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HIGH ORDER TANGENT VECTORS TO SETS WITH APPLICATIONS TO
CONSTRAINED OPTIMIZATION PROBLEMS

VALENTIN V. GOROKHOVIK

Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Belarus

Dedicated to the memory of Professor Rafail Gabasov

Abstract. We introduce an extended tangent cone of high order to a set and study its properties. Then we use this
local approximation to derive high-order necessary conditions for local minimizers of constrained optimization
problems.
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1. INTRODUCTION

Notions of first, second, and higher order tangent vectors to sets are crucial in variational
analysis. A far from complete but very numerous list of (mainly English-language) works
devoted to this subject can be found in the review [1], the monograph [2], and also in relatively
recent papers [3–5]. We supplement this list with works [6–18] related to this area of research,
written mainly in Russian and not included in the surveys of the publications mentioned above.
The content of the articles [6, 7, 10–18] was discussed at the seminar under the guidance of
Professor R. Gabasov. His remarks and comments were essential and taken into account in the
final versions of these publications. The topic of high-order necessary optimality conditions has
always remained in the area of interest of R. Gabasov.

In this paper, we focus on one of possible definitions of high order tangent vectors to sets and
consider some applications of this notion to constrained optimization problems. First of all we
shortly discuss existing definitions of tangent vectors of first, second and higher order related to
the notion that is introduced here.

There are a large number of different first-order tangent vectors to sets (in particular, such
as the radial tangent vector, the feasible tangent vector, the contingent vector, the interiorly
contingent vector, the adjacent vector, the interiorly adjacent vector) and their second-order
counterparts; their definitions, characterizations, examples, and comparisons can be found in
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[1], [2, Chapter 4]. Here we deal only with first- and second-order contingent vectors as well
as their extensions to high-order ones. Following [19], we call first-order contingent vectors
simply by tangent ones.

Throughout the paper we use the following notations. By S we denote the family of all
sequences of positive real numbers (tn), tn > 0, n = 1,2, . . . ; S(α) is the subfamily of S, con-
sisting of such sequences (tn), that converge to a real number α ≥ 0; and S(∞) is the subfamily
of sequences of positive real numbers converging to +∞.

Let X be a real normed space, Q a nonempty subset of X .
By UQ we denote the family of all sequences (xn) such that xn ∈Q, n = 1,2, . . . ; UQ(x) is the

subfamily of UQ, consisting of such sequences (xn), which converge (by the norm of the space
X) to x; UQ(∞) is the subfamily of sequences (xn) from UQ such that ‖xn‖→ ∞ as n→ ∞.

A vector h ∈ X is said [19–24] to be a first-order tangent (contingent) vector to a set Q at a
point x̄ ∈ clQ, if there exist sequences (tn) ∈ S(0) and (hn) ∈UX(h) such that x̄+ tnhn ∈ Q for
all n = 1,2, . . . .

The set of all first-order tangent (contingent) vectors to a set Q⊂ X at a point x̄ ∈ clQ forms a
closed cone which is denoted by T Q(x̄) and is called the (first-order) tangent (contingent) cone
to the set Q at the point x̄ ∈ clQ.

The tangent (contingent) cone T Q(x̄) is often called the Bouligand cone [20,23], since in the
thirties of the last century elements of this cone were considered by the French mathematician
Georges Bouligand [25, 26]. In the literature the cone T Q(x̄) had also been called the cone
of directions admissible under constraints [27], the cone of directions admissible in the broad
sense [28], the cone of possible directions [29, 30].

Recall, that a set K ⊂ X is called a cone if the following implication (x∈K, λ > 0)⇒ λx∈K
holds.

It follows directly from the definition that

T Q(x̄) = limsup
t→0, t>0

Q− x̄
t

,

where the limsup is the sequential Painlevé-Kuratowski upper/outer limit [31] (with respect

to the norm topology of X) of the set-valued mapping t ⇒
Q− x̄

t
as t → 0+ (t → 0+ means

t→ 0, t > 0).

Furthermore, h ∈ T Q(x̄) if and only if liminf
t→0, t>0

d(x̄+ th,Q)

t
= 0, where d(x,Q) := inf

y∈Q
‖x−y‖

is the distance from a point x to a set Q.
In the finite-dimensional setting each sequence (xn) ⊂ Q that converges to a point x̄ ∈ clQ

generates one or even several first order tangent vectors to the set Q at the point x̄. Due to this
fact, using the first order tangent cone as a local approximation of the set of feasible points of an
optimization problem, one can derive both necessary optimality conditions and sufficient ones
of first order for solutions of the optimization problem under question, the gap between which
is minimal in the sense that it cannot be eliminated by means of first order local approximations.
To reduce this gap one needs to use local approximations of the second and higher order.

Local approximations of the second and, moreover, arbitrary order to sets, called variational
sets, were firstly introduced by Hoffmann and Kornstaedt in [32]. Somewhat later, under the
name high-order tangent sets, they were considered in the monograph [20]. In subsequent
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years various high-order variational (contingent, adjacent and others) sets and based on them
definitions of high-order derivatives for (set-valued) mappings with applications to high-order
optimality conditions were the subject of many papers (see [3, 33–42] and references therein).
Following [14], in the present paper we refer to high order variational sets introduced by Hoff-
mann and Kornstaedt in [32] as high order proper tangent sets.

It is natural that the attention of many researchers was focused on second-order tangent sets
and their applications to optimization problems [6, 7, 11–16, 18, 21, 43–53]. It was discovered
that for some sets Q there can exist such sequences (xn) ⊂ Q converging to a point x̄ ∈ clQ
that generates none second-order proper tangent vector to Q at x̄ and, moreover, the second-
order proper tangent sets to some sets may be empty (an example of such set can be found
in [14,21,45,46,51]). In the case when the second-order proper tangent set to a feasible set of a
constrained optimization problem at a reference point is nonempty one can formulate a second-
order necessary optimality condition [16, 43], however, the corresponding sufficient condition
can be obtained only under an additional second-order regularity condition [7,21,45,54]. When
the second-order proper tangent set is empty it gives no information on local structure of set and
can’t be used for analysis.

To overcome this disadvantage, in [46, 51, 52] the second-order proper tangent set was sup-
plemented with a new object, called the asymptotic second order tangent cone. An alternative
definition of asymptotic second order tangent vectors was given in [12, 13]. For a number of
(scalar, vector, set-valued) optimization problems this allowed, at least in finite-dimensional set-
tings, to obtain both necessary optimality conditions and sufficient optimality conditions with
a minimal gap between them [6, 7, 21, 45]. In [14] and then in [4] it has been introduced the
second order extended tangent cone (in [4] it was called the high-order tangent cone) including
both the second-order proper set and the asymptotic second-order tangent cone as its subsets.
It should be noted that the main constituents of the second-order extended tangent cone were
considered in [46]. In Section 2 of the present paper, following the scheme of defining second-
order extended tangent cone of the paper [14] and the terminology adopted there, we introduce
the high-order extended tangent cone and study its properties. In Section 3 we use this local
approximation for deriving high-order necessary conditions for local minimizers of constrained
optimization problems.

2. HIGH ORDER EXTENDED TANGENT VECTORS

First we recall the definition of the variational contingent set of the k-th order that was given
in [32]. Following the terminology of the paper [14], we replace the name of k-th order (k ≥ 2)
variational contingent set with that of k-th order proper tangent set, and the vectors which
belong to it we call k-th order proper tangent vectors.

Let Q be a set in a real normed space X , x̄ ∈ clQ, k ∈ N, k ≥ 2, and let (h1,h2, . . . ,hk−1) ∈
Xk−1 := X×X× . . .×X︸ ︷︷ ︸

k−1

,(k ≥ 2) be an ordered collection of vectors from X .

Definition 2.1. (cf. [20,32]) A vector w ∈ X is called a k-th order proper tangent vector to a set
Q at a point x̄∈ clQ with respect to an ordered collection of directions (h1,h2, . . . ,hk−1)∈Xk−1,
if there exist sequences (tn)∈ S(0) and (wn)∈UX(w) such that x̄+tnh1+t2

n h2+ . . .+tk−1
n hk−1+

tk
nwn ∈ Q for all n = 1,2, . . . .
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The set of all k-th order proper tangent vectors to a set Q⊂X at a point x̄∈ clQ with respect to
an ordered collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1 is denoted by T k

prQ(x̄,h1, . . . ,hk−1)
and is called k-th order proper tangent set to a set Q ⊂ X at a point x̄ ∈ clQ with respect to an
ordered collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1.

It follows from the equality

T k
prQ(x̄,h1, . . . ,hk−1) = limsup

t→+0

Q− x̄− th1− t2h2− . . .− tk−1hk−1

tk

and from properties of the sequential Painlevé-Kuratowski upper/outer limit (with respect to
the norm topology of X) that T k

prQ(x̄,h1, . . . ,hk−1) is a closed set in X . Observe that that
T k

prQ(x̄,h1, . . . ,hk−1) can be empty.

Example 2.2. [14, 46, 51]. Let Q = {(x1,x2) ∈ R2 | x1 ≥ 0,x2
1 = x3

2} and x̄ = (0,0). Then, it
is not difficult to get by direct calculation that T Q(0) = {(h1,h2) ∈ R2 | h1 = 0,h2 ≥ 0} and
T 2

prQ(0,h) =∅ for all h ∈ T Q(0),h 6= 0.

More properties of the high-order proper tangent set of an arbitrary order can be found in the
papers [1,32] and in the monographs [2,20]. Here these properties are not presented since they
follows from the properties of the extended tangent cone of high order whose definition and
properties are the purpose of the present paper.

Definition 2.3. A vector w ∈ X is called an extended tangent vector of k-th order to a set Q
at a point x̄ ∈ clQ with respect to an ordered collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1,
if there exist sequences (tn), (τn) ∈ S(0) and (wn) ∈ UX(w) such that x̄+ tnh1 + t2

n h2 + . . .+
tk−1
n hk−1 + tk−1

n τnwn ∈ Q for all n = 1,2, . . . .

The set of all extended tangent vectors of k-th order to a set Q at a point x̄ ∈ clQ with respect
to an ordered collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1 is a cone, which is denoted by
T kQ(x̄,h1, . . . ,hk−1) and is called the extended tangent cone of k-th order to a set Q at a point
x̄ ∈ clQ with respect to an ordered collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1.

The following equalities hold:

T kQ(x̄,h1, . . . ,hk−1) = limsup
(t,τ)→(+0,+0)

Q− x̄− th1− t2h2− . . .− tk−1hk−1

tk−1τ
(2.1)

and

T kQ(x̄,h1, . . . ,hk−1) =

{
w ∈ X | liminf

(t,τ)→(+0,+0)

d(x̄+ th1 + . . .+ tk−1hk−1 + tk−1τw,Q)

tk−1τ
= 0
}
.

It follows from Definition 2.3 and the equality (2.1) that T kQ(x̄,h1, . . . ,hk−1) is a closed cone
in X .

Clearly, that T k
prQ(x̄,h1, . . . ,hk−1)⊂ T kQ(x̄,h1, . . . ,hk−1).

As it was noted in Introduction, the second order extended tangent cone was introduced and
studied in [14].

In the next propositions we present a number of properties of the extended tangent cone of
k-th order.
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Definition 2.4. An ordered collection of directions (h1, . . . ,hk−2,hk−1) ∈ Xk−1, k ≥ 2, will be
called admissible for a set Q at a point x̄ ∈ clQ, if

hk−1 ∈ T k−1
pr Q(x̄,h1, . . . ,hk−2),hk−2 ∈ T k−2

pr Q(x̄,h1, . . . ,hk−3), . . . ,h2 ∈ T 2
prQ(x̄,h1),h1 ∈ T Q(x̄).

An ordered collection of directions (h1,h2 . . . ,hk−1) ∈ Xk−1 for which we can find such a
sequence (tn) ∈ S(0), that x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 ∈ Q ∀ n, will be called polynomially

admissible.

It is easily to see that each ordered collection of directions (h1, . . . ,hk−2,hk−1)∈ Xk−1, k≥ 2,
that is polynomially admissible for a set Q at a point x̄ ∈ clQ is admissible as well, but the
converse is not true.

Proposition 2.5. If T kQ(x̄,h1, . . . ,hk−1) 6= ∅ then the ordered collection of directions
(h1, . . . ,hk−2,hk−1) ∈ Xk−1 is admissible for the set Q at the point x̄ ∈ clQ.

Conversely, if an ordered collection of directions (h1, . . . ,hk−2,hk−1) ∈ Xk−1 is polynomially
admissible for a set Q at a point x̄ ∈ clQ then 0 ∈ T k

prQ(x̄,h1, . . . ,hk−1) and, consequently,
T kQ(x̄,h1, . . . ,hk−1) 6=∅.

Moreover, when dimX < ∞, then for any ordered collection of directions (h1, . . . ,hk−1) ∈
Xk−1 that is admissible for a set Q at a point x̄ ∈ clQ one has T kQ(x̄,h1, . . . ,hk−1) 6= ∅ with
w ∈ T kQ(x̄,h1, . . . ,hk−1),w 6= 0.

Proof. Let T kQ(x̄,h1, . . . ,hk−1) 6= ∅ and let w ∈ T kQ(x̄,h1, . . . ,hk−1). Then there exist se-
quences (tn), (τn)∈ S(0) and (wn)∈UX(w) such that xn := x̄+tnh1+. . .+tk−1

n hk−1+tk−1
n τnwn ∈

Q ∀ n. For each s = 2, . . . ,k−1 we define the sequence (w′n) = (hs+ tnhs+1+ . . .+ tk−s−1
n hk−1+

+tk−s−1
n τnwn). Since w′n → hs and xn := x̄+ tnh1 + . . .+ ts−1

n hs−1 + ts
nw′n ∈ Q ∀ n, we obtain

hs ∈ T s
prQ(x̄,h1, . . . ,hs−1) for s = 2, . . . ,k−1. The proof of the condition h1 ∈ T Q(x̄) is similar.

Prove the converse statements.
Let us consider an ordered collection of directions (h1, . . . ,hk−1) ∈ Xk−1 that is polynomially

admissible for a set Q at a point x̄ ∈ clQ. Then there exists a sequence (tn)∈ S(0), that xn := x̄+
tnh1+ t2

n h2+ . . .+ tk−1
n hk−1+ tk

n0∈Q ∀ n. We conclude from this that 0∈ T k
prQ(x̄,h1, . . . ,hk−1).

Thus, since T k
prQ(x̄,h1, . . . ,hk−1)⊂ T kQ(x̄,h1, . . . ,hk−1), we have T kQ(x̄,h1, . . . ,hk−1) 6=∅.

Now, we suppose that dimX < ∞ and consider any ordered collection of directions
(h1, . . . ,hk−1) ∈ Xk−1 that is admissible for a set Q at a point x̄ ∈ clQ. Then
hk−1 ∈ T k−1

pr Q(x̄,h1, . . . ,hk−2) and, consequently, there exist sequences (tn) ∈ S(0) and (wn) ∈
U(hk−1) such that

xn := x̄+ tnh1 + t2
n h2 + . . .+ tk−2

n hk−2 + tk−1
n wn ∈ Q ∀ n. (∗)

When the sequence (wn) in (∗) is such that wn = hk−1 for an infinite number of n ∈ N, then,
passing to a subsequence if necessary, we can suppose without loss of generality that wn = hk−1
for all n and hence xn := x̄+ tnh1 + t2

n h2 + . . .+ tk−2
n hk−2 + tk−1

n hk−1 ∈Q ∀ n. Consequently, the
ordered collection of directions (h1, . . . ,hk−1) ∈ Xk−1 is polynomially admissible for the set Q
at the point x̄ ∈ clQ and we prove above that in this case T kQ(x̄,h1, . . . ,hk−1) 6=∅ regardless of
whether the space X is finite-dimensional or not.

Consider now the case when the sequence (wn) in (∗) is such that wn = hk−1 only for a finite
number of n. Then without loss of generality we can assume that wn 6= hk−1 for all n. Consider
the sequence w′n :=(‖wn−hk−1‖)−1(wn−hk−1). Since dimX <∞ we can choose a subsequence
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from the sequence (w′n) that converges to some vector w, ‖w‖ = 1. Without loss of generality,
we can assume that the sequence (w′n) itself converges to w. Setting τn = ‖wn−hk−1‖, we obtain

xn = x̄+ tnh1 + . . .+ tk−2
n hk−2 + tk−1

n hk−1 + tk−1
n (wn−hk−1) =

= x̄+ tnh1 + . . .+ tk−2
n hk−2 + tk−1

n hk−1 + tk−1
n τnw′n ∈ Q ∀ n.

Since (tn),(τn) ∈ S(0) and (w′n) ∈ U(w), we conclude that w ∈ T kQ(x̄,h1, . . . ,hk−1), and
w 6= 0. �

Remark 2.6. It follows from Proposition 2.5 that if for some a set Q, a point x̄ ∈ Q, and an or-
dered collection of directions (h̄1, h̄2, . . . , h̄k−1) ∈ Xk−1 (k ≥ 2) the equality
T k

prQ(x̄, h̄1, . . . , h̄k−1) = ∅ holds, then T mQ(x̄, h̄1, . . . , h̄k−1,hk, . . . ,hm−1) = ∅ for all vectors
hk, . . . ,hm−1 ∈ X and all m > k. In particular, for the set Q = {(x1,x2) ∈R2 | x1 ≥ 0,x2

1 = x3
2}, a

point x̄ = (0,0), and any nonzero tangent vector h ∈ T Q(0) which were considered in Example
2.2 we have T mQ(0,h,h2, . . . ,hm−1) =∅ for all h2, . . . ,hm−1 ∈ R2 and all m > 2.

Proposition 2.7. For any x̄ ∈ clQ the following equality holds:

T kQ(x̄,0, . . . ,0︸ ︷︷ ︸
k−1

) = T Q(x̄) ∀ k ≥ 2.

Proof. For a w ∈ T kQ(x̄,0, . . . ,0︸ ︷︷ ︸
k−1

), there exist sequences (tn), (τn) ∈ S(0) and (wn) ∈U(w) such

that xn := x̄+ tn0+ t2
n 0+ . . .+ tk−1

n 0+ tk−1
n τnwn ∈ Q ∀ n. Setting t ′n = tk−1

n τn, we obtain xn =
x̄+ t ′nwn ∈ Q ∀ n, with (t ′n) ∈ S(0) and (wn) ∈U(w). Hence, w ∈ T Q(x̄).

Conversely, let w ∈ T Q(x̄) and let (tn) ∈ S(0) and (wn) ∈U(w) be such sequences for which
xn := x̄+ tnwn ∈ Q ∀ n. Then xn = x̄+ t ′n0+ t ′2n0+ . . .+ t ′k−1

n 0+ t ′knwn ∈ Q ∀ n, where t ′n =
k
√

tn→ 0. Consequently, w ∈ T k
prQ(x̄,0, . . . ,0︸ ︷︷ ︸

k−1

)⊂ T kQ(x̄,0, . . . ,0︸ ︷︷ ︸
k−1

). �

Proposition 2.8. For any x̄ ∈ clQ and any h ∈ T Q(x̄) the following equality holds:

T kQ(x̄,0, . . . ,0︸ ︷︷ ︸
k−2

,h) = T 2Q(x̄,h)∀ k ≥ 2. (2.2)

Proof. For a w ∈ T kQ(x̄,0, . . . ,0︸ ︷︷ ︸
k−2

,h) there exist sequences (tn), (τn) ∈ S(0) and (wn) ∈ U(w)

such that xn := x̄+tn0+ . . .+tk−2
n 0+tk−1

n h+tk−1
n τnwn ∈Q ∀ n. Setting t ′n = tk−1

n and removing
null summands we obtain xn = x̄+ t ′nh+ t ′nτnwn ∈ Q ∀ n, with (t ′n), (τn) ∈ S(0) and (wn) ∈
U(w). Hence, w ∈ T 2Q(x̄,h).

Conversely, let w ∈ T 2Q(x̄,h) and let xn := x̄+ tnh+ tnτnwn ∈ Q ∀ n, where (tn), (τn) ∈ S(0)
and (wn) ∈U(w). Then xn = x̄+ t ′n0+ t ′2n0+ . . .+ t ′k−2

n 0+ t ′k−1
n h+ t ′k−1

n τnwn ∈ Q ∀ n, where
t ′n = k−1

√
tn→ 0. Consequently, w ∈ T kQ(x̄,0, . . . ,0︸ ︷︷ ︸

k−2

,h). �

Perhaps the equality (2.2) explains the fact that in [4] the cone T 2Q(x̄,h) is called a high
order tangent cone but not the second order.
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Definition 2.9. Let α ∈R+ :=R++∪{0}∪{+∞} and k≥ 2. The subset T k
α Q(x̄,h1, . . . ,hk−1) of

T kQ(x̄,h1, . . . ,hk−1) consisting of such vectors w∈X for which there exist sequences (tn), (τn)∈
S(0) and (wn) ∈UX(w) such that t−1

n τn→ α as n→ ∞ and x̄+ tnh1 + t2
n h2 + . . .+ tk−1

n hk−1 +
tk−1
n τnwn ∈ Q for all n = 1,2, . . . is called the α-slice of the extended tangent cone of k-th

order to a set Q ⊂ X at a point x̄ ∈ clQ with respect to an ordered collection of directions
(h1,h2, . . . ,hk−1) ∈ Xk−1.

Replacing, if necessary, sequences by subsequences, it is easy to verify that

T kQ(x̄,h1, . . . ,hk−1) =
⋃

α∈R+

T k
α Q(x̄,h1, . . . ,hk−1).

In the next propositions we present some properties of slices of the extended tangent cone.

Proposition 2.10. Let α > 0. Then

T k
α Q(x̄,h1, . . . ,hk−1) = α

−1T k
prQ(x̄,h1, . . . ,hk−1) ∀ α ∈ R++ (2.3)

and, hence,

T k
1 Q(x̄,h1, . . . ,hk−1) = T k

prQ(x̄,h1, . . . ,hk−1),

and

α1T k
α1

Q(x̄,h1, . . . ,hk−1) = α2T k
α2

Q(x̄,h1, . . . ,hk−1) ∀ α1,α2 ∈ R++.

Proof. Let w ∈ T k
α Q(x̄,h1, . . . ,hk−1) and let sequences (tn), (τn) ∈ S(0) and (wn) ∈UX(w) be

such that t−1
n τn → α as n→ ∞ and xn := x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk−1

n τnwn ∈ Q for
all n = 1,2, . . . . Then xn = x̄ + tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk

nw′n ∈ Q for all n = 1,2, . . . ,
where w′n = t−1

n τnwn → αw as n → ∞ and, hence, αw ∈ T k
prQ(x̄,h1, . . . ,hk−1), that is w ∈

α−1T k
prQ(x̄,h1, . . . ,hk−1).

Conversely, let α ∈R++ and let w ∈ T k
prQ(x̄,h1, . . . ,hk−1). Then there exist sequences (tn) ∈

S(0) and (wn) ∈UX(w) such that xn := x̄+ tnh1 + t2
n h2 + . . .+ tk−1

n hk−1 + tk
nwn ∈ Q for all n =

1,2, . . . . Setting τn = αtn, we obtain t−1
n τn = α and xn = x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 +

tk−1
n τnw̄n ∈ Q for all n = 1,2, . . . , where w̄n = α−1wn → α−1w. From this we conclude that

α−1w ∈ T k
α Q(x̄,h1, . . . ,hk−1). �

Remark 2.11. Since T k
prQ(x̄,h1, . . . ,hk−1) is closed for all k ≥ 2, it follows from the equality

(2.3) that for any real α > 0 the α-slice T k
α Q(x̄,h1, . . . ,hk−1) also is a closed set for all k ≥ 2.

Corollary 2.12. For any point x̄ ∈ clQ and any ordered collection of directions (h1, . . . ,hk−1)∈
Xk−1 the following equality holds:

T kQ(x̄,h1, . . . ,hk−1)= (coneT k
prQ(x̄,h1, . . . ,hk−1))∪T k

0 Q(x̄,h1, . . . ,hk−1)∪T k
∞Q(x̄,h1, . . . ,hk−1).

Here coneM := {λx | λ > 0,x ∈M} is the conical hull of a set M (the smallest cone containing
a set M).

Proposition 2.13. The slices T k
0 Q(x̄,h1, . . . ,hk−1) and T k

∞Q(x̄,h1, . . . ,hk−1) are closed cones.
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Proof. The fact that T k
0 Q(x̄,h1, . . . ,hm−1) and T k

∞Q(x̄,h1, . . . ,hm−1) are cones, is directly verified
from the definitions of these slices. The closedness follows from the equalities

T k
0 Q(x̄,h1, . . . ,hk−1) = limsup

(t,τ)→(+0,+0), t−1τ→0

Q− x̄− th1− t2h2− . . .− tk−1hk−1

tk−1τ

and

T k
∞Q(x̄,h1, . . . ,hk−1) = limsup

(t,τ)→(+0,+0), t−1τ→+∞

Q− x̄− th1− t2h2− . . .− tk−1hk−1

tk−1τ
.

�

The cone T k
∞Q(x̄,h1, . . . ,hk−1) will be also called the asymptotic tangent cone of k-th order to

the set Q at the point x̄ with respect to the ordered collection of directions (h1,h2, . . . ,hk−1) ∈
Xk−1.

Proposition 2.14. For any β ∈R++ := {ρ ∈R | ρ > 0} and any α ∈R+ the following equality
holds:

T k
α Q(x̄,βh1,β

2h2, . . . ,β
k−1hk−1) = T k

α Q(x̄,h1, . . . ,hk−1).

Proof. For any real number β ∈R++ and any sequences (tn),(τn)∈ S(0), t−1
n τn→α and (wn)∈

U(w) we have

x̄+ tnh1 + . . .+ tk−1
n hk−1 + tk−1

n τnwn = x̄+ t ′n(βh1)+ . . .+ t ′k−1
n (β k−1hk−1)+ t ′k−1

n τ
′
nwn,

where t ′n = β−1tn, τ ′n = β k−1τn. Since (t ′n), (τ ′n) ∈ S(0) and t−1
n τn = t ′−1

n τ ′n , from the above
equality we see that any vector w ∈ T k

α Q(x̄,βh1,β
2h2, . . . ,β

k−1hk−1) also belongs to
T k

α Q(x̄,h1, . . . ,hk−1) and conversely. �

Now we give another characterization of the cone T k
∞Q(x̄,h1, . . . ,hk−1). For this we need the

following notions.
The set of all rays in X emanating from the origin and going through nonzero vectors 0 6=

w ∈ X , denoted by hznX , is called [19] the horizon of the space X .
A ray emanating from the origin and going through a nonzero vector w ∈ X , denoted by

dirw ∈ hznX , is called a direction point, belonging to the horizon of X .
A sequence of vectors (wn)⊂ X is said [19] to converge to a direction point dirw ∈ hznX if

there exists a sequence (γn) ∈ S(0) such that γnwn→ w as n→ ∞.
By UX(dirw) we denote the collection of all sequences (wn) from X , which converge to dirw.

Proposition 2.15. For any w ∈ T k
∞Q(x̄,h1, . . . ,hm−1) there exist sequences (tn) ∈ S(0) and

(wn) ∈U(dirw) such that x̄+ tnh1 + t2
n h2 + . . .+ tk−1

n hk−1 + tk
nwn ∈ Q for all n = 1,2, . . . .

Conversely, if there exist sequences (tn),(γn) ∈ S(0) and (wn) ∈U(dirw) such that γnwn→
w, tnγ−1

n → 0 and x̄ + tnh1 + t2
n h2 + . . .+ tk−1

n hk−1 + tk
nwn ∈ Q for all n = 1,2, . . . , then w ∈

T k
∞Q(x̄,h1, . . . ,hm−1).

Proof. Let w∈ T k
∞Q(x̄,h1, . . . ,hm−1) and let sequences(tn), (τn)∈ S(0) and (w′n)∈U(w) be such

that t−1
n τn→+∞ and xn := x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk−1

n τnw′n ∈ Q for all n = 1,2, . . . .
Then xn = x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk

nwn ∈ Q ∀ n, where wn = t−1
n τnw′n→ dirw.

Conversely, if there exist sequences (tn),(γn) ∈ S(0) and (wn) ∈U(dirw) such that γnwn→
w, tnγ−1

n → 0 and xn := x̄+ tnh1+ t2
n h2+ . . .+ tk−1

n hk−1+ tk
nwn ∈Q for all n = 1,2, . . . , then xn =
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x̄+tnh1+t2
n h2+ . . .+tk−1

n hk−1+tk−1
n τnw′n ∈Q ∀ n, where τn := tnγ−1

n → 0, t−1
n τn = γ−1

n →+∞,
and w′n := γnwn→ w. �

Proposition 2.16.

T kQ(x̄,h1, . . . ,hm−1,0, . . . ,0︸ ︷︷ ︸
k−m

)⊂ T m
0 Q(x̄,h1, . . . ,hm−1)∀ 0 < m < k,

in particular,
T kQ(x̄,h,0, . . . ,0︸ ︷︷ ︸

k−2

)⊂ T 2
0 Q(x̄,h) ∀ k > 2.

Proof. For any w ∈ T kQ(x̄,h1, . . . ,hm−1,0, . . . ,0︸ ︷︷ ︸
k−m

) we can find sequences (tn), (τn) ∈ S(0) and

(wn)∈UX(w) such that xn := x̄+tnh1+t2
n h2+ . . .+tm−1

n hm−1+tm
n 0+ . . .+tk−1

n 0+tk−1
n τnwn ∈Q

for all n = 1,2, . . . or, after rearranging, xn = x̄+ tnh1 + t2
n h2 + . . .+ tm−1

n hm−1 + tm−1
n τ ′nwn ∈

Q for all n = 1,2, . . . , where τ ′n = tk−m
n τn. Since t−1

n τ ′n = tk−m−1
n τn → 0 as n→ ∞, then w ∈

T m
0 Q(x̄,h1, . . . ,hm−1). �

Proposition 2.17.
T k

0 Q(x̄,h1, . . . ,hk−1) 6=∅⇒
⇒ 0 ∈ T k

α Q(x̄,h1, . . . ,hk−1) ∀ α ∈ R++.

Proof. Let w ∈ T k
0 Q(x̄,h1, . . . ,hk−1) and let sequences (tn), (τn) ∈ S(0) and (wn) ∈UX(w) be

such that t−1
n τn→ 0 as n→ ∞ and xn := x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk−1

n τnwn ∈ Q for all
n = 1,2, . . . . Then xn = x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk

nw′n ∈ Q for all n = 1,2, . . . , where
w′n = t−1

n τnwn→ 0 as n→ ∞ and, hence, 0 ∈ T k
prQ(x̄,h1, . . . ,hk−1). Through Proposition 2.10

we conclude that 0 ∈ T k
α Q(x̄,h1, . . . ,hk−1) for all α ∈ R++. �

Example 2.18. It was shown in Example 2.2 that for the set Q= {(x1,x2)∈R2 | x1≥ 0,x2
1 = x3

2}
and the point x̄=(0,0)∈Q one has T Q(0)= {(h1,h2)∈R2 | h1 = 0,h2≥ 0} and T 2

prQ(0,h)=∅
for all h ∈ T Q(0),h 6= 0. Consequently, through (2.3) we get that T 2

α Q(0,h) = ∅ for all h ∈
T Q(0),h 6= 0, and for all α > 0. Due to Proposition 2.17 the latter equalities imply T 2

0 Q(0,h) =
∅ for all h ∈ T Q(0),h 6= 0. At last, it is directly verified that T 2

∞Q(0,h) = {(w1,w2)∈R2 |w1 ≥
0} for all h ∈ T Q(0),h 6= 0.

Proposition 2.19. For every m≥ 2 the following inclusions hold:

T k
α Q(x̄,h1, . . . ,hk−1)⊂ T (k−1)m+1

0 Q(x̄,0, . . . ,0,h1︸ ︷︷ ︸
m

, . . . ,0, . . . ,0,hk−1︸ ︷︷ ︸
m

) ∀ α ∈ R++∪{0}

and

T (k−1)m+1
α Q(x̄,0, . . . ,0,h1︸ ︷︷ ︸

m

, . . . ,0, . . . ,0,hk−1︸ ︷︷ ︸
m

)⊂ T k
∞Q(x̄,h1, . . . ,hk−1) ∀α ∈ R++.

In particular,

T k
α Q(x̄,h1, . . . ,hk−1) ⊂ T 2k−1

0 Q(x̄,0,h1,0,h2, . . . ,0,hk−1︸ ︷︷ ︸
2k−2

) ∀ α ∈ R++∪{0}
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and
T 2k−1

α Q(x̄,0,h1,0,h2, . . . ,0,hk−1) ⊂ T k
∞Q(x̄,h1, . . . ,hk−1) ∀α ∈ R++.

Proof. Let w ∈ T k
α Q(x̄,h1, . . . ,hk−1), with α ∈ R++∪{0}, and let sequences (tn), (τn) ∈ S(0)

and (wn)∈UX(w) be such that t−1
n τn→α and xn := x̄+tnh1+t2

n h2+ . . .+tk−1
n hk−1+tk−1

n τnwn ∈
Q ∀ n. Setting t ′n = m

√
tn, we obtain

xn = x̄+ t ′n0+ . . .+(t ′n)
m−10+(t ′n)

mh1 +(t ′n)
m+10+ . . .+(t ′n)

2m−10+(t ′n)
2mh2 + . . .+

+(t ′n)
(k−2)m+10+ . . .+(t ′n)

(k−1)m−10+(t ′n)
(k−1)mhk−1 +(t ′n)

(k−1)m
τnwn ∈ Q ∀ n.

Since (t ′n)
−1τn = t

m−1
m

n (t−1
n τn)→ 0, then w ∈ T (k−1)m+1

0 Q(x̄,0, . . . ,0,h1︸ ︷︷ ︸
m

, . . . ,0, . . . ,0,hk−1︸ ︷︷ ︸
m

).

To prove the second inclusion we assume that α ∈ R++ and consider an arbitrary vec-
tor w ∈ T (k−1)m+1

α Q(x̄,0, . . . ,0,h1︸ ︷︷ ︸
m

, . . . ,0, . . . ,0,hk−1︸ ︷︷ ︸
m

) and corresponding sequences (tn),(τn) ∈

S(0) such that (tn)−1τn → α and xn := x̄+ tn0+ . . .+ tm−1
n 0+ tm

n h1 + tm+1
n 0+ . . .+ t2m−1

n 0+
t2m
n h2 + . . .++t(k−2)m+1

n 0+ . . .+ t(k−1)m−1
n 0+ t(k−1)m

n hk−1 + t(k−1)m
n τnwn ∈ Q ∀ n. Setting t ′n =

tm
n and eliminating null summands, we obtain xn := x̄+(t ′n)h1 +(t ′n)

2h2 + . . .+(t ′n)
k−1hk−1 +

(t ′n)
k−1τnwn ∈ Q ∀ n, with (t ′n)

−1τn =
1

tm−1
n

τn

tn
→+∞. Hence, w ∈ T k

∞Q(x̄,h1, . . . ,hk−1). �

3. HIGH-ORDER OPTIMALITY CONDITIONS IN SMOOTH CONSTRAINED OPTIMIZATION

PROBLEMS

In this section our goal is to use the high-order extended tangent cone for deriving high-order
necessary conditions for minimizers of the following constrained optimization problem:

minimize f (x) subject to x ∈ Q,

where f : X →R is a real-valued function defined on a normed space X , and Q is a subset of X .
We suppose that the function f is k times Fréchet differentiable, where k ≥ 2.
Recall the definition of Fréchet differentiability of high order.
Let X and Y be real normed spaces, and let L (X ,Y ) be the vector space of linear continuous

mapping from X into Y endowed with the norm ‖L‖ := sup
‖x‖≤1

‖L(x)‖.

A mapping f : X → Y is said to be Fréchet differentiable at a point x̄ ∈ X if there exists a
linear continuous mapping L ∈L (X ,Y ) such that

lim
h→0

f (x̄+h)− f (x̄)−L(h)
‖h‖

= 0. (3.1)

A linear mapping L ∈L (X ,Y ) satisfying (3.1) is called the Fréchet derivative of f at x̄ and is
denoted by f ′(x̄).

If a mapping f : X → Y is Fréchet differentiable at every point of some neighborhood U of a
point x̄ we obtain the derived mapping f ′ : x→ f ′(x) from U into L (X ,Y ). In the case when
the mapping f ′ : U → L (X ,Y ) is Fréchet differentiable at the point x̄ the mapping f is said
to be twice Fréchet differentiable at x̄ and the derivative ( f ′)′(x̄) is called the second Fréchet
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derivative of f at x̄ and is denoted by f ′′(x̄). Note that f ′′(x̄) is a linear mapping from X into
L (X ,L (X ,Y )).

For k > 2 the k-order Fréchet derivatives are defined by induction:

f (k)(x) := ( f (k−1))′(x) ∈L (X ,L (X , . . .L (X ,L (X ,Y ))) . . .)︸ ︷︷ ︸
k

.

The k-order Fréchet derivative f (k) exists at a point x̄ if f ′(x), f ′′(x), . . . , f (k−1)(x) exist for every
x in a some neighborhood of x̄ and f (k−1) : x→ f (k−1)(x) is Fréchet differentiable at x̄.

In view of the isometry of the space L (X ,L (X , . . .L (X ,L (X ,Y ))) . . .)︸ ︷︷ ︸
k

with the space

L (Xk,Y ) of k-linear continuous mappings the k-order Fréchet derivative f (k)(x̄) of f at x̄ is
identified with the corresponding element of L (Xk,Y ). Moreover, the k-linear mapping corre-
sponding the k-order Fréchet derivative f (k)(x̄) is symmetric.

Recall that a mapping T : Xk→ Y is called k-linear if the mappings

X 3 z→ T (x1, . . . ,xi−1,z,xi+1, . . . ,xk) ∈ Y, i = 1, . . . ,k,

are linear for any fixed x1, . . . ,xi−1,xi+1, . . . ,xk ∈ X . A k-linear mapping T : Xk→Y is symmet-
ric if T (x1, . . . ,xk) does not change its value for any permutation of the arguments x1, . . . ,xk.

For any k-linear symmetric mapping T : Xk→ Y by T [x1]
α1 . . . [xµ ]

αµ , where αi are nonneg-
ative integers such that α1 + . . .+αµ = k, we denote the value of this mapping when α1 of its
arguments are equal to x1, α2 of its arguments are equal to x2, . . ., αµ of its arguments equal to
xµ .

A point x̄ ∈ X is called a local minimizer of f over Q if x̄ ∈ Q and there exists a positive real
δ > 0 such that f (x̄)≤ f (x) for all x ∈ Q∩Bδ (x̄), where Bδ (x̄) := {x ∈ X | ‖x− x̄‖ ≤ δ}.

It is well known that if x̄ ∈ X is a local minimizer of a Fréchet differentiable function f over
a set Q⊆ X then f ′(x̄)h≥ 0 for all h ∈ T Q(x̄).

In the next theorem we present the high order necessary conditions for local minimizers of
smooth functions.

Theorem 1. Let a function f : X → R be k times Fréchet differentiable at a point x̄ ∈ X,
where k ≥ 2. If the point x̄ ∈ X is a local minimizer of f over a set Q⊆ X then for any ordered
collection of directions (h1,h2, . . . ,hk−1) ∈ Xk−1 such that T kQ(x̄,h1, . . . ,hk−1) 6=∅ and

∑
α1+2α2+...+sαs=s

1
α1! . . .αs!

f (α1+...+αs)(x̄)[h1]
α1 . . . [hs]

αs = 0, s = 1,2, . . . ,k−1, (3.2)

one has

f ′(x̄)w+ ∑
α1+2α2+...+(k−1)αk−1=k

1
α1! . . .αk−1!

f (α1+...+αk−1)(x̄)[h1]
α1 . . . [hk−1]

αk−1 ≥ 0

for all w ∈ T k
prQ(x̄,h1, . . . ,hk−1) (3.3)

and
f ′(x̄)w≥ 0 for all w ∈ T k

∞Q(x̄,h1, . . . ,hk−1). (3.4)
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Proof. Let w ∈ T kQ(x̄,h1, . . . ,hk−1). Then there exist sequences (tn),(τn) ∈ S(0) and (wn) ∈
U(w) such that xn := x̄+ tnh1 + t2

n h2 + . . .+ tk−1
n hk−1 + tk−1

n τnwn ∈ Q ∀ n ∈ N. Clearly, xn→ x̄
as n→∞. Hence, if x̄ is a local minimizer of f over Q, one has f (xn)− f (x̄)≥ 0 for sufficiently
large n. Using the Taylor formula we obtain

f (xn)− f (x̄) = f (x̄+ tnh1 + t2
n h2 + . . .+ tk−1

n hk−1 + tk−1
n τnwn)− f (x̄) =

k−1

∑
s=1

ts
∑

α1+2α2+...+sαs=s

1
α1! . . .αs!

f (α1+...+αs)(x̄)[h1]
α1 . . . [hs]

αs+

tk
n

(
τn

tn
f ′(x̄)wn + ∑

α1+2α2+...+(k−1)αk−1=k

1
α1! . . .αk−1!

f (α1+...+αk−1)(x̄)[h1]
α1 . . . [hk−1]

αk−1

)
+

+tk
nvn ≥ 0, where vn→ 0 as n→ ∞.

Taking into account the equalities (3.2) and dividing by tk
n we get

τn

tn
f ′(x̄)wn + ∑

α1+2α2+...+(k−1)αk−1=k

1
α1! . . .αk−1!

f (α1+...+αk−1)(x̄)[h1]
α1 . . . [hk−1]

αk−1 + vn ≥ 0.

(3.5)
Assume that w ∈ T k

prQ(x̄,h1, . . . ,hk−1). Then t−1
n τn → 1 as n→ ∞ and we come from the in-

equality (3.5) to (3.3).
If w ∈ T k

∞Q(x̄,h1, . . . ,hk−1) then t−1
n τn → +∞ and we get from (3.5) that f ′′(x̄)w ≥ 0. This

proves the inequality (3.4).
Before completing the proof, we note that the cases when w ∈ T k

α Q(x̄,h1, . . . ,hk−1) with
α > 0,α 6= 1, and when w ∈ T k

0 Q(x̄,h1, . . . ,hk−1) produce the conditions that are already in-
cluded in (3.3). Really, it follows from Proposition 2.10 that w∈ T k

α Q(x̄,h1, . . . ,hk−1) ⇒ αw∈
T k

prQ(x̄,h1, . . . ,hk−1). In the second case, due to Proposition 2.17 we have T k
0 Q(x̄,h1, . . . ,hk−1) 6=

∅ ⇒ 0 ∈ T k
prQ(x̄,h1, . . . ,hk−1). �

Corollary 3.1. (cf. [46, 50, 51]) Let a function f : X → R be twice Fréchet differentiable at a
point x̄ ∈ X. If the point x̄ is a local minimizer of f over a set Q ⊆ X then for any h ∈ X such
that T 2Q(x̄,h) 6=∅ and f ′(x̄)h = 0 one has

f ′(x̄)w+
1
2

f ′′(x̄)[h]2 ≥ 0 ∀ w ∈ T 2
prQ(x̄,h)

and
f ′(x̄)w≥ 0 ∀ w ∈ T 2

∞Q(x̄,h).

Corollary 3.2. (cf. [35]) Let a function f : X → R be three times Fréchet differentiable at a
point x̄ ∈ X. If the point x̄ is a local minimizer of f over a set Q ⊆ X then for any h1,h2 ∈ X
such that T 3Q(x̄,h1,h2) 6=∅ and f ′(x̄)h1 = 0, f ′(x̄)h2 +

1
2 f ′′(x̄)[h1]

2 = 0 one has

f ′(x̄)w+ f ′′(x̄)[h1][h2]+
1
3!

f ′′′(x̄)[h1]
3 ≥ 0 ∀ w ∈ T 3

prQ(x̄,h1,h2)

and
f ′(x̄)w≥ 0 ∀ w ∈ T 3

∞Q(x̄,h1,h2).
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For the first time the definition of the high order extended tangent cone and its slices, as well
as a number of their properties, were presented in the author’s talk at the French-German-Polish
Conference on Optimization. September 9 – 13, 2002. Cottbus, Germany [55].
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