the cornerstones of the generic approach discussed in this
paper.

Definition 1.1. A subset Z of a topological space Y is called residual if it contains a countable
intersection of open and dense subsets of Y .

We recall a general Baire category theorem for complete pseudo-metric spaces. It is a key
theorem for obtaining results on residual sets.

Theorem 1.2. Let X be a complete pseudo-metric space. Then the intersection of a countable
family of open and dense subsets of X is itself dense in X.
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Thus, in the case where the space under consideration is completely pseudo-metrizable, the
Baire category theorem guarantees that each one of its residual subsets is also dense. In this
work we are interested in the residual sets of some classes of operators, sequences of operators
and of convex functions defined on normed spaces. We call elements of such sets generic
elements. In Section 3 we also recall the notion of porosity which provides somewhat more
refined results concerning the existence of residual sets of desired generic elements.

Obviously, while considering residual sets which, by definition, contain a countable inter-
section of open and dense sets, the topology with respect to which the sets are open should
be as weak as possible, while the topology with respect to which the sets are dense should be
as strong as possible. All the main results reviewed in the current paper should be read while
keeping in mind this observation.

The rest of the paper is organized as follows. In Section 2 we overview the recent results
on the properties of normal mappings and normal sequences of mappings, as well as recall the
development of theory of weakly normal sequences of mappings. Two different definitions of
normality and weak normality which depend on a given convex function are considered with
applications to minimizing convex functionals. In Section 3 various methods for solving sto-
chastic feasibility problems are surveyed. These methods are valid for certain residual subsets
of the spaces under consideration. Finally, in Section 4 few recent results on the existence of
residual sets of some classes of convex functions are reviewed.

2. NORMALITY AND WEAK NORMALITY

The notion of a normal mapping with respect to a continuous convex function was first in-
troduced by Gabour, Reich and Zaslavski in 2000 for bounded, closed and convex sets (see
[18]). This notion has turned out to be useful in the study of minimization problems. In this
section we consider further properties of normal mappings and normal sequences of mappings
under various assumptions for arbitrary nonempty, closed and convex sets, recall more general
notions of weakly normal sequences of mappings and survey results with applications to the
minimization of convex functions.

In Subsection 2.1 we consider the case of normal mappings and normal sequences of map-
pings with respect to an everywhere uniformly continuous convex function.

In Subsection 2.2 we recall the notions and study the analogous properties of operator-
dependent normality and operator-dependent weak normality with respect to a given operator
and a given convex function, which is uniformly continuous on bounded sets.

In this section we assume that (X ,‖·‖) is a normed space with norm ‖·‖, K⊂X is a nonempty,
closed and convex subset of X and f : K→R is a convex function which is bounded from below.
Set

inf f := inf{ f (x) : x ∈ K} .

The results and corollaries which we overview in this section are of interest when X is a Banach
space: thus the residual sets under consideration are dense by Theorem 1.2.

2.1. Operator-independent case. In this subsection we assume that f is uniformly continuous
on the whole of K.
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2.1.1. Background. Denote by A the set of all bounded self-mappings A : K→ K such that

f (Ax)≤ f (x) foreachx ∈ K (2.1)

and by Ac the set of all continuous mappings A∈A. For the set A define a metric ρ :A×A→R
by

ρ (A,B) : = sup{‖Ax−Bx‖ : x ∈ K} , A,B ∈ A.

Clearly, the metric space A is complete if (X ,‖·‖) is a Banach space, and the metric space Ac is
a closed subset of A. Denote by M the set of all sequences of elements in A and by Mc the set
of all sequences of elements in Ac. For the set M we consider the following two uniformities
and the topologies induced by them. The first uniformity is determined by the following basis:

E1 (N,ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M×M : ρ (An,Bn)< ε, n = 1, . . . ,N} ,

where N = 1,2 . . . and ε > 0. This uniformity induces a uniform topology on M, which we
denote by τ1 and call the weak topology.

The second uniformity is determined by the following basis:

E2 (ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M×M : ρ (An,Bn)< ε, n = 1,2, . . .} ,

where ε > 0. This uniformity induces a uniform topology on M, which we denote by τ2 and
call the strong topology. It is clear that τ2 is indeed stronger than τ1.

Clearly, the uniform spaces (M,τ1) and (M,τ2) are metrizable (by metrics ρ1 and ρ2, re-
spectively) and it is not difficult to see that these metrics are complete if (X ,‖·‖) is a Banach
space.

Evidently, Mc is a closed subset of M with respect to the weak topology (and therefore with
respect to the strong topology) and hence complete with respect to both the strong and weak
topologies. Denote by Mb the set of all bounded sequences of elements in A and by Mbc the
set of all bounded sequences of elements in Ac. It can easily be verified that Mb and Mbc are
closed subsets of M with respect to the strong topology. Evidently, the relative strong topology
on Mb is determined by the metric d : Mb×Mb→ R defined by

d ({An}∞

n=1 ,{Bn}∞

n=1) := sup{ρ (An,Bn)}∞

n=1 {An}∞

n=1 ,{Bn}∞

n=1 ∈Mb.

Definition 2.1. A mapping A : K→ K is called normal with respect to f if given ε > 0, there is
δ (ε)> 0 such that for each x ∈ K satisfying f (x)≥ inf( f )+ ε , the inequality

f (Ax)< f (x)−δ (ε)

is true. A sequence {An}∞

n=1 of operators An : K→ K is called normal with respect to f if given
ε > 0, there is δ (ε)> 0 such that for each x ∈ K satisfying f (x)≥ inf( f )+ ε and each integer
n = 1,2, . . . , the inequality

f (Anx)< f (x)−δ (ε)

holds.

Example 2.2. Let X =R and K = [0,∞). Define A : K→ K by Ax := 2−1 |sinx| for each x ∈ K.
Let f : K→ R be defined by

f (x) :=

{
x2, x≤ 1,
2x−1, x > 1
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for each x ∈ K. Clearly, A ∈ Ac, that is, Ac ⊂ A 6= /0 and therefore Mc ⊂M 6= /0. Let ε > 0 be
given and assume x ∈ K satisfies f (x)≥ ε . Choose δ (ε) := 3 ·8−1ε . Then

f (Ax) = 4−1 sin2 x < f (x)−δ (ε) .

We conclude that A is normal with respect to f .

It was shown in [18] that if K is a bounded, closed and convex set in (X ,‖·‖), where (X ,‖·‖)
is a Banach space, then a generic element taken from the spaces A, Ac, M and Mc is normal
with respect to f , and that the sequence of values of the function f along any trajectory of such
an element tends to the infimum of f on K. These results demonstrate the importance of normal
mappings for convex minimization problems. We survey analogous results for the case where
the set K is a general nonempty, closed and convex set, which is not necessarily bounded. To
this end, we recall the following weaker notion of normality, introduced by Barshad, Reich and
Zaslavski in [2].

Definition 2.3. A sequence {An}∞

n=1 of operators An : K → K is called weakly normal with
respect to f if given ε > 0, there exists a sequence {δn}∞

n=1 of positive numbers such that
limsupn→∞ nδn = ∞, and for each positive integer n, each x ∈ K satisfying f (x) ≥ inf( f )+ ε

and each integer k = 1,2, . . . ,n, the inequality

f (Akx)< f (x)−δn

holds.

Remark 2.4. It is not difficult to see that for each α ∈ (0,1) and each {An}∞

n=1 ,{Bn}∞

n=1 ∈M,
their convex combination, α {An}∞

n=1 +(1−α){Bn}∞

n=1, is also an element of M and if one of
them is normal, then the sequence α {An}∞

n=1+(1−α){Bn}∞

n=1 is also normal. Evidently, each
normal sequence of mappings is, in particular, weakly normal, but not vice versa, as is shown
in the following example.

Example 2.5. Let X = R and K = (−∞,1]. Let g : K→ R be defined by

g(x) :=

{
x x > 0
0 otherwise

for each x ∈ K. For each positive integer n, define An : K→ K by

Anx :=
(

1−n−2−1
)2−1

g(x)

for each x ∈ K. Let f : K→ R be defined by

f (x) =

{
x2, x > 0,
0, otherwise

for each x ∈ K. Clearly, f is convex. Let ε > 0 be arbitrary. For each positive integer n, set
δn := n−2−1

ε . Then inf( f ) = 0 and for each x ∈ K such that f (x)≥ ε and each k = 1,2, . . . ,n,
we have

f (Akx) =
(

1− k−2−1
)

f (x)≤ f (x)− k−2−1
ε = f (x)−δk ≤ f (x)−δn.
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Clearly, limn→∞ nδn = ∞. Therefore the sequence {An}∞

n=1 is weakly normal with respect to f ,
but it is not normal with respect to f because limn→∞ f (Anx) = f (x) for each x ∈ K such that
f (x)≥ ε . As a matter of fact, we also have {An}∞

n=1 ∈Mc, that is, Mc ⊂M 6= /0.

In the sequel we assume that the function f is clearly understood and therefore use the notions
of normality and weak normality without referring explicitly to f .

2.1.2. Statements of the main results. The following results have been obtained by Barshad,
Reich and Zaslavski in [2]. They generalize the corresponding results in [18] and [27].

Theorem 2.6. There exist sets F ⊂M, Fb ⊂F∩Mb, Fc ⊂F ∩Mc and Fbc ⊂Fb∩Mc of
weakly normal sequences of mappings which are countable intersections of open (in the relative
weak topology) and dense (respectively, in the weak topology, in the relative strong topology,
in the relative weak topology and in the relative strong topology) sets in, respectively, M, Mb,
Mc and Mbc such that for each {An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0 and each B0 ∈ A, there exists a neighborhood U (in the weak topology) of
{An}∞

n=1 and a positive integer N satisfying

f (BN . . .B1B0x)< inf( f )+ ε

for each {Bn}∞

n=1 ∈U and each x ∈ K.

Theorem 2.7. There exist a set F ⊂ A of normal mappings, which is a countable intersection
of open and dense sets in A, and a set Fc ⊂F ∩Ac of normal mappings, which is a countable
intersection of open and dense sets in Ac, such that for each A ∈F , the following assertion
holds:

For each ε > 0, there exists a neighborhood U of A in A such that for each B0 ∈ A, there is
a positive integer N satisfying

f
(
BNB0x

)
< inf( f )+ ε

for each B ∈U and each x ∈ K. In particular, for each B ∈U, there is a positive integer N such
that we have

f
(
BNx

)
< inf( f )+ ε

for each x ∈ K.

Theorem 2.8. There exist sets Fb⊂Mb and Fbc⊂Fb∩Mc of normal sequences of mappings,
which are countable intersections of open (in the relative strong topology) and dense (in the
relative strong topology) sets in, respectively, Mb and Mbc, such that for each {An}∞

n=1 ∈F ,
the following assertion holds:

For each ε > 0, there exists a neighborhood U (in the strong topology) of {An}∞

n=1 such that
for each B0 ∈ A there is a positive integer N satisfying

f
(
Br(N) . . .Br(1)B0x

)
< inf( f )+ ε

for each {Bn}∞

n=1 ∈U, each mapping r : {1,2, . . .} →{1,2, . . .} and each x ∈ K. In particular,
for each {Bn}∞

n=1 ∈U and each mapping
r : {1,2, . . .}→{1,2, . . .}, there is a positive integer N such that

f
(
Br(N) . . .Br(1)x

)
< inf( f )+ ε

for each x ∈ K.
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2.2. Operator-dependent case. The importance of concepts related to normality and weak
normality for convex minimization problems was plainly demonstrated in [2, 18, 27] and Sub-
section 2.1 above, where the function f is uniformly continuous on the set K. In this subsection
we survey analogous results under different assumptions. Denote by B the set of all bounded
mappings B : K → K. In contrast with previous studies, here the concepts of normality and
weak normality are considered with respect to a given operator B0 ∈B and not globally, and
the residual sets depend on the operator B0. This operator-dependent approach turns out to
be useful for removing the somewhat restrictive requirement on the function f to be uniformly
continuous on all of K. In this subsection we assume that f is uniformly continuous on bounded
subsets of K. In the case where K is an unbounded set we also assume that

lim
x→∞

f (x) = ∞. (2.2)

We also review numerous applications to generic minimization problems on arbitrary open
balls.

2.2.1. Background. Denote by A the set of all mappings A ∈B which satisfy

f (Ax)≤ f (x) foreach x ∈ K (2.3)

and by Ac the set of all continuous mappings A ∈ A . For the set A we define a metric ρ :
A×A→ R by

ρ (A,B) : = sup{‖Ax−Bx‖ : x ∈ K} , A,B ∈A .

Clearly, the metric space A is complete if (X ,‖·‖) is a Banach space, and the metric space Ac is
a closed subset of A . Denote by M the set of all sequences of elements in A and by Mc the set
of all sequences of elements in Ac. For the set M we consider the following two uniformities
and the topologies induced by them. The first uniformity is determined by the following basis:

E1 (N,ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M ×M : ρ (An,Bn)< ε, n = 1, . . . ,N} ,

where N = 1,2 . . . and ε > 0. This uniformity induces a uniform topology on M , which we
denote by τ1 and call the weak topology.

The second uniformity is determined by the following basis:

E2 (ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M ×M : ρ (An,Bn)< ε, n = 1,2, . . .} ,

where ε > 0. This uniformity induces a uniform topology on M , which we denote by τ2 and
call the strong topology. Clearly, τ2 is indeed stronger than τ1.

Evidently, the uniform spaces (M ,τ1) and (M ,τ2) are metrizable (by metrics ρ1 and ρ2,
respectively) and it is not difficult to see that these metrics are complete if (X ,‖·‖) is a Banach
space.

Clearly, Mc is a closed subset of M with respect to the weak topology (and therefore with
respect to the strong topology) and hence complete with respect to both the strong and weak
topologies. Denote by Mb the set of all bounded sequences of elements in A and by Mbc the
set of all bounded sequences of elements in Ac. It can easily be verified that Mb and Mbc are
closed subsets of M with respect to the strong topology. Evidently, the relative strong topology
on Mb is determined by the metric d : Mb×Mb→ R defined by

d ({An}∞

n=1 ,{Bn}∞

n=1) := sup{ρ (An,Bn)}∞

n=1 {An}∞

n=1 ,{Bn}∞

n=1 ∈Mb.
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For each B0 ∈B, we set

dB0 := sup{| f (B0x)| : x ∈ K} andSB0 := {x ∈ K : f (x)≤ dB0} .

Definitely, the assumption that f is convex and uniformly continuous on bounded sets implies
that dB0 is finite. Note also that the set SB0 is always bounded (in the case where K is unbounded
this follows from (2.2)) and hence f is uniformly continuous on it.

Definition 2.9. Let B0 ∈B. A mapping A : K→K is called B0-normal with respect to f if given
ε > 0, there is δ (ε)> 0 such that for each x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , the inequality

f (Ax)< f (x)−δ (ε)

is true. A sequence {An}∞

n=1 of operators An : K → K is called B0-normal with respect to f if
given ε > 0, there is δ (ε)> 0 such that for each x ∈ SB0 satisfying f (x)≥ inf( f )+ ε and each
integer n = 1,2, . . . , the inequality

f (Anx)< f (x)−δ (ε)

holds.

Example 2.10. Let X = R and K = [0,∞). Define B0 ∈B by B0 (x) := |cosx| for each x ∈ K,

and define A : K→ K by Ax :=


2−1x, x≤ 1,
2x−3 ·2−1, 1 < x≤ 3 ·2−1,

x, 3 ·2−1 < x≤ 2,
2, x > 2

for each x ∈ K. Let f : K→R

be defined by f (x) := x2 for each x ∈ K. Evidently, f is convex and uniformly continuous
on bounded sets. Clearly, A is B0-normal with respect to f . We also have A ∈ Ac, that is,
Ac ⊂A 6= /0 and therefore Mc ⊂M 6= /0.

Definition 2.11. Let B0 ∈ B. A sequence {An}∞

n=1 of operators An : K → K is called B0-
weakly normal with respect to f if given ε > 0, there exists a sequence {δn}∞

n=1 of positive
numbers such that limsupn→∞ nδn = ∞ and for each positive integer n, each x ∈ SB0 satisfying
f (x)≥ inf( f )+ ε and each integer k = 1,2, . . . ,n, the inequality

f (Akx)< f (x)−δn

holds.

Remark 2.12. Assume B0 ∈ B. It is not difficult to see that for each α ∈ (0,1) and each
{An}∞

n=1 ,{Bn}∞

n=1 ∈M , the convex combination, α {An}∞

n=1 +(1−α){Bn}∞

n=1, is also an ele-
ment of M and if one of them is B0-normal with respect to f , then the sequence α {An}∞

n=1 +
(1−α){Bn}∞

n=1 is also B0-normal with respect to f . Each B0-normal sequence of mappings
with respect to f is, in particular, B0-weakly normal with respect to f , but not vice versa as is
shown in the following example.
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Example 2.13. Let X = R and K = [0,∞). Let B0 ∈B be defined by B0 (x) := sin2 x for each
x ∈ K. For each positive integer n, define An : K→ K by

Anx :=



(
1−n−2−1

)2−1

x, x≤ 1,(
3−2

(
1−n−2−1

)2−1)
x+3

((
1−n−2−1

)2−1

−1
)
, 1 < x≤ 3 ·2−1,

x, 3 ·2−1 < x≤ 2,
2, x > 2

for each x ∈ K. Let f : K → R be defined by f (x) := x2 for each x ∈ K. It is clear that f is
convex and uniformly continuous on bounded sets. Let ε > 0 be arbitrary. For each positive
integer n, set δn := n−2−1

ε . Then inf( f ) = 0 and for each x ∈ SB0 such that f (x)≥ ε and each
k = 1,2, . . . ,n, we have

f (Akx) =
(

1− k−2−1
)

f (x)≤ f (x)− k−2−1
ε = f (x)−δk ≤ f (x)−δn.

Clearly, limn→∞ nδn = ∞. Therefore the sequence {An}∞

n=1 is B0-weakly normal with respect
to f , but it is not B0-normal with respect to f because limn→∞ f (Anx) = f (x) for each x ∈ SB0

such that f (x)≥ ε . As a matter of fact, we also have {An}∞

n=1 ∈Mc, that is, Mc ⊂M 6= /0.

In the sequel we assume that the function f is clearly understood and therefore we use the
notions of operator-dependent normality and operator-dependent weak normality without refer-
ring explicitly to f .

Remark 2.14. Note that in the case where K = X we may replace the uniform continuity of f
on bounded sets by the boundedness of f on bounded sets.

2.2.2. Statements of the main results. Barshad, Reich and Zaslavski proved the following the-
orems presented in [3]. These theorems generalize the corresponding results in [18] and [27].

Theorem 2.15. Let B0 ∈B. Then there exist sets F ⊂M , Fb ⊂F∩Mb, Fc ⊂F ∩Mc and
Fbc⊂Fb∩Mc of B0-weakly normal sequences of mappings, which are countable intersections
of open (in the relative weak topology) and dense (respectively, in the weak topology, in the
relative strong topology, in the relative weak topology and in the relative strong topology) sets
in, respectively, M , Mb, Mc and Mbc such that for each {An}∞

n=1 ∈F , the following assertion
holds:

For each ε > 0, there exist a neighborhood U (in the weak topology) of {An}∞

n=1 and a
positive integer N satisfying

f (BN . . .B1B0x)< inf( f )+ ε

for each {Bn}∞

n=1 ∈U and each x ∈ K.

Theorem 2.16. Let B0 ∈B. Then there exist a set F ⊂A of B0-normal mappings, which is
a countable intersection of open and dense sets in A , and a set Fc ⊂F ∩Ac of B0-normal
mappings, which is a countable intersection of open and dense sets in Ac, such that for each
A ∈F , the following assertion holds:

For each ε > 0, there exist a neighborhood U of A in A and a positive integer N satisfying

f
(
BNB0x

)
< inf( f )+ ε
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for each B ∈U and each x ∈ K.

Theorem 2.17. Let B0 ∈B. Then there exist sets Fb ⊂Mb and Fbc ⊂Fb∩Mc of B0-normal
sequences of mappings, which are countable intersections of open (in the relative strong topol-
ogy) and dense (in the relative strong topology) sets in, respectively, Mb and Mbc, such that for
each {An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the strong topology) of {An}∞

n=1 and a
positive integer N satisfying

f
(
Br(N) . . .Br(1)B0x

)
< inf( f )+ ε

for each {Bn}∞

n=1 ∈U, each mapping r : {1,2, . . .}→{1,2, . . .} and each x ∈ K.

2.2.3. Normality, weak normality and metric projections onto closed balls. Let d be the metric
induced on K by ‖·‖, x0 ∈ K and r > 0. Since K is convex, there exists a metric projection
PBd(x0,r) of K onto Bd (x0,r). If X is a strictly convex space, then this metric projection is
unique. By taking B0 = PBd(x0,r) in the main results of this subsection the following corollaries
are obtained.

Corollary 2.18. There exist sets F ⊂M , Fb ⊂F∩Mb, Fc ⊂F ∩Mc and Fbc ⊂Fb∩Mc
of PBd(x0,r)-weakly normal sequences of mappings, which are countable intersections of open (in
the relative weak topology) and dense (respectively, in the weak topology, in the relative strong
topology, in the relative weak topology and in the relative strong topology) sets in, respectively,
M , Mb, Mc and Mbc such that for each {An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the weak topology) of {An}∞

n=1 and a
positive integer N satisfying

f (BN . . .B1x)< inf( f )+ ε

for all {Bn}∞

n=1 ∈U and x ∈ Bd (x0,r).

Corollary 2.19. There exist a set F ⊂A of PBd(x0,r)-normal mappings, which is a countable
intersection of open and dense sets in A , and a set Fc ⊂F ∩Ac of PBd(x0,r)-normal mappings,
which is a countable intersection of open and dense sets in Ac, such that for each A ∈F , the
following assertion holds:

For each ε > 0, there exist a neighborhood U of A in A and a positive integer N satisfying

f
(
BNx

)
< inf( f )+ ε

for all B ∈U and x ∈ Bd (x0,r).

Corollary 2.20. There exist sets Fb ⊂Mb and Fbc ⊂Fb∩Mc of PBd(x0,r)-normal sequences
of mappings, which are countable intersections of open (in the relative strong topology) and
dense (in the relative strong topology) sets in, respectively, Mb and Mbc, such that for each
{An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the strong topology) of {An}∞

n=1 and a
positive integer N satisfying

f
(
Br(N) . . .Br(1)x

)
< inf( f )+ ε

for all {Bn}∞

n=1 ∈U, all mappings r : {1,2, . . .}→{1,2, . . .} and all points x ∈ Bd (x0,r).
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3. STOCHASTIC FEASIBILITY PROBLEMS

In this section we consider (generalized) stochastic feasibility problems. These are the prob-
lems of finding almost common fixed points of measurable (with respect to a probability mea-
sure) families of mappings. We survey an implementation of the generic approach based on
both residuality and porosity in order to solve them. Such an implementation based on resid-
uality has been presented by Gabour, Reich and Zaslavski in 2001 in the case where the set
K is bounded. The strong convergence results recalled here provide iterative methods (in the
case where the set K is not necessarily bounded) for finding an almost common fixed point of a
generic measurable family of mappings . Some of these results involve the case where a subset
of the almost common fixed point set is a nonexpansive retract of K. These results are applica-
ble to both the consistent case (that is, the case where the aforesaid almost common fixed points
exist) and the inconsistent case (that is, the case where there are no common fixed points at all).

We assume that (X ,‖·‖) is a normed vector space with norm ‖·‖, K ⊂ X is a subset of X , and
(Ω,A ,µ) is a probability measure space (more information on measure spaces and measurable
mappings can be found, for example, in [17]). As previously, the main results reviewed in
this section are meaningful if we assume that X is a Banach space so that all residual sets, the
existence of which is obtained, are dense by Theorem 1.2.

Recall that a topological vector space V with the topology T is said to be a locally con-
vex space if there exists a family P of pseudo-norms on V such that the family of open
balls

{
Bρ (x0,ε) : x0 ∈V,ε > 0,ρ ∈P

}
is a subbasis for T and ∩ρ∈PZρ = {0}, where Zρ =

{x ∈V : ρ (x) = 0} for each ρ ∈P . Clearly, every normed space (as a topological vector space
with respect to its norm) is a locally convex space. In the sequel we use the following result
(see Theorem 3.9 in [12]).

Theorem 3.1. Let V be a real locally convex topological vector space, and let A and B be
two disjoint closed and convex subsets of V . If either A or B is compact, then A and B are
strictly separated, that is, there is α ∈ R and a continuous linear functional φ : V → R such
that φ (a)> α for each a ∈ A and φ (b)< α for each b ∈ B.

3.1. Residuality-based methods. In this subsection we recall generic methods for finding al-
most common fixed points by using the notion of residuality.

3.1.1. Background. Assume that K ⊂ X is a nonempty, closed and convex subset of X . Denote
by N the set of all bounded and nonexpansive mappings A : K → K, that is, all bounded
mappings A : K→ K such that ‖Ax−Ay‖ ≤ ‖x− y‖ for each x,y ∈ K. For the set N , define a
metric ρN : N ×N → R by

ρN (A,B) := sup{‖Ax−Bx‖ : x ∈ K} , A,B ∈N .

Clearly, the metric space (N ,ρN ) is complete if (X ,‖·‖) is a Banach space. Denote by M the
set of all sequences {An}∞

n=1 ⊂N . For the set M , we consider two uniformities determined
by the bases

E ′1 (N,ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M ×M : ρN ({An}∞

n=1 ,{Bn}∞

n=1)< ε, n = 1,2, . . .N}

and

E ′2 (ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M ×M : ρN ({An}∞

n=1 ,{Bn}∞

n=1)< ε, n = 1,2, . . .} ,
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where ε > 0 and N = 1,2, . . . . These two uniformities induce two uniform topologies, respec-
tively, τ ′1 and τ ′2 on M . These topologies on M will be called the weak and strong topologies,
respectively. Clearly, τ ′1 is indeed weaker than τ ′2 and the uniform space M with each of these
topologies is metrizable (by metrics ρτ ′1

and ρτ ′2
, respectively) and it is not difficult to show that

these metrics are complete if (X ,‖·‖) is a Banach space.
Denote by NΩ the set of all bounded mappings T : Ω→N such that for each x∈K, the map-

ping T ′x : Ω→K, defined, for each ω ∈Ω, by T ′x (ω) := T (ω)(x) for each x ∈K, is measurable.
It is not difficult to see that if T ∈NΩ, then T ′x is integrable on Ω. For each T ∈NΩ, define an
operator T̃ : K→ K by T̃ x =

∫
Ω

T ′x (ω)dµ (ω). By Theorem 3.1, this is indeed a self-mapping
of K. Note that the mapping defined on NΩ by T 7→ T̃ is onto N . Clearly, for each T ∈NΩ,
we have T̃ ∈N . Thus we consider the topology defined by the following pseudo-metric on
NΩ:

ρNΩ
(T,S) := ρN

(
T̃ , S̃
)
, T,S ∈NΩ.

It is not difficult to see that the pseudo-metric space
(
NΩ,ρNΩ

)
is complete if (X ,‖·‖) is a

Banach space. The topology defined by the pseudo-metric ρNΩ
on NΩ will be called the weak

topology. For the set NΩ we define a metric dNΩ
: N ×N → R by

dNΩ
(T,S) := sup{ρN (T (ω) ,S (ω)) : ω ∈Ω} , T,S ∈NΩ.

The topology defined by the metric dNΩ
on NΩ will be called the strong topology. It is not

difficult to see that this topology is indeed stronger than the topology defined on NΩ by the
pseudo-metric ρNΩ

. Clearly, the metric space
(
NΩ,dNΩ

)
is complete if (X ,‖·‖) is a Banach

space.
Denote by MΩ the set of all sequences {Tn}∞

n=1 ⊂NΩ. For the set MΩ, we consider two
uniformities determined by the bases

E1 (N,ε) =
{
({Tn}∞

n=1 ,{Sn}∞

n=1) ∈MΩ×MΩ : ρNΩ
(Tn,Sn)< ε, n = 1,2, . . .N

}
and

E2 (ε) =
{
({Tn}∞

n=1 ,{Sn}∞

n=1) ∈MΩ×MΩ : ρNΩ
(Tn,Sn)< ε, n = 1,2, . . .

}
,

where ε > 0 and N = 1,2, . . . . These two uniformities induce two uniform topologies, τ1 and τ2,
respectively, on MΩ. These topologies on MΩ will be called the weak and strong topologies,
respectively. Clearly, τ1 is indeed weaker than τ2 and the uniform space MΩ with each of these
topologies is pseudo-metrizable (by pseudo-metrics ρτ1 and ρτ2 , respectively) and and it is not
difficult to see that these pseudo-metrics are complete if (X ,‖·‖) is a Banach space.

We denote by M b
Ω

the set of all sequences of mappings {Tn}∞

n=1 ⊂NΩ which are bounded in(
NΩ,dNΩ

)
and by M B

Ω
the set of all sequences of mappings {Tn}∞

n=1 ⊂NΩ which are bounded
in
(
NΩ,ρNΩ

)
. It is not difficult to see that M b

Ω
⊂M B

Ω
. For the set M b

Ω
, define a metric

dM b
Ω

: M b
Ω
×M b

Ω
→ R by

dM b
Ω

({Tn}∞

n=1 ,{Sn}∞

n=1) := sup
{

dNΩ
(Tn,Sn) : n = 1,2 . . .

}
, {Tn}∞

n=1 ,{Sn}∞

n=1 ∈NΩ.

The topology defined by the metric dM b
Ω

on M b
Ω

will be denoted by τ3. It is not difficult to see
that this topology is stronger than the relative strong topology (and therefore stronger than the
relative weak topology) on M b

Ω
. Clearly, the metric space

(
M b

Ω
,dM b

Ω

)
is complete if (X ,‖·‖)

is a Banach space, and M B
Ω

is a closed subset of MΩ with respect to the strong topology.
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The following two propositions follow easily from the definitions.

Proposition 3.2. The mapping T → T̃ from NΩ with the weak topology onto (N ,ρN ) is
continuous.

Proposition 3.3. The mapping {Tn}∞

n=1 →
{

T̃n

}∞

n=1
from MΩ with the strong (respectively,

weak) topology onto M with the strong (respectively, weak) topology is continuous.

We denote by N reg
Ω

the set of all operators T ∈NΩ for which there exists x ∈ K such that
T̃ x = x, and by M reg

Ω
the set of all sequences {Tn}∞

n=1 ∈MΩ for which there exists x ∈ K such
that T̃nx = x for all n = 1,2, . . . .. We denote by N reg

Ω
the closure of N reg

Ω
in NΩ with respect

to the strong topology, by M reg
Ω
∩M B

Ω
the closure of M reg

Ω
∩M B

Ω
with respect to the strong

topology and by M reg
Ω
∩M b

Ω
the closure of M reg

Ω
∩M b

Ω
with respect to the τ3 topology.

Finally, we consider F ⊂ K which is a nonempty, bounded, closed and convex subset of
K. Denote by N

(F)
Ω

the set of all operators T ∈NΩ such that for almost all ω ∈ Ω, we have
T (ω)x = x for each x ∈ F . It is not difficult to see that N

(F)
Ω

is a closed subset of NΩ with
respect to the strong topology. Denote by M

(F)
Ω

the set of all sequences {Tn}∞

n=1 ∈N
(F)

Ω
and

by M
(F)
Ω

the closure of M
(F)
Ω

in MΩ with the weak topology. It is not difficult to see that

M
(F)
Ω
∩M b

Ω
is a closed subset of M b

Ω
with respect to the τ3 topology. Denote by M

(F)
Ω
∩M B

Ω

the closure of M
(F)
Ω
∩M B

Ω
with respect to the strong topology.

Recall that a mapping P : K → F is a nonexpansive retraction of K onto F if P ∈N and
Px= x for all x∈F , and F is a nonexpansive retract of K if there exists a nonexpansive retraction
P of K onto F . More information on nonexpansive retractions and nonexpansive retracts can be
found, for example, in [20] and [22], and in references therein.

3.1.2. Statements of the main results. The theorems below have been presented by Barshad,
Reich and Zaslavski in [1]. Some of these theorems include, inter alia, the extensions of all the
results which were obtained in [19] to an unbounded set K.

Recall that for each S ∈NΩ, a point x ∈ K is an almost common fixed point of the family
{S (ω)}

ω∈Ω
if S (ω)x = x for almost all ω ∈ Ω. Similarly, for each {Sn}∞

n=1 ∈MΩ, a point
x ∈ K is an almost common fixed point of the family {Sn (ω)}

ω∈Ω,n=1,2... if Sn (ω)x = x for all
n = 1,2, . . . and almost all ω ∈Ω.

Theorem 3.4. There exist sets F ⊂NΩ and F ′ ⊂F ∩N reg
Ω

, which are countable intersections
of open (in the relative weak topology) and dense (respectively, in the strong topology and in
the relative strong topology) subsets of, respectively, NΩ and N reg

Ω
so that for each S ∈F , the

following assertion holds:
There exists xS ∈K, which is the unique fixed point of the operator S̃, such that for each x∈K,

the sequence
{

S̃nx
}∞

n=1
converges to xS, uniformly on K, and the set of almost common fixed

points of the family {S (ω)}
ω∈Ω

is contained in {xS}. Moreover, for each ε > 0, there exist a
positive integer N and a neighborhood U of S in NΩ with the weak topology such that for each
integer n≥ N and each R ∈U, we have∥∥∥R̃nx− xS

∥∥∥< ε
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for each x ∈ K.

Theorem 3.5. There exist sets F ⊂M reg
Ω
∩M B

Ω
and F ′⊂F ∩M b

Ω
, which are countable inter-

sections of open (in the relative strong topology) and dense (respectively, in the relative strong
topology and in the relative τ3 topology) subsets of, respectively, M reg

Ω
∩M B

Ω
and M reg

Ω
∩M b

Ω
,

so that for each {Sn}∞

n=1 ∈F , there exists xS ∈K, which is the unique common fixed point of the

operators S̃n, n = 1,2, . . . , such that for each x ∈ K, the sequence
{

S̃n
k
x
}∞

k=1
converges to xS,

uniformly on K, for each n = 1,2, . . . , and the set of almost common fixed points of the family
{Sn (ω)}

ω∈Ω,n=1,2... is contained in {xS}. Moreover, the following assertion holds:
For each ε > 0, there exist a positive integer N and a neighborhood U of {Sn}∞

n=1 in M Ω

with the strong topology such that for each {Rn}∞

n=1 ∈U, each integer n≥N and each mapping
r : {1, . . . ,n}→ {1,2, . . .}, we have∥∥∥R̃r(n) . . . R̃r(1)x− xS

∥∥∥< ε

for each x ∈ K.

Theorem 3.6. There exist sets F ⊂M Ω, F ′ ⊂ F ∩M B
Ω

and F ′′ ⊂ F ′ ∩M b
Ω

, which are
countable intersections of open (in the relative weak topology) and dense (respectively, in the
relative weak topology, in the relative strong topology and in the τ3 topology) subsets of, re-
spectively, MΩ, M B

Ω
, and M b

Ω
, so that for each {Sn}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a positive integer N and a neighborhood U of {Sn}∞

n=1 in MΩ

with the weak topology such that for each {Rn}∞

n=1 ∈U and each integer n≥ N, we have∥∥∥R̃n . . . R̃1x− R̃n . . . R̃1y
∥∥∥< ε

for all x,y ∈ K.

Theorem 3.7. There exist sets F ⊂M B
Ω

and F ′⊂F ∩M b
Ω

, which are countable intersections
of open (in the relative strong topology) and dense (respectively, in the relative strong topology
and in the τ3 topology) subsets of, respectively, M B

Ω
and M b

Ω
, so that for each {Sn}∞

n=1 ∈F ,
the following assertion holds:

For each ε > 0, there exist a positive integer N and a neighborhood U of {Sn}∞

n=1 in MΩ

with the strong topology such that for each {Rn}∞

n=1 ∈U, each integer n≥N and each mapping
r : {1, . . . ,n}→ {1,2, . . .}, we have∥∥∥R̃r(n) . . . R̃r(1)x− R̃r(n) . . . R̃r(1)y

∥∥∥< ε

for each x,y ∈ K.

Theorem 3.8. Assume F is a nonexpansive retract of K. Then there exists a set F ⊂N
(F)

Ω
,

which is countable intersections of open (in the weak topology) and dense (in the strong topol-
ogy) subsets of N

(F)
Ω

, so that for each S ∈ F , the set of almost common fixed points of the
family {S (ω)}

ω∈Ω
coincides with F and there exists a nonexpansive retraction Q of K onto F

such that the following assertions hold:

(1) The sequence of operators
{

S̃n
}∞

n=1
converges to Q, uniformly on K.
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(2) For each ε > 0, there exist a positive integer N and a neighborhood U of S in N
(F)

Ω

with the weak topology such that for each R ∈U and each integer n≥ N, we have∥∥∥R̃nx−Qx
∥∥∥< ε

for each x ∈ K.

Theorem 3.9. Assume F is a nonexpansive retract of K. Then there exist sets F ⊂M
(F)
Ω

,
F ′ ⊂ F ∩M B

Ω
and F ′′ ⊂ F ′ ∩M b

Ω
, which are countable intersections of open (in the rel-

ative weak topology) and dense (respectively, in the relative weak topology, in the relative

strong topology and in the relative τ3 topology) subsets of, respectively, M
(F)
Ω

, M
(F)
Ω
∩M B

Ω

and M
(F)
Ω
∩M b

Ω
, so that for each {Sn}∞

n=1 ∈F , the set of almost common fixed points of the
family {Sn (ω)}

ω∈Ω,n=1,2... is contained in F (if {Sn}∞

n=1 ∈F ′′, then this set coincides with F)
and there exists a nonexpansive retraction Q of K onto F such that the following assertions
hold:

(1) The sequence of operators
{

S̃n . . . S̃1

}∞

n=1
converges to Q, uniformly on K.

(2) For each ε > 0, there exist a positive integer N and a neighborhood U of {Sn}∞

n=1 in

M
(F)
Ω

with the relative weak topology such that for each {Rn}∞

n=1 ∈U and each integer
n≥ N, we have ∥∥∥R̃n . . . R̃1x−Qx

∥∥∥< ε

for each x ∈ K.

Theorem 3.10. Assume F is a nonexpansive retract of K. Then there exist sets F ⊂M
(F)
Ω
∩M B

Ω

and F ′ ⊂F ∩M b
Ω

, which are countable intersections of open (in the relative strong topology)
and dense (respectively, in the relative strong topology and in the relative τ3 topology) subsets

of, respectively, M
(F)
Ω
∩M B

Ω
and M

(F)
Ω
∩M b

Ω
, so that for each {Sn}∞

n=1 ∈F , the set of almost
common fixed points of the family {Sn (ω)}

ω∈Ω,n=1,2... is contained in F (if {Sn}∞

n=1 ∈F ′, then
this set coincides with F) and the following assertions holds:

For each each mapping r : {1,2, . . .}→ {1,2, . . .}, there exists a nonexpansive retraction Qr
of K onto F such that:

(1) The sequence of operators
{

S̃r(n) . . . S̃r(1)

}∞

n=1
converges to Qr, uniformly on K.

(2) For each ε > 0, there exist a positive integer N and a neighborhood U of {Sn}∞

n=1 in

M
(F)
Ω

with the relative strong topology such that for each {Rn}∞

n=1 ∈U and each integer
n≥ N, we have ∥∥∥R̃r(n) . . . R̃r(1)x−Qrx

∥∥∥< ε

for each x ∈ K.

3.2. Porosity-based methods. The notion of porosity is well known in Optimization and Non-
linear Analysis. Its importance is brought out by the fact that the complement of a σ -porous
subset of a complete pseudo-metric space is a residual set, while the existence of the latter is es-
sential in many problems which apply the generic approach. Thus, under certain circumstances,
some refinements of known results can be achieved by looking for porous sets. In this subsec-
tion we survey recent generic methods in which, in contrast with Subsection 3.1, we consider
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σ -porous sets instead of meager ones. Namely, we review generic methods for finding almost
common fixed points by using the notion of porosity.

3.2.1. Background. Recall that a subset E of a complete pseudo-metric space (Y,ρ) is called
a porous subset of Y if there exist α ∈ (0,1) and r0 > 0 such that for each r ∈ (0,r0] and each
y ∈ Y , there exists a point z ∈ Y for which

Bρ (z,αr)⊂ Bρ (y,r)\E.

A subset of Y is called a σ -porous subset of Y if it is a countable union of porous subsets of
Y . Note that since a porous set is nowhere dense, any σ -porous set is of the first category and
hence its complement is residual in (Y,ρ), that is, it contains a countable intersection of open
and dense subsets of (Y,ρ). For this reason, there is a considerable interest in σ -porous sets
while searching for generic solutions to optimization problems. More information concerning
the notion of porosity and its applications can be found, for example, in [15, 25, 29, 30].

Suppose that F ⊂ K is a nonempty, closed, convex and bounded subset of X . Denote by
N the set of all nonexpansive mappings A : K → F , that is, all mappings A : K → F such that
‖Ax−Ay‖ ≤ ‖x− y‖ for each x,y ∈ K. For the set N, define a metric ρN : N×N→ R by

ρN (A,B) := sup{‖Ax−Bx‖ : x ∈ K} , A,B ∈N.

Clearly, the metric space (N,ρN) is complete if (X ,‖·‖) is a Banach space.
Denote by NΩ the set of all mappings T : Ω→ N such that for each x ∈ K, the mapping

T ′x : Ω→ F , defined, for each ω ∈Ω, by T ′x (ω) := T (ω)(x), is measurable. It is not difficult to
see that if T ∈NΩ, then T ′x is integrable on Ω. For each T ∈NΩ, define an operator T̃ : K→ F
by T̃ x =

∫
Ω

T ′x (ω)dµ (ω) for each x ∈ K. By Theorem 3.1, this is indeed a mapping the image
of which is contained in F . Note that the mapping defined on NΩ by T 7→ T̃ is onto N. Clearly,
for each T ∈ NΩ, we have T̃ ∈ N. Thus we consider the topology defined by the following
pseudo-metric on NΩ:

ρNΩ
(T,S) := ρN

(
T̃ , S̃
)
, T,S ∈NΩ.

It is not difficult to see that the pseudo-metric space
(
NΩ,ρNΩ

)
is complete if (X ,‖·‖) is a

Banach space.
Denote by MΩ the set of all sequences {Tn}∞

n=1 ⊂ NΩ. We define a pseudo-metric ρMΩ
:

MΩ×MΩ→ R on MΩ in the following way:

ρMΩ
({Tn}∞

n=1 ,{Sn}∞

n=1) := sup
{

ρNΩ
(Tn,Sn) : n = 1,2 . . .

}
, {Tn}∞

n=1 ,{Sn}∞

n=1 ∈MΩ.

Obviously, this space is complete if (X ,‖·‖) is a Banach space.

3.2.2. Statements of the main results. We recall the following results which have been pub-
lished by Barshad, Reich and Zaslavski in [4].

Recall that for each T ∈ NΩ, a point x ∈ K is an almost common fixed point of the family
{T (ω)}

ω∈Ω
if T (ω)x = x for almost all ω ∈ Ω. Similarly, for each sequence {Tn}∞

n=1 ∈MΩ,
a point x ∈ K is an almost common fixed point of the family {Tn (ω)}

ω∈Ω,n=1,2... if Tn (ω)x = x
for all n = 1,2, . . . and almost all ω ∈Ω.

Theorem 3.11. There exists a set F ⊂MΩ such that MΩ\F is a σ -porous subset of MΩ and
for each {Tn}∞

n=1 ∈F , the following assertion holds true:
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For each ε > 0, there is a positive integer N such that for each integer n ≥ N and each
mapping s : {1,2, . . .}→ {1,2, . . .}, we have∥∥∥T̃s(n) . . . T̃s(1)x− T̃s(n) . . . T̃s(1)y

∥∥∥< ε

for each x,y ∈ K. Consequently, if there is an almost common fixed point of the family
{Tn (ω)}

ω∈Ω,n=1,2..., then it is unique and for each x ∈ K, the sequence
{

T̃s(n) . . . T̃s(1)x
}∞

n=1
converges to it as n→ ∞, uniformly on K, for each mapping s : {1,2, . . .}→ {1,2, . . .}.

Theorem 3.12. There exists a set F ⊂NΩ such that the set G :=NΩ\F a σ -porous subset of
NΩ, and for each T ∈F , the following assertion holds true:

There exists xT ∈K which is the unique fixed point of the operator T̃ such that for each x∈K,
the sequence

{
T̃ nx
}∞

n=1
converges to xT as n→ ∞, uniformly on K. Moreover, the set F of all

almost common fixed points of the family {T (ω)}
ω∈Ω

is contained in {xT}. As a result, if
F 6= /0, then xT is the unique almost common fixed point of the family {T (ω)}

ω∈Ω
.

4. RESIDUALITY IN SPACES OF CONVEX FUNCTIONS

In this section we survey residuality properties of locally uniformly convex and strictly con-
vex functions. The class of totally convex functions which lies between these two classes of
convex functions also possesses the same properties. See, for example, [8], where the impor-
tance of such residuality results for strictly and totally convex functions is demonstrated for
several types of optimization problems.

4.1. Spaces under consideration. Let K be a nonempty convex subset of a normed linear
space (X ,‖·‖). We denote by B(r) the open ball in (X ,‖·‖) of center zero and radius r > 0.
Let C be the set of all convex functions f : K → R. Denote by Cl the subset of all lower
semicontinuous functions f ∈ C , by Cc the subset of all continuous functions f ∈ C and by Cb
the subset of all functions f ∈ C which are bounded on bounded subsets of K. We equip the set
C with the topology induced by the uniformity determined by the following basis:

E (n) =
{
( f ,g) ∈ C ×C : | f (x)−g(x)|< n−1 ∀x ∈ K∩B(n)

}
, (4.1)

where n is a positive integer. This topology will be denoted by τ . Clearly, this uniform space is
metrizable (by metric d) and it is not difficult to see that d is complete. Definitely, Cl , Cc and
Cb are closed subsets of C with respect to this uniform topology. We provide these subspaces
with the relative topologies inherited from C . This topology will be called the strong topology
on Cl and will be denoted by τ1.

We next describe the second topology with which we equip Cl . Recall that the epigraph of a
function f : K→ R is the set

epi( f ) = {(x, t) ∈ K×R : t ≥ f (x)} .
Let ‖·‖

∞
be the norm defined on X ×R by ‖(x, t)‖

∞
:= max{‖x‖ , |t|} for each point (x, t) ∈

X ×R. Denote by B‖·‖
∞
(r) the open ball in (X×R,‖·‖

∞
) of center zero and radius r > 0.

Define the distance from x̃ = (x, t) to A by

ρ (x̃,A) := inf
(a,s)∈A

{‖(x, t)− (a,s)‖
∞
} (4.2)
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for each x̃ = (x, t) ∈ X ×R and each nonempty set A ⊂ X ×R. We define the Attouch-Wets
metric dAW on Cl by using distances to the epigraphs of f and g in X×R as follows:

dAW ( f ,g) :=
∞

∑
n=1

2−n min

{
1, sup

x̃∈B‖·‖∞(n)
|ρ (x̃,epi( f ))−ρ (x̃,epi(g))|

}
. (4.3)

Since epi( f ) is closed in K×R for each f ∈ Cl , we see that dAW is indeed a metric on Cl . We
denote by τ2 the topology induced by the metric dAW on Cl and by BAW (g,r) the open ball in
(Cl,dAW ) of center g ∈ Cl and radius r > 0. This topology will be called the weak topology on
Cl . It was shown in [5] that τ2 is indeed weaker than τ1.

The τ2 topology can be defined differently. Consider the topology induced by the uniformity
determined by the basis

F (n) =
{
( f ,g) ∈ Cl×Cl : |ρ (x̃,epi( f ))−ρ (x̃,epi(g))|< n−1 for each

x̃ ∈ B‖·‖
∞
(n)
}
,

(4.4)

where n is a positive integer. It turns out that this topology is the same as the τ2 topology, as
was proved in [5]. We refer the reader to [6] for more information concerning Attouch-Wets
topologies and metrics.

We recall the following well-known result due to Alexandrov and Hausdorff (see Theorem
1.1 in [24] and references therein). It is useful in the quest for residual sets, as we show below.

Theorem 4.1. A metrizable space X is completely metrizable if and only if it is a Gδ subset of
a complete metric space.

Since Cl is a closed subset of C with respect to the τ topology, it is a countable intersection
of open subsets of C with respect to this topology, that is, it is a Gδ subset of C with respect to
this topology, while C with this topology is a completely metrizable space. Since Cl with the
τ2 topology is a metrizable space, it follows from Theorem 4.1 that Cl with the τ2 topology is
completely metrizable. The same argument shows that Cc and Cb with their relative τ2 topolo-
gies are completely metrizable. Nevertheless, Cl is not complete with respect to the metric dAW ,
since the sequence of constant functions { fn}∞

n=1, defined by fn (x) = −n for each x ∈ K and
each n = 1,2, . . . , is a Cauchy sequence which does not converge in (Cl,dAW ).

The definitions of the sets Cc,Cl and C imply that Cb⊂Cc⊂Cl ⊂C in the case where K =X ,
since the boundeness on bounded sets implies uniform continuity on bounded subsets of X in
this case. Therefore dAW |Cc and dAW |Cb are metrics, respectively, on Cc and Cb in this case. But
it is easy to see that if K 6=X , then Cb is not necessarily a subset of Cc. Take, for example, X =R

with the Euclidean norm, K = [−1,1] and define f : K→R by f (x) :=

{
x2 if x ∈ (−1,1)
2 otherwise

for

each x ∈ K. Clearly, f is convex and bounded on bounded subsets of K, but it is not even
lower-semicontinuous.

4.2. Strict and locally uniform convexity. Recall that a function f ∈ C is called strictly con-
vex if for each x,y ∈ K such that x 6= y and each λ ∈ (0,1), we have

f (λx+(1−λ )y)< λ f (x)+(1−λ ) f (y) . (4.5)

It is not difficult to see that this definition is equivalent to the requirement that f is convex
and for each x,y ∈ K such that x 6= y, there exists λ ∈ (0,1) satisfying (4.5), as well as to the
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requirement that f is convex and λ = 2−1 satisfies (4.5) for each x,y ∈ K such that x 6= y. We
denote the set of all strictly convex functions f ∈ C by F .

Recall that a function f ∈C is called locally uniformly convex if for each sequence {xn}∞

n=1⊂
K and each x ∈ K,

λ f (xn)+(1−λ ) f (x)− f (λxn +(1−λ )x) →
n→∞

0 (4.6)

implies ‖x− xn‖→ 0
n→∞

for each 0< λ < 1. It is not difficult to see that this definition is equivalent

to the requirement that f ∈ C and for each x ∈ K, there exists λ ∈ (0,1) such that (4.6) implies
that ‖x− xn‖ → 0

n→∞
, as well as to the requirement that f ∈ C and for each x ∈ K, (4.6) with

λ = 2−1 implies that ‖x− xn‖ → 0
n→∞

. It turns out (see Exercise 5.3.1 in [7]) that it is enough to
consider only bounded sequences in the definition of a locally uniformly convex function.

Recall that a normed space (X ,‖·‖) is called strictly convex if ‖x+ y‖< 2 whenever x,y ∈ X
are such that x 6= y and ‖x‖=‖y‖ = 1, and locally uniformly convex if ‖x− xn‖ → 0

n→∞
whenever

‖xn + x‖ →
n→∞

2 for each sequence {xn}∞

n=1 in the closed unit ball of center zero and each x in

this ball. It is not difficult to see that (X ,‖·‖) is strictly convex (respectively, locally uniformly
convex) if and only if the square of its norm is a strictly convex function (respectively, locally
uniformly convex function), as well as that a locally uniformly convex function is strictly convex
and in the case where K = X and the dimension of the vector space X is finite, the converse is
also true. But in the case where the dimension of X is infinite, a strictly convex function may no
longer be locally uniformly convex (see, for instance, the example on pages 229--230 in [23]).
We denote the set of all locally uniformly convex functions f ∈ C by G .

4.3. Discussion on the results. It was shown in [8] that under the assumption of the existence
of a continuous and strictly convex function f∗ ∈ Cb, the set F of all strictly convex functions
defined on K is residual in C with the τ topology, and that the sets F ∩Cl and F ∩Cc are
residual in, respectively, Cl and Cc with their relative τ topologies. It can be verified that the
same result is true for the set F ∩Mb in the space Cb with the relative τ topology. In the
next subsection, we review a stronger result obtained in [5], which provides all these residuality
properties for the set G (which is a subset of F ) of all locally uniformly convex functions
defined on K.

In another recent work described in [31], residual sets of the space Γ(X) are considered,
where Γ(X) is the set all lower semicontinuous functions f : X → R with the τ2 topology and
(X ,‖·‖) is a real Banach space. In particular, it is shown there that if (X ,‖·‖) is a locally uni-
formly convex space (respectively, a strictly convex space), then the set of all locally uniformly
convex (respectively, strictly convex) functions is residual in Γ(X). By using similar techniques,
it has been shown in [5], that in the case where K = X (where (X ,‖·‖) is not necessarily a Ba-
nach space), the relative strong topology of Cb is the same as its relative weak topology and
hence, the sets F ∩Cb and G ∩Cb are residual in Cb with both of these topologies. For a finite
dimensional vector space, X we know that each convex function f : X → R is continuous, and
therefore this result can be applied to all of C , because Cb = C in this case.

4.4. Statements of the main results. In this subsection we review the recent results obtained
by Barshad, Reich and Zaslavski in [5].



THE GENERIC APPROACH TO MODERN OPTIMIZATION 19

Theorem 4.2. Suppose that there exists a a strictly convex function f∗ ∈ Cb. Then the sets G
and G ∩Cb are residual in, respectively, C and Cb with the relative τ topology. If, in addition,
f∗ is lower semicontinuous (respectively, continuous), then the set G ∩Cl (respectively, G ∩Cc)
is residual in Cl (respectively, Cc) with the relative strong topology.

Remark 4.3. In particular, this result is true for a strictly convex normed linear space X , since
the square of its norm is a continuous strictly convex function which is bounded on bounded
sets. An important class of such spaces consists of inner product spaces and, in particular,
Hilbert spaces.

Theorem 4.4. In the case where K = X, the relative weak topology of Cb is the same as the
relative strong topology of Cb. As a result, if F ∩Cb 6= /0, then the set G ∩Cb (and therefore
F ∩Cb) is residual in Cb with both of these topologies.
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