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Abstract. Given a nonconvex set-valued mappings F : RN ⇒ R, a notion of conjugate F∗ is introduced with
the goal that (F∗)∗ = F . This is given by using the usual (bilinear) duality pairing. Several examples showing
its geometric interpretation are presented, as well as a notion of subdifferential for such set-valued maps is also
outlined.
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1. INTRODUCTION

It is known that the classical convex duality theory as well as some nonconvex duality
schemes as that of Ekeland or Toland [6, 12, 13] are based on the notion of convex conjugate
function. Given a locally convex topological vector real space X , with dual X∗, and a function
f : X →R∪{+∞} such that f 6≡+∞, the convex conjugate of f is f ∗ : X∗→R∪{+∞}, given
by

f ∗(x∗) = sup
x∈X

{
〈x∗,x〉− f (x)

}
(x∗ ∈ X∗). (1.1)

Here 〈·, ·〉 denotes the duality pairing between X and X∗. This notion was introduced by Fenchel
[7] for the finite dimensional case and further developed mainly by Rockafellar [11]. Some
other nonconvex duality theories but based on an extension due to Moreau [10] (where the
usual duality pairing is substituted by a more general coupling function), of the above notion of
conjugacy, can be found in [3, 5], and with respect to the continuous real-valued functions in [8,
9] and the references therein. We quote [4, 10] for more recent results in this direction. However,
we attempt to develop a conjugacy notion based on the usual duality pairing. The purpose of
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this paper is to contribute to the development of the conjugation theory. More precisely, we
define the conjugate of a set-valued map F : RN ⇒ R and derive its main properties useful in
optimization theory. This notion of conjugacy is related to the Legendre transform more than to
the conjugate of single-valued maps. Such a notion is introduced in such a way that (F∗)∗ = F
for some instances.

The paper is organized as follows. Section 2 provides the basic definitions related to set-
valued mappings. In Section 3, the proposal of (convex) conjugate for set-valued mappings of
the real-line is introduced, along with its main properties. Also several instances satisfying the
desired property are exhibited. Section 4 discusses the important class F(x) = [ f (x),+∞[.

2. BASIC DEFINITIONS AND PRELIMINARIES

We recall some basic definitions useful in set-valued analysis; see [1, 2] for general refer-
ences. Given any two sets X ,Y , a set-valued map F from X to Y , denoted by F : X ⇒ Y , is a
map that associates to any x ∈ X a subset F(x) of Y . The subsets F(x) are called the images or
the values of F . As usual in convex analysis, we use the following notations:

Dom F .
=
{

x ∈ X : F(x) 6= /0
}
,

is the domain of F . If Dom F = X , we say that map F is strict. It is said to be proper if
Dom F 6= /0. Sometimes, given a set-valued map F : C→ Y , we extend it to the whole set X by
setting FC(x) = F(x) if x ∈C and FC(x) = /0 if x 6∈C. The set

Gr F .
=
{
(x,y) ∈ X×Y : y ∈ F(x)

}
is called the graph of F and it characterizes the set-valued map F . In fact, let F be a nonempty
set of X×Y . Then it defines a set-valued map as follows:

F(x) =
{

y ∈ Y : (x,y) ∈F
}
.

Here Gr F = F . The range R(F) is defined by R(F)
.
=
⋃

x∈X F(x). The inverse F−1 of a
set-valued map F from X to Y is the set-valued map from R(F) to X defined by

F−1(y) .
=
{

x ∈ X : y ∈ F(x)
}
=
{

x ∈ X : (x,y) ∈ Gr F
}
.

In the remaining of this section X ,Y are normed spaces. We say that the subset of the dual
X∗ of X defined by

K− .
=
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤ 0 ∀x ∈ K
}

is the (negative) polar cone of K ⊆ X . By K′ we mean the set of accumulation points of K.

3. THE CONJUGATE OF A SET-VALUED MAP

Given a convex differentiable function f : RN→R such that the supremum on the right hand
side of (1.1) is attained at x̄, we obtain the classical formula of the Legendre transform:

f ∗(x∗) = 〈x∗, x̄〉− f (x̄), x∗ = f ′(x̄). (3.1)

Thus x̄ is a critical point to the map x 7→ 〈x∗,x〉− f (x). This motivates the following definition.

Definition 3.1. Let F : RN ⇒ R be a proper set-valued map.
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(i) The convex conjugate of the map F is the set-valued map F∗ : RN ⇒ R, possibly with
empty values, defined by

F∗(p) =
⋃

(x,y)∈S∗F (p)

{
〈p,x〉− y

}
,

where

S∗F(p) .
=
{
(x,y) ∈ Gr F : ∀ xn→ x,xn 6= x, ∃ yn ∈ F(xn),yn→ y such that

limsup
n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

≤ 0
}
. (3.2)

We set ∪ /0 = /0.
(ii) The concave conjugate of the map F is the set-valued map F∗ : RN ⇒ R, possibly with

empty values, defined by

F∗(p) =
⋃

(x,y)∈SF
∗ (p)

{
〈p,x〉− y

}
,

where

SF
∗ (p) .

=
{
(x,y) ∈ Gr F : ∀ xn→ x,xn 6= x, ∃ yn ∈ F(xn),yn→ y such that

liminf
n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

≥ 0
}
. (3.3)

Before going on, some remarks are in order.

Remark 3.2. If x ∈ Dom F \ (Dom F)′, then (x,y) ∈ SF
∗ (p)∩ S∗F(p) for all y ∈ F(x) and all

p ∈ RN . Thus 〈p,x〉− y ∈ F∗(p)∩F∗(p) for all y ∈ F(x). Hence

(Dom F)′ = /0 =⇒ SF
∗ (p) = S∗F(p) = Gr F.

The importance of S∗F lies in the following proposition. We recall that K′ denotes the set of
accumulations points of K.

Proposition 3.3. Let C ⊂ RN be a nonempty convex set with C′ 6= /0 and f : C→ R.
(a) If f is a continuously differentiable real single-valued map in an open neighborhood of

C, then

S∗f (p) =
{
(x, f (x)) : x ∈C, 〈∇ f (x)− p,x′− x〉 ≥ 0 ∀ x′ ∈C

}
; (3.4)

S f
∗(p) =

{
(x, f (x)) : x ∈C, 〈∇ f (x)− p,x′− x〉 ≤ 0 ∀ x′ ∈C

}
.

Hence, if C is open, then S∗f (p) = S f
∗(p) =

{
(x, f (x)) : x ∈C, ∇ f (x) = p

}
.

(b) If f is a convex real single-valued map in C, then S∗f (p) =
{
(x, f (x)) : x ∈ C, p ∈

∂ f (x)
}

. Here, we assumed the function f is extended to the whole space RN by taking
f (x) = +∞ if x 6∈C.

Similar results also hold for S f
∗ .



4 F. FLORES-BAZÁN, F. FLORES-BAZÁN

Proof. (a) Let x ∈C such that, ∀ xn→ x, xn 6= x, xn ∈C (which implies f (xn)→ f (x)):

limsup
n→+∞

〈p,xn− x〉− f (xn)+ f (x)
‖xn− x‖

≤ 0. (3.5)

Then, given any x′ 6= x in C, we consider in particular, xn := x+ tn(x′− x) for tn ↓ 0 as
n→+∞. Substituting in (3.5), it reduces

1
‖x′− x‖

lim
n→+∞

{
〈p,x′− x〉− f (x+ tn(x′− x))− f (x)

tn

}
≤ 0.

This implies 〈∇ f (x)− p,x′− x〉 ≥ 0, ∀ x′ ∈ C, proving that x is in the set of the right
hand side of (3.4). Conversely, if x ∈ C is such that 〈∇ f (x)− p,x′− x〉 ≥ 0 ∀ x′ ∈ C,
then, for every sequence xn→ x, xn ∈C, we

〈p,xn− x〉− f (xn)+ f (x)
‖xn− x‖

≤ 〈∇ f (x),xn− x〉− f (xn)+ f (x)
‖xn− x‖

.

Consequently,

limsup
n→+∞

〈p,xn− x〉− f (xn)+ f (x)
‖xn− x‖

≤ 0.

Thus (x, f (x)) ∈ S∗f (p), which completes the proof of Part (a) of the proposition.
(b) Let x ∈ C such that (3.5) is satisfied. Then, given any x′ 6= x in C, by taking xn =

x+ tn(x′− x) for tn ↓ 0 as n→+∞ in (3.5), it implies, by convexity

〈p,x′− x〉
‖x′− x‖

+
f (x)− f (x′)
‖x′− x‖

≤ limsup
n→+∞

〈p,xn− x〉− f (xn)+ f (x)
‖xn− x‖

≤ 0.

Thus, p ∈ ∂ f (x). The remaining inclusion is trivially obtained.
�

Remark 3.4. (i) It is easily seen that

int (Gr F)⊂ S∗F(p)∩SF
∗ (p).

In fact, for every (x,y) in int (Gr F), there exists a neighborhood U of (x,y) such that
U ⊂ Gr F. Then, for every xn ∈ Dom F , xn → x, xn 6= x, we set yn

.
= y+ 〈p,xn− x〉.

Thus, yn → y and therefore (xn,yn) ∈U for all n ∈ N sufficiently large. This implies
yn ∈ F(xn) and

〈p,xn− x〉− yn + y
‖xn− x‖

= 0,

proving the desired assertion.
(ii) Given (x,y) ∈ Gr F with F , taking convex and closed values, the sets

D∗F(x,y) =
{

p ∈ RN : (x,y) ∈ S∗F(p)
}
, DF
∗ (x,y) =

{
p ∈ RN : (x,y) ∈ SF

∗ (p)
}
,

are convex and closed. Actually the first set can be seen as the subdifferential of F at
(x,y) ∈ Gr F , and the second as the superdifferential.

(iii) Let C ⊂ RN be a nonempty set and f : C→ R be any function, and consider the set-
valued map F : RN ⇒ R, F(x) = [ f (x),+∞[ if x ∈C and F(x) = /0 if x 6∈C. Then, for
every p, (x,y) ∈ S∗F(p) implies (x,y+λ ) ∈ S∗F(p) for all λ > 0. Set-valued maps of this
kind will be studied in more detail in Section 4.
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In what follows dC(x) stands for the distance from x to C, i.e.,

dC(x)
.
= inf{ ‖x− y‖ : y ∈C },

where ‖ · ‖ denotes the Euclidean norm.

Definition 3.5. Let C be a nonempty subset of RN , x ∈C.
(i) The subset

TC(x)
.
=
{

v : liminf
h→0+

dC(x+hv)
h

= 0
}

is called the contingent cone to C at x.
(ii) The subset

T [
C(x)

.
=
{

v : lim
h→0+

dC(x+hv)
h

= 0
}

is called the intermediate or adjacent cone to C at x.

For the main properties of these cones we refer to Chapter IV in the book [2]. We simply
recall the following characterization, which is easily obtained from the definition.

Proposition 3.6. Let C be a nonempty set in RN . Then,
(a) v ∈ TC(x) if and only if ∃ tn ↓ 0, ∃ vn→ v and ∀ n ∈ N, x+ tnvn ∈C.
(b) v ∈ T [

C(x) if and only if ∀ tn ↓ 0, ∃ vn→ v and ∀ n ∈ N, x+ tnvn ∈C.

In order to establish some relationships between S∗F ,S
F
∗ and sets involving contingent or ad-

jacent cones, we introduce some notations:

S0
F(p) :=

{
(x,y)∈Gr F : ∀ xn→ x,xn 6= x, ∃ yn ∈F(xn),yn→ y such that lim

n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

= 0
}

;

(3.6)
SF(p) :=

{
(x,y) ∈ Gr F : ∃ xn→ x,xn 6= x, ∃ yn ∈ F(xn),yn→ y such that

lim
n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

= 0
}

;

G[
F(p) :=

{
(x,y) ∈ Gr F : ∀ u ∈ T [

Dom F(x), (u,〈p,u〉) ∈ T [
Gr F(x,y)

}
;

GF(p) :=
{
(x,y) ∈ Gr F : ∀ u ∈ TDom F(x), (u,〈p,u〉) ∈ TGr F(x,y)

}
.

Proposition 3.7. Let F : RN ⇒ R be a proper set-valued mapping. Then
(a) S0

F(p)⊂ G[
F(p)∩GF(p);

(b)

SF(p) =
{
(x,y) ∈ Gr F : ∃ u ∈ TDom F(x),‖u‖= 1, (u,〈p,u〉) ∈ TGraph F(x,y)

}
(3.7)

Proof. (a): Let (x,y) be in the set given by (3.6) u ∈ T [
Dom F(x). By the characterization in

terms of sequences of the intermediate or adjacent cone, we have ∀ tn ↓ 0, ∃ un→ u such that
x+ tnun ∈ Dom F for all n ∈ N. Set xn

.
= x+ tnun, which converges to x, with xn 6= x if u 6= 0.

Thus, there exists yn ∈ F(xn) with yn→ y such that

lim
n→∞

〈p,xn− x〉− yn + y
|xn− x|

= 0.
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We set vn
.
= 1

tn
(yn− y) and obtain (x,y)+ tn(un,vn) ∈ Gr F . We claim that vn→ 〈p,u〉. In fact,

〈p,u〉− vn = 〈p,u〉− yn− y
tn

= 〈p,u〉+‖un‖
−yn + y
‖xn− x‖

= 〈p,u〉+ |un|
{
〈p,xn− x〉− yn + y

‖xn− x‖
− 〈p,xn− x〉
‖xn− x‖

}
= 〈p,u〉+‖un|

〈p,xn− x〉− yn + y
‖xn− x‖

−〈p,un〉.

Hence, vn→〈p,u〉 as desired. This proves that (u,〈p,u〉)∈ T [
Graph F(x,y) and so (x,y)∈G[

F(p).
Similarly, one shows that (x,y) ∈ GF(p).
(b) Let us prove the inclusion “⊃”. Let (x,y) be in the set of the right hand side of (3.7). Then,
because of the characterization in terms of sequences of contingent cones, ∃ tn ↓ 0, ∃ un→ u,
∃ vn → 〈p,u〉 such that y+ tnvn ∈ F(x+ tnun) for some u ∈ TDom F(x),u 6= 0. Setting xn

.
=

x+ tnun, yn
.
= y+ tnvn, we obtain that yn ∈ F(xn) and

lim
n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

= lim
n→+∞

tn〈p,un〉− tnvn

tn‖un‖
= 0.

Therefore, (x,y) ∈ SF(p). It remains to prove the inclusion “⊂”. Let (x,y) be in GF(p). Then
∃ xn→ x, xn 6= x, ∃ yn→ y with yn ∈ F(xn) such that

lim
n→+∞

〈p,xn− x〉− yn + y
‖xn− x‖

= 0.

It is our purpose to show that (x,y) is in the set in (3.7), that is, we show that there exists
u ∈ TDom F(x), u 6= 0 such that (u,〈p,u〉) ∈ TGraph F(x,y). The later will be proved through its
characterization in terms of sequences. We set tn

.
= |xn−x|, un

.
= 1

tn
(xn−x) and vn

.
= 1

tn
(yn−y).

Thus, ‖un‖ = 1 and therefore, up to a subsequence, un → u, ‖u‖ = 1. In addition, ∀ n ∈ N,
xn = x+ tnun ∈ Dom F . We claim that vn→ 〈p,u〉. In fact, this follows in a similar way to that
of Part (a). �

Some of the basic properties of the above conjugacy notion are listed in the following propo-
sition.

Proposition 3.8. Let F,G : RN ⇒ R be two proper set-valued maps. Then
(a) If F ⊆ G, in the sense that F(x)⊆ G(x) ∀ x, then F∗ ⊆ G∗;
(b) (F + c)∗(p) = F∗(p)− c, whenever c ∈ R;
(c) (F + 〈x0, ·〉)∗(p) = F∗(p− x0), ∀ x0 ∈ RN;
(d) (λF)∗(p) = λF∗( p

λ
) whenever λ > 0.

Similar results also hold for F∗.

Proposition 3.9. Let C ⊂ Dom F ⊂ RN be a nonempty open set. If F(x) = R whenever x ∈C,
then F∗(p) = F∗(p) = R for every p ∈ RN . Hence, F∗∗ = F∗∗ = (F∗)∗ = (F∗)∗ = R in RN .

Proof. For a fixed p∈RN , given any z∈R, let us take any x∈C and any sequence xn converging
to x. Since C is open, we can assume that xn ∈C and xn 6= x for all n∈N. We write z = 〈p,x〉−y
for some y ∈ R. By setting yn

.
= 〈p,xn〉− z+‖xn− x‖2, we have
〈p,xn− x〉− yn + y

‖xn− x‖
=−‖xn− x‖.
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Taking the limit as n→+∞, the latter proves that F∗(p) = F∗(p) = R for all p ∈ RN . �

The proof of next proposition is straightforward.

Proposition 3.10. Let C ⊂ RN and K ⊂ R be nonempty sets with C′ 6= /0. Let us consider the
set-valued map F(x) = K if x ∈C and F(x) = /0 if x 6∈C. Then F∗(0) =−K.

What follows is a consequence of Remark 3.2.

Proposition 3.11. Let F : RN → R be a set-valued map. If (Dom F)′ = /0 and F(x)′ = /0 for all
x ∈ Dom F, then

F∗(p) = F∗(p) =
⋃

(x,y)∈ Graph F

{
〈p,x〉− y

}
.

Taking into account Proposition 3.3, we obtain the following.

Proposition 3.12. Let C ⊂ RN be a nonempty convex set with C′ 6= /0. Let fi : C→ R, i ∈ I,
be real single-valued maps such that, for every x ∈ C, every xn → x, xn ∈ C, every in ∈ I, the
following holds

fin(xn)→ fi(x) as n→ ∞ =⇒ ∃ n0 ∈ N,∃ i0 ∈ I : in = i0 ∀n ≥ n0 and fi0(x) = fi(x). Let us
consider the set-valued map

F(x) =

{ ⋃
i∈I{ fi(x)} i f x ∈C;

/0 i f x 6∈C.

(a) If each fi, i ∈ I, is continuously differentiable in a neighborhood of C, then

F∗(p) =
⋃
i∈I

⋃
x̄∈C

{
〈p, x̄〉− fi(x̄) : 〈∇ fi(x̄)− p,x′− x̄〉 ≥ 0 ∀ x′ ∈C

}
; (3.8)

F∗(p) =
⋃
i∈I

⋃
x̄∈C

{
〈p, x̄〉− fi(x̄) : 〈∇ fi(x̄)− p,x′− x̄〉 ≤ 0 ∀ x′ ∈C

}
.

Hence, if C is open, then

F∗(p) = F∗(p) =
⋃
i∈I

⋃
x̄∈C

{
〈p, x̄〉− fi(x̄) : p = ∇ fi(x̄)

}
.

(b) If each fi, i ∈ I, is convex in C, then

F∗(p) =
⋃
i∈I

⋃
x̄∈C

{
〈p, x̄〉− fi(x̄) : p ∈ ∂ fi(x̄)

}
. (3.9)

Remark 3.13. The previous proposition gives the possibility, in case F(x) = { f (x)}, that f ∗(p)
(in the usual sense) being in R, could not be in F∗(p). In fact, consider f (x) = x+ ex, p = 1,
which satisfies f ∗(1) = supR{−ex} = 0. However, F∗(1) = /0 as one can directly check it.
This fact says, in some sense, that the notion of conjugacy recently introduced is related to the
Legendre transform more than to the conjugate of single-valued maps.

In the following examples, we prefer to compute the conjugate of set-valued maps in a direct
way instead of obtaining them as the applications of previous results.
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Example 3.14. Let us consider, for a given x0 ∈ RN , the set-valued map F : RN ⇒ R, defined
by F(x) = {〈x0,x〉}. Then,

F∗(p) = F∗(p) =

{
{0} i f p = x0;

/0 i f p 6= x0.

Thus, by Proposition 3.11, we obtain (F∗)∗ = (F∗)∗ = F∗∗ = F∗∗ = F in RN . In fact, in case
p = x0, we simply take x = 0 in the definition of F∗(x0) or F∗(x0) and show that (0,0) is
in S∗F(x0)∩ SF

∗ (x0). If p 6= x0, we proceed as follows. Assume that z ∈ R can be written as
z = 〈p,x〉−〈x0,x〉 for some x ∈RN . Then, by taking xn

.
= x+ tnu with tn ↓ 0 and suitable u 6= 0,

the quotient in (3.2) reduces 〈p−x0,u〉/‖u‖. This is positive (negative) if we choose u = p−x0
(u =−p+ x0). Therefore, F∗(p) = F∗(p) = /0 if p 6= x0.

Example 3.15. Let F : RN ⇒ R be the set-valued map defined by F(x) = {‖x‖}. Here ‖ · ‖
stands for the euclidean norm in RN . Then,

F∗(p) =
{
{0} i f |p| ≤ 1;

/0 i f ‖p‖> 1,
F∗(p) =

{
{0} i f ‖p‖= 1;

/0 i f ‖p‖ 6= 1,

F∗∗(x)=F(x), x∈RN ; F∗∗(0)= (F∗)∗(0)= (F∗)∗(0)= {0} and F∗∗(x)= (F∗)∗(x)= (F∗)∗(x)=
/0 if x 6= 0.
(a): The computation of F∗ results from Proposition 3.12. We now prove that F∗∗(x) = F(x)

for all x ∈ RN . To that end, we can use part (a) of Proposition 3.3. However, we will prove that
directly. For a fixed x ∈ RN , we start by proving that any z < ‖x‖ is not in F∗∗(x) for x 6= 0. If
z = 〈x, p〉 for ‖p‖< 1, then, we take pn = p+ tnx with tn ↓ 0 in the definition of S∗F∗(x). Thus

〈x, pn〉−〈x, p〉
‖pn− p‖

=
tn‖x‖2

tn‖x‖
= ‖x‖> 0,

proving that z 6∈ F∗∗(x) for z = 〈x, p〉< ‖x‖ with ‖p‖< 1. If, on the contrary, z = 〈x, p〉< ‖x‖
with ‖p‖= 1, we choose p̄ such that ‖x‖= 〈x, p̄〉 with ‖p̄‖= 1, and we take pn = p+ tn(p̄− p)
with tn ↓ 0. Notice that p̄ 6= p and ‖pn‖ ≤ 1. Moreover

〈x, pn− p〉
‖pn− p‖

=
〈x, p̄− p〉
‖p̄− p‖

> 0.

This proves that z 6∈ F∗∗(x) for z = 〈x, p〉< ‖x‖ with ‖p‖= 1 and therefore, the proof that any
z < ‖x‖ is not in F∗∗(x) if x 6= 0 is concluded. That ‖x‖ ∈ F∗∗(x), follows directly by computing
the quotient involved in (3.2). This completes the proof that F∗∗ = F .

(b): Let us compute F∗. Let us fix any z in F∗(p). Then, there exists x ∈ RN such that
z = 〈p,x〉− ‖x‖, and (x,‖x‖) is in SF

∗ (p). However, if z < 0 (which implies x 6= 0), then, by
choosing xn

.
= x+ tnx = (1+ tn)x with tn ↓ 0, the quotient appearing in the definition of SF

∗ (p)
reduces (〈p,x〉−‖x‖)/‖x‖. Hence, z 6∈ F∗(p) for all z < 0 and for all p ∈ RN . In a similar way,
one can prove, by taking xn

.
= x− tnx = (1− tn)x in the definition SF

∗ (p), that z 6∈ F∗(p) for all
z > 0 for all p 6= 0. On the other hand, it is not difficult to show that 0 6∈ F∗(p) if ‖p‖ > 1.
Therefore, F∗(p) = /0 if ‖p‖> 1. That F∗(p) = /0 if ‖p‖< 1 follows directly from the definition.
It only remains to deal with the case ‖p‖= 1. If this is the case, we recall the function x 7→ ‖x‖
is differentiable at every x 6= 0 with derivative x/‖x‖. Then, we simply take x = p and prove that
(x,‖x‖)∈ SF

∗ (p), i.e. 0 = 〈p,x〉−‖x‖ ∈ F∗(p) if ‖p‖= 1. The proof of the remaining assertions
are left as simple exercises.
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In what follows, we present instances where F = F∗∗ in the entire Dom F , and another, they
coincide in Dom F∗∗.

Example 3.16. Let us consider F(x) = {1
3x3}, x ∈ R. Then by Part (a) of Proposition 3.12, we

have

F∗(p) = F∗(p) =

{
{±2

3 p3/2} if p≥ 0;
/0 if p < 0.

Applying again the same proposition, we obtain F∗∗(x) = {1
3x3} = F(x), for all x ∈ R, and

F∗∗ = F∗∗ = (F∗)∗ = (F∗)∗ in R.

Example 3.17. Let us consider F(x) = {±
√

1− x2}, ‖x‖ ≤ 1; F(x) = /0. Then by Part (a) of
Proposition 3.12, we have

F∗(p) = {±
√

1+ p2}, p ∈ R.

Applying again the same proposition, we obtain F∗∗(x) = F(x), for all x ∈ R.

Example 3.18. Let us consider the set-valued map F : R⇒ R defined by

F(x) =

{
{±
√

x} if x≥ 0;
/0 if x < 0.

Then, it is not difficult to show that

F∗(p) =

{
{− 1

4p} if p 6= 0;
{0} if p = 0.

Thus, we obtain

F∗∗(x) =

{
{±
√

x} if x > 0;
/0 if x≤ 0.

Notice that Dom F∗∗ ⊆ Dom F and F∗∗(x) = F(x) for all x ∈ Dom F∗∗.

4. THE CASE OF F(x) = [ f (x),+∞[

In this section, we deal with a special set-valued map, which is very important in the study of
minimization problems. The graph of this special map coincides with the epigraph of a given
function. More precisely, we study the case in which F(x) = [ f (x),+∞[ for any given function
f . We start by computing F∗ for F defined by [‖x‖,+∞[.

Example 4.1. Let us consider the set-valued map F(x) = [‖x‖,+∞[, x ∈ RN . We will prove

F∗(p) =
{

]−∞,0] if ‖p‖ ≤ 1;
R if ‖p‖> 1.

F∗(p) =


]−∞,0[ if ‖p‖< 1;
]−∞,0] if ‖p‖= 1;

R if ‖p‖> 1.

Consequently, F∗∗ = F∗∗ = (F∗)∗ = (F∗)∗ = R in RN .
(a): Let us compute F∗. Clearly F∗(p) ⊂ ]−∞,0] for all ‖p‖ ≤ 1. Since every z ∈ F∗(p)

can be written as z = 〈p,x〉− y for some y ≥ ‖x‖, then z ≤ (‖p‖− 1)‖x‖ ≤ 0. To prove the
reverse inclusion, we write any z ≤ 0 as z = 〈p,0〉− y and show that (0,−z) ∈ S∗F(p). This
follows by taking, given any xn → 0, yn

.
= y + ‖xn‖ ≥ ‖xn‖ in (3.2). In case ‖p‖ > 1, we
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also show that (0,−z) ∈ S∗F(p) for all z ≤ 0, that is, ]−∞,0] ⊂ F∗(p). To that purpose, we
take yn

.
= −z + ‖xn‖‖p‖ ≥ ‖xn‖ given any xn → 0. Let us deal with z > 0. We write z =

λ‖p‖2−λ‖p‖ for some λ > 0 and set x = λ p, y = λ‖p‖= ‖x‖, implying z = 〈p,x〉−y. Given
any sequence xn→ x, we take yn

.
= y+‖xn−x‖‖p‖ ≥ ‖x‖+‖xn−x‖ ≥ ‖xn‖ in (3.2) and check

that (x,y) ∈ S∗F(p), proving that z ∈ F∗(p). Hence ]0,+∞[ ⊂ F∗(p) if ‖p‖> 1. This completes
the proof that F∗(p) = R if ‖p‖> 1.

(b) The computation of F∗ is obvious.

For any given proper function f : RN → R∪{+∞}, the following notations will be used in
the sequel:

f∗(p) .
= inf

x∈dom f

{
〈p,x〉− f (x)

}
, f ∗(p) .

= sup
x∈dom f

{
〈p,x〉− f (x)

}
. (4.1)

Here, dom f .
= { x ∈ RN : f (x) < +∞ }. We set C .

= dom f , m .
= − f ∗(0) = infC f (x), M .

=
− f∗(0) = supC f (x). Assuming these numbers are finite, a simple estimate for the conjugate
set-valued map F∗ of F(x) = [ f (x),+∞[, is obtained from Proposition 3.8:

[− f∗(0),+∞[ ⊂ F(x) ⊂ [− f ∗(0),+∞[, x ∈C. (4.2)

Namely,
M∗(p)⊂ F∗(p)⊂ m∗(p), p ∈ RN , (4.3)

where M∗ and m∗ are the conjugate of the set-valued maps M(x) = [− f∗(0),+∞[, m(x) =
[− f ∗(0),+∞[ if x ∈ C and M(x) = m(x) = /0 if x 6∈ C. Specific estimates for F∗ can be de-
duced if some additional assumptions on C are imposed. For instance, if C is a subspace of RN .
Others instances are described in the next theorems.

Theorem 4.2. Let C ⊂ RN be a non-empty set and f : C→ R be any function. Let us consider
the set-valued map F : RN→R defined by F(x) = [ f (x),+∞[, if x∈C, and F(x) = /0 elsewhere.
Then, for every p ∈ RN:

]−∞, f∗(p)] ⊂ F∗(p)∩F∗(p) ⊂ F∗(p)∪F∗(p) ⊂ ]−∞, f ∗(p)]. (4.4)

Proof. The inclusion F∗(p)∪F∗(p) ⊂ ]−∞, f ∗(p)] is trivially verified since any z in F∗(p)∪
F∗(p) can be written as z = 〈p,x〉 − y for some y ≥ f (x), x ∈ C, and therefore z ≤ 〈p,x〉 −
f (x) ≤ f ∗(p). Let us prove the the first inclusion of (4.4). Such an inclusion trivially holds if
f∗(p) =−∞. Otherwise, we proceed as follows. Given any z≤ f∗(p)<+∞, we fix x ∈C and
write z .

= 〈p,x〉−y≤ f∗(p)≤ 〈p,x〉− f (x). This implies y≥ f (x). Let xn be any sequence in C
converging to x, xn 6= x, and we set yn := y+ 〈p,xn− x〉. Then yn = 〈p,xn〉− f∗(p)+ ( f∗(p)−
〈p,x〉+ y)≥ f (xn). Thus

〈p,xn− x〉− yn + y
‖xn− x‖

= 0, i.e. z = 〈p,x〉− y ∈ F∗(p)∩F∗(p).

This proves the first inclusion of (4.4) and the proof of the theorem is complete. �

Remark 4.3. It may happen that the inclusions in (4.4) can be strict. In fact, take f (x) = ex

and F(x) = [ex,+∞[, x ∈R. Then F∗(0) = ]−∞,0[ while f ∗(0) = 0, f∗(0) =−∞. On the other
hand, by taking f (x) = x+ ex, F(x) = [ f (x),+∞[, x ∈ R, we obtain f ∗(1) = 0 while 0 6∈ F∗(1)
as one can easily check it.
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Next theorem indicates that, under regularity assumptions on f , the inclusions in (4.4) can be
refined.

Theorem 4.4. Let C be a nonempty subset of RN and let f : C→R be a continuous real single-
valued map. Let us define the set-valued map F : RN → R by F(x) = [ f (x),+∞[ if x ∈C and
F(x) = /0 elsewhere. Then, for all p ∈ RN:

]−∞, f ∗(p)[ ⊂ F∗(p)∩F∗(p) ⊂ F∗(p)∪F∗(p) ⊂ ]−∞, f ∗(p)]. (4.5)

In addition, F∗(p) = ]−∞, f ∗(p)], for every p such that the supremum involved in the definition
of f ∗(p) is attained (this holds everywhere, for instance, if f satisfies a superlinear growth
condition and C is unbounded) and F∗(p) = F∗(p) = ]−∞, f ∗(p)[ otherwise.

Proof. The third inclusion in (4.5) proved in the previous theorem. To prove the first inclusion,
we proceed as follows. If z < f ∗(p), then, by the definiton of f ∗(p), we obtain x ∈C such that
z < 〈p,x〉− f (x). We write z = 〈p,x〉− y, which implies y > f (x). Given any sequence xn in C
converging to x, we set yn

.
= 〈p,xn〉− z and we can assume, because of the continuity of f , that

〈p,xn〉− f (xn)> z for all n ∈ N. Thus yn ≥ f (xn), yn→ y and

〈p,xn− x〉− yn + y
‖xn− x‖

= 0.

This proves that z ∈ F∗(p)∩F∗(p). Let us prove the second assertion of the theorem. In case
the supremum involved in the definition of f ∗(p) is attained, we take x ∈C such that f ∗(p) =
〈p,x〉− f (x). Thus, if z = f ∗(p) = 〈p,x〉− f (x), then (x, f (x))∈ S∗F(p), i.e., z = f ∗(p)∈ F∗(p).
In fact, given any sequence xn in C converging to x, we have f (xn)→ f (x) and, because of the
choice of x,

〈p,xn− x〉− f (xn)+ f (x)
‖xn− x‖

≤ 0,

which proves the second assertion in case the supremum involved in the definition of f ∗(p)
is attained. In case that this supremum is not attained (being possibly +∞), it is clear that
f ∗(p) 6∈ F∗(p)∪F∗(p), proving the last part of the theorem. �

By Part (a) of Proposition 3.3, we have immediately the following corollary.

Corollary 4.5. Let C be a nonempty open convex subset of RN and let f be a real single-valued
map, continuously differentiable in C. Consider the set-valued map F : RN → R defined by
F(x) = [ f (x),+∞[ if x ∈ C and F(x) = /0 if x 6∈ C. Then F∗(p) = F∗(p) = ]−∞, f ∗(p)], for
every p such that the supremum involved in the definition of f ∗(p) is attained and F∗(p) =
F∗(p) = ]−∞, f ∗(p)[ otherwise.

Proof. By the preceding theorem, we only consider the case when f ∗(p) is attained and we
show that f ∗(p) ∈ F∗(p)∩F∗(p). In fact, take x ∈ C such that f ∗(p) = 〈p,x〉− f (x). Since
p = ∇ f (x), for every xn→ x,

lim
n→+∞

〈∇ f (x),xn− x〉− f (xn)+ f (x)
‖xn− x‖

= 0.

This implies that (x, f (x)) ∈ S∗F(p)∩SF
∗ (p). Thus f ∗(p) ∈ F∗(p)∩F∗(p). �

Example 4.6. Take the function f (x)= ex, x∈R which satisfies f ∗(0)= 0, and consider F(x)=
[ex,+∞[. The previous result gives F∗(0) = F∗(0) = ]−∞,0[.
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Conclusions A first step was given to define the conjugate of nonconvex set-valued mappings of
the real-line. It was with the purpose that its biconjugate coincides with the mapping itself. The
case in which the mappings are defined in infinite dimensional spaces with values in another
vector normed space will be analyzed in a forthcoming paper.
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