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Abstract. We consider an optimal flow control problem in a patient-specific coronary artery bypass graft with the
aim of matching the blood flow velocity with given measurements as the Reynolds number varies in a physiological
range. Blood flow is modelled with the steady incompressible Navier-Stokes equations. The geometry consists in
a stenosed left anterior descending artery where a single bypass is performed with the right internal thoracic artery.
The control variable is the unknown value of the normal stress at the outlet boundary, which is need for a correct
set-up of the outlet boundary condition. For the numerical solution of the parametric optimal flow control problem,
we develop a data-driven reduced order method that combines proper orthogonal decomposition (POD) with neural
networks. We present numerical results showing that our data-driven approach leads to a substantial speed-up with
respect to a more classical POD-Galerkin strategy proposed in [62], while having comparable accuracy.
Keywords. Coronary artery bypass; Neural networks; Optimal control; Reduced order model.

1. INTRODUCTION

It is well-known that cardiovascular disease is one of the leading causes of death in the world.
This has motivated a large body of literature on mathematical and numerical modeling for blood
flow problems since computational simulations in patient-specific geometries can assist medical
doctors in clinical and surgical practice. This paper focuses on blood flow in coronary arteries
when poor blood perfusion requires a surgical treatment known as coronary artery bypass graft
(CABG). For recent computational work on this topic, we refer to, e.g., [2, 3, 8, 9, 50, 56, 57].

Computational hemodynamics in realistic geometries is challenging for several reasons. Here,
we tackle two main challenges: (i) the high computational cost and (ii) the enforcement of
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boundary conditions that would lead to realistic flow. To deal with point (i), we develop a
computationally efficient data-driven reduced order method (ROM). Our goal is not only to re-
duce drastically the computational time required by full order simulations, but also to achieve
a speed-up with respect to a traditional reduced method (POD-Galerkin) used in [62]. As for
point (ii), we set up an optimal control framework where the control variable is the unknown
normal stress at the outlet boundary. Typically, one directly imposes boundary conditions with
specified flow waveform at the inlets and constant values of pressure or velocity gradient at the
outlets. See, e.g., [56, 57]. However, while this approach allows to take into account patient
specific flow profiles, the non-physical outlet boundary conditions lead to inaccurate numer-
ical approximations. An alternative is to employ surrogate models to enforce boundary con-
ditions [22, 26, 27]. This results in increased accuracy, but requires a very large number of
parameters which increases the model complexity too.

Our optimal control flow problem involves the minimization of an objective functional mea-
suring the mismatch between computed and measured velocity fields and solves for the un-
known control variable (i.e., the normal stress at the outlet boundary) with the constraint of the
governing equations (i.e., the parameterized Navier-Stokes equations) [20,29,33,34,44,46]. The
formulation of this optimal control problem was introduced in [62], with the assumption that the
velocity data comes from magnetic resonance imaging 4D flow. In particular, we aim to mini-
mize in a least-square sense the difference between numerical and measured velocity [35,48,60]
in a patient specific geometry reconstructed from a computed tomography scan. In order to con-
sider various hemodynamics scenarios, we let the Reynolds number vary in a given range. A
finite element approach for the problem under consideration features high computational cost.
To contain such cost, we adopt a data-driven ROM that combines proper orthogonal decom-
position with neural networks (NNs) known as POD-NN [32]. The POD algorithm extracts
the dominant modes that form a basis for the reduced space and NNs are used to interpolate the
modal coefficients for each variable. During the so-called offline stage of the ROM, the POD al-
gorithm is executed and the feedforward neural networks are trained. This is an expensive stage
due to the high dimension of the full order model (i.e., the finite element method), which how-
ever needs to be performed only once. The so-called online phase requires only the evaluation
of the modal coefficients through the trained NNs for each new Reynolds number of interest.
The complete decoupling between offline/online phases together with a data-driven approach
leads to a considerable computational efficiency, thereby allowing to solve the optimization
problem for several hemodynamics scenarios at a greatly reduced cost.

The main reason for choosing NNs to interpolate the modal coefficients is that NNs are
universal approximators [63], i.e., they are able to learn strongly non-linear trends with a simple
trial and error process. This is a great advantage in the development of a ROM with several
physical parameters (such as those associated with boundary conditions treated in this paper)
and geometrical parameters (such as the degree of stenosis treated in [56]). In this paper, we
do not consider geometrical parameters, and refer the reader interested in a thorough analysis
of the performance of the POD-NN method for parametrized stenoses [56]. Other interpolation
methods, such radial basis functions [38], are not universal like NNs and have certain regularity
requirements to ensure convergence. The downsides of NNs are mainly two: the computational
time needed to find and train the network optimal configuration and the (unknown) amount of
data required to obtain satisfactory results.
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A possible alternative to our approach is to skip the POD step and use NN surrogate models.
This alternative has been explored in several recent papers. Particularly worthy of notice are
references [25,39]. In [39], deep NNs are used to obtain pressure and velocity in patient-specific
geometries of the thoracic aorta. The only input is the patient-specific geometry and the NN
surrogate model produces the results in a few seconds. In [25], convolutional NNs are used to
predict the time-averaged wall shear stress in a small tract of the left main coronary artery. In
this case, various geometrical features (e.g., vessel radii and curvature) are provided as inputs.
The advantages of these methods are that they are computationally cheap (once the NNs are
trained) and they generalize well. The disadvantages are that they require a large number of
patient-specific geometries (729 in [39] and 127 in [25]) and they have a high computational
cost for the NN training. Since we currently do not have a large number of patient-specific
geometries, NN surrogate models are not a viable choice for us.

The remainder of this paper is structured as follows. In Section 2, we report the mathemati-
cal details about the formulation of the continuous optimal control problem, together with the
patient-specific geometry of the CABG. Section 3 describes the finite element discretization of
our problem and introduces the data-driven reduced order framework. Numerical results are
shown in Section 4. Conclusions and future perspectives are drawn in Section 5.

2. OPTIMAL CONTROL PROBLEM

In this section, we introduce the mathematical details for optimal control flow problems in
the context of a patient-specific CABG geometry.

In general, an optimal control flow problem is composed of three elements:
- an objective functional to optimize;
- a control variable to choose in order to minimize the objective functional;
- the fluid flow model, which represents a set of constraints for the optimization step.

More details can be found in, e.g., [14,24,29]. In our specific constrained optimization problem,
the aim is to minimize an objective functional representing the distance between computational
results and clinical data.

This section is organized as follows. First, we provide some information about the spatial
domain. Then, we briefly describe the governing equations for blood flow in large vessels, i.e.,
the incompressible Navier-Stokes equations. Finally, we cast the mathematical problem into a
saddle-point formulation, which we will argue is easier to handle.

2.1. The geometry. The CABG geometry used for this work is shown in Figure 1. A post-
surgery computed tomography (CT) scan was provided by the Sunnybrook Health Science Cen-
tre in Toronto. The patient exhibited at least three stenoses in the coronary system ranging from
mild to severe. We will consider only one of such stenoses to test our methodology. The by-
pass of interest is performed with the right internal thoracic artery (RITA) on the left anterior
descending artery (LAD). See Figure 1. The approach used to extract the domain is based on
Visualization Toolkit (VTK) and Vascular Modeling Toolkit (VMTK) Python libraries [6, 52]
and it is accurately described in [8, 9].

2.2. Problem formulation. Let us consider the computational domain Ω⊂R3 in Figure 1 and
denote by ∂Ω its boundary. More precisely, the boundary consists of:

• two inlets denoted by Γinlet, where the flux enters the RITA and the LAD;
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LAD

RITA

FIGURE 1. The spatial domain: a coronary artery bypass graft (CABG) per-
formed with the right internal thoracic artery (RITA) on the left anterior de-
scending artery (LAD). The arrows indicate the flow direction.

• one outlet Γoutlet, where the blood leaves the LAD;
• the rigid vessel wall Γwall.

Due to the radii of the coronary arteries, the apparent viscosity of the blood can be considered
constant. Therefore, we adopt a Newtonian model (see also [1, 61]).

Let µµµ ∈P be a set of physical parameters belonging to a given parameter space P . The
parameterized, steady-state incompressible Navier-Stokes equations describing the blood flow
are given by: {

−ν∆vvv(µµµ)+(vvv(µµµ) ·∇)vvv(µµµ)+∇p(µµµ) = 0, in Ω,

∇ · vvv = 0, in Ω,
(2.1)

where vvv(µµµ) is the velocity field, p(µµµ) the blood pressure, and ν the constant viscosity. Problem
(2.1) is endowed with a non-homogeneous Dirichlet condition at the inlet, a non-homogeneous
Neumann condition at the outlet, and a no-slip condition on the wall:

vvv(µµµ) = vvvinlet(µµµ), on Γinlet,

−ν(∇vvv(µµµ))nnn+ p(µµµ)nnn = uuu(µµµ), on Γoutlet,

vvv(µµµ) = 000, on Γwall,

(2.2)

where vvvinlet(µµµ) is a given inlet velocity profile, nnn is the outward unit normal vector, and uuu(µµµ) is
the unknown control variable.

Let us introduce the Hilbert spaces V = V (Ω) and Q = Q(Ω), with the corresponding dual
spaces V ∗ and Q∗. Let S = V ×Q be the self-adjoint space (i.e., S = S∗) of the state variables
(vvv(µµµ), p(µµµ)). Moreover, let U = U(Γoutlet) be the Hilbert space the control uuu belongs to. In
order to state the weak formulation of problem (2.1)-(2.2), we need to introduce forms a :
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V ×V ∗→ R, e : V ×V ×V ∗→ R, b : Q∗×V → R and c : U×V ∗→ R:

a(vvv,www; µµµ) = ν

∫
Ω

∇vvv(µµµ) ·∇wwwdΩ, e(vvv,vvv,www; µµµ) =
∫

Ω

(vvv(µµµ) ·∇)vvv(µµµ) ·wwwdΩ,

b(q,vvv; µµµ) =−
∫

Ω

q(∇ · vvv(µµµ))dΩ, c(uuu,www; µµµ) =−
∫

Γoutlet

uuu(µµµ) ·wwwdΓ.

Then, the weak formulation can be written as: Given µµµ ∈P , find the solution sss(µµµ)= (vvv(µµµ), p(µµµ))
∈ S such that:{

a(vvv,www; µµµ)+ e(vvv,vvv,www; µµµ)+b(p,www; µµµ)+ c(uuu,www; µµµ) = 0, ∀www ∈V ∗,
b(q,vvv; µµµ) = 0, ∀qqq ∈ Q∗.

(2.3)

The objective functional chosen for this work measures the distance between vvv and the clini-
cally measured velocity vvvm as:

I (vvv,uuu; µµµ) =
1
2

∫
Ω

|vvv(µµµ)− vvvm|2dΩ+
α

2

∫
Γoutlet

|uuu(µµµ)|2dΓ. (2.4)

where α > 0 is a constant penalization parameter. Let us introduce the Hilbert space G ⊇ S,
bilinear forms m : G×G→ R and n : U ×U → R such that the cost functional (2.4) can be
written as:

I (vvv,uuu; µµµ) =
1
2

m(vvv(µµµ)− vvvm,vvv(µµµ)− vvvm)+
α

2
n(uuu(µµµ),uuu(µµµ)). (2.5)

The optimal control flow problem reads:

Given µµµ ∈P , find (vvv(µµµ), p(µµµ),uuu(µµµ)) ∈ V ×Q×U such that the objective functional
(2.5) is minimized under the constrain (2.3).

2.3. Saddle-point structure. A classical approach to treat non-linear optimal control problems
is the adjoint-based Lagrangian method. Here, we briefly describe the procedure adopted to
cast the constrained optimization problem with the well-known saddle-point theory. The reader
interested in more details is referred to, e.g., [15, 16, 44].

Let us introduce X = V ×Q×U and denote by xxx = (vvv, p,uuu) ∈ X the state and the control
variables of the optimal control problem. In addition, let yyy = (yyyvvv,yyyp,yyyuuu) ∈ X . We define A :
X×X → R as:

A (xxx,yyy; µµµ) = m(vvv(µµµ),yyyvvv)+αn(uuu(µµµ),yyyuuu), ∀xxx,yyy ∈ X .

Moreover, let B : X × S∗→ R be the operator related to the linear part of (2.3), such that we
can rewrite (2.3) as:

B(xxx,zzz; µµµ)+ e(vvv,vvv,www; µµµ) = 0, ∀zzz ∈ S∗, (2.6)

with zzz = (www,q). Finally, let hhh(µµµ) ∈ X∗ be such that

〈hhh(µµµ),yyy〉= m(vvv,vvvm). ∀yyy ∈ X ,

Therefore, a new functional can be introduced:

J(xxx; µµµ) =
1
2
A (xxx,xxx; µµµ)−〈hhh(µµµ),xxx〉= J (vvv,uuu; µµµ)− 1

2
m(vvvm,vvvm). (2.7)

Since m(vvvm,vvvm) is constant, an equivalent form of the optimal control flow problem is:



6 C. BALZOTTI, P. SIENA, M. GIRFOGLIO, A. QUAINI, G. ROZZA

Given µµµ ∈P , find xxx(µµµ) = (vvv(µµµ), p(µµµ),uuu(µ)) ∈ X such that the objective functional
(2.7) is minimized under the constrain (2.6).

In order to obtain an unconstrained formulation, let us define the Lagrangian L : X×S∗→R:

L (xxx,zzz; µµµ) = J(xxx; µµµ)+B(xxx,zzz; µµµ)+ e(vvv,vvv,www; µµµ).

The saddle-point structure is obtained with the optimality condition: ∇L (xxx,zzz; µµµ)[yyy,kkk] = 0,∀yyy∈
X ,∀kkk = (kkkwww,kkkq) ∈ S∗. This leads to the following formulation:

Given µµµ ∈P , find (xxx(µµµ),zzz(µµµ)) ∈ X×S∗ such that:{
A (xxx,yyy; µµµ)+B(yyy,zzz; µµµ)+ e(yyyvvv,vvv,www; µµµ)+ e(vvv,yyyvvv,www; µµµ) = 〈hhh(µµµ),yyy〉 , ∀yyy ∈ X ,

B(xxx,kkk; µµµ)+ e(vvv,vvv,kkkwww; µµµ) = 0, ∀kkk ∈ S∗.
(2.8)

Existence and uniqueness of the solution to the above problem is ensured by Brezzi’s theorem
(see [16] for details).

3. NUMERICAL DISCRETIZATION

In this section, we introduce the numerical methods to find the fluid state variables, the control
variable and the adjoint variables. To find the full order solution of problem (2.8), we adopt an
optimize-then-discretize approach. This procedure formalizes the continuous problem and then
discretizes the optimal control system. We choose a finite element method for the discretization
and use a one-shot method to solve directly the resulting equations. See, e.g., [29,53] for details.

For the reduction step, we opt for a data-driven, non-intrusive ROM. More precisely, we
employ the POD-NN method [32]. Our aim is to compare our results with those obtained with
an intrusive POD-Galekin procedure in [62].

3.1. The full order model. We consider a mesh for domain Ω with size h. Let us consider
spaces Sh =Vh×Qh ⊂ S and Xh = Sh×Uh ⊂ X . The full order model (FOM) is:

Given µµµ ∈P , find (xxxh(µµµ),zzzh(µµµ)) ∈ Xh×S∗h such that:{
A (xxxh,yyyh; µµµ)+B(yyyh,zzzh; µµµ)+ e(yyyvvvh

,vvvh,wwwh; µµµ)+ e(vvvh,yyyvvvh
,wwwh; µµµ) = 〈hhh(µµµ),yyyh〉 , ∀yyyh ∈ Xh,

B(xxxh,kkkh; µµµ)+ e(vvvh,vvvh,kkkwwwh ; µµµ) = 0, ∀kkkh ∈ S∗h.
(3.1)

We refer to eq. (3.1) as the truth problem, which has dimension N = ∑
δ

Nδ , with Nδ the

dimension of the solution space for variable δ = vvv, p,uuu,www,q.
In order to introduce the matrix formulation of the truth problem, let {φi}Nvvv

i=1, {ψk}
Np
k=1 and

{σl}Nuuu
l=1 be bases for Vh, Qh and Uh, respectively. The state and control variables can be written

as linear combination of the basis functions:

vvvh(µµµ) =
Nvvv

∑
i=1

v̄i(µµµ)φi, ph(µµµ) =
Np

∑
k=1

p̄k(µµµ)ψk, uuuh(µµµ) =
Nuuu

∑
l=1

ūl(µµµ)σl,
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where v̄vv(µ) = [v̄1, . . . , v̄Nvvv]
T , p̄pp(µ) = [p̄1, . . . , p̄Np]

T and ūuu(µ) = [ū1, . . . , ūNuuu ]
T are the vectors of

the coefficients. Taking the basis functions as test functions for problem (3.1), we introduce the
matrices associated with the forms in (2.3):

(A(µµµ))i j = a(φi,φ j; µµµ), (B(µµµ))ik = b(ψk,φi; µµµ), (C(µµµ))il = c(σl,φi; µµµ),

(M(µµµ))i j = m(φi,φ j; µµµ), N(µµµ)lr = n(σr,σl; µµµ),

with 1≤ i, j ≤ Nvvv, 1≤ k ≤ Np and 1≤ l,r ≤ Nuuu. Furthermore, we define:

(E(v̄vv(µµµ); µµµ))i j =
Nv

∑
k=1

v̄k(µµµ)e(φk,φ j,φi; µµµ), (Ẽ(w̄ww(µµµ); µµµ))i j =
Nv

∑
k=1

w̄k(µµµ)e(φk,φ j,φi; µµµ),

where w̄ww(µ) = [w̄1, . . . , w̄Nv ]
T is the vector of the coefficients of the adjoint velocity and q̄qq(µ) =

[q̄1, . . . , q̄Np]
T is the vector of the coefficients for the adjoint pressure.

The algebraic formulation of the truth problem can be written as:
M(µµµ)+ Ẽ(w̄ww(µµµ); µµµ) 0 0 A(µµµ)+E(v̄vv(µµµ); µµµ) B(µµµ)

0 0 0 BT (µµµ) 0
0 0 αN(µµµ) C(µµµ) 0

A(µµµ)+E(v̄vv(µµµ); µµµ) BT (µµµ) C(µµµ) 0 0
B(µµµ) 0 0 0 0




v̄vv(µµµ)
p̄pp(µµµ)
ūuu(µµµ)
w̄ww(µµµ)
q̄qq(µµµ)

=


hhh(µµµ)

000
000
000
000

 . (3.2)

One way to ensure uniqueness of the solution for the above system is to employ inf-sup stable
finite element pairs for velocity and pressure. See, e.g., [4, 10] for more details.

3.2. The reduced order model. Like many other ROM techniques, the POD-NN method re-
lies on the offline-online paradigm, i.e., computationally intensive simulations are carried out
on powerful computational facilities during the offline phase and computationally cheap calcu-
lations for every new parameter of interest are run on any device during the online phase. More
specifically:

- during the offline phase: a set of high-fidelity solutions is collected for a wide range of
parameter values and a reduced basis for the space of the reduced solutions is extracted
via POD. In this stage, the training of the neural networks is performed in order to
establish the relationship between parameters and coefficients of the reduced solutions
(modal coefficients). Due to the large number of degree of freedom, the offline phase is
computationally expensive. However, it is carried out only once.

- during the online phase: the modal coefficients for every new parameter are quickly
obtained from the trained neural networks. The reduced solution is given by the linear
combination of the reduced basis functions with the modal coefficients as weights. The
computational cost of the online phase is much smaller than the cost of the offline phase.

Next, we are going to describe the building blocks of the above algorithm.

3.2.1. Proper orthogonal decomposition. The POD procedure is widely used to compress data
[7, 12, 13, 17, 31]. We adopt it to extract an orthonormal basis with a least squares approach
[37, 45].

Let us consider the discrete finite dimensional set {µµµ1, . . . ,µµµL} ⊂P . The FOM is solved
for each parameter value µµµ l, l = 1, . . . ,L, and the corresponding high fidelity solutions Φ̄ =
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{v̄vv, p̄pp, ūuu, w̄ww, q̄qq} called snapshots, are arranged in the snapshot matrix SΦ as follows:

SΦ =


Φ̄1(µµµ1) · · · Φ̄1(µµµL)

...
...

...
Φ̄Nδ

(µµµ1) · · · Φ̄Nδ
(µµµL)

 .

The POD space can be extracted by solving the following eigenvalue problem [37]:

CΦcccl = λlcccl, l = 1, . . . ,L,

where CΦ = 1
LST

Φ
SΦ ∈ RL×L is the correlation matrix associated with the snapshots. For fixed

R� L, the reduced orthonormal basis is constructed as follows:

wwwr =
1√
λr

SΦcccr, r = 1, . . . ,R.

The value of R is commonly chosen to reach a user-provided threshold ε for the cumulative
energy of the eigenvalues:

∑
R
i=1 λi

∑
L
i=1 λi

≥ ε. (3.3)

Let us store the vectors of the reduced basis functions (also called modes) in matrix Vδ :

Vδ = [www1| . . . |wwwR] ∈ RNδ×R. (3.4)

Then, the reduced solution Φr(µµµ l) can be written as:

Φr(µµµ l) =
R

∑
r=1

(Vδ
T

Φ̄(µµµ l))rwwwr, l = 0, . . . ,L, (3.5)

where (Vδ
T Φ̄(µµµ l))r is the modal coefficient associated with the r-th mode. Note that the POD

space coincides with the resolution of the following minimization problem [37, 45]:

min
Vδ

‖SΦ−VδVδ
T SΦ‖ s.t. Vδ

TVδ = I, (3.6)

which optimizes the distance between the snapshots and their projection onto the reduced space.

3.2.2. Neural network interpolation. We choose a fully connected feedforward neural network
[18, 28, 36], also called perceptron. Such network is a set of layered neurons (or nodes), where
each neuron of a layer is connected with all the neurons of the next layer through oriented edges
(or synapses) [23,41,49]. The input layer takes the set of parameters and the output layer returns
the modal coefficients. Others neurons form the hidden layers (see Figure 2).

During the training process in the offline phase, we optimize the weights of the synapses with
the backpropagation algorithm [47, 51]. A loss function, which measures the distance between
the actual output and the required output, is minimized by computing (backward) the gradient
with respect to the weights. Hyperparameters such as the activation function, the number of
layers, the number of neurons per layer and the learning rate are tuned to improve and accelerate
the learning process (see [42, 55] for further details). The values resulting from this tuning
procedure are reported in Sec. 4.

The neural network offers an approximation πππNN of the function:

πππ : µµµ l 7→ [(Vδ
T

Φ̄(µµµ l))r]
R
r=1, l = 1, . . . ,L. (3.7)
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FIGURE 2. Feedforward neural network.

Once the network is trained, the reduced solution can be computed for every new parameter
value µµµnew during the online phase as [19, 32, 43, 54]:

Φr(µµµnew) =
R

∑
r=1

π
NN
r (µµµnew)wwwr, (3.8)

where πNN
r is the r-th component of πππNN.

Next, we briefly discuss backpropagation and hyperparameters, which are fundamental con-
cepts for every algorithm of NN optimization. Let us denote by L = L(πππNN(µµµ l),πππ(µµµ l)) the
loss function of choice. For regression tasks, one typically chooses the mean squared error:

L=
L

∑
l=1

1
R

R

∑
r=1

(πr(µµµ l)−π
NN
r (µµµ l))

2. (3.9)

In order to understand the training process, let us recall three functions that characterize a
generic neuron j, i.e., the propagation function, the activation function, and the output function.
The propagation function converts the arriving input yk (i.e., the output of the sending neuron
k) into a scalar output u j through a weighted sum:

u j =
m

∑
k=1

wk, jyk +b j,

where b j is the bias, wk, j are the weights of the synapses, and m is the number of neurons
connected with the neuron j. The weights can be stored in a matrix W and the biases in a vector
bbb. The activation function decides how u j is converted into an output:

a j = fact
(
u j
)
.

Finally, the output function fout can modify again the product of a neuron. Often time though,
it coincides with the identity:

π
NN
j = fout(a j) = a j.
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The minimization of the distance between the actual output and the correct one (3.9) is carried
on thought the computation of the gradient of L using the chain rule. Indeed, thanks to the
functions characterizing a neuron, the gradient of the loss function can be computed with respect
to the weights wk, j and the biases b j as follows:

∂L

∂wk, j
=

∂L

∂a j

∂a j

∂u j

∂u j

∂wk, j
,

∂L

∂b j
=

∂L

∂a j

∂a j

∂u j

∂u j

∂b j
.

(3.10)

During the training process, the forward pass computes the values of the output layers from
the inputs data (i.e, the u j) and the value of the loss function. After each forward pass, back-
propagation measures the gradient of L “backwards” as shown in (3.10). Finally, W and bbb are
updated as follows:

W ←−W −η
∂L

∂W
,

bbb←− bbb−η
∂L

∂bbb
,

(3.11)

where η is the learning rate. The specific algorithm of NN optimization we use in this paper is
the Adam optimizer, which typically performs well,

In Sec. 4, we will carry out the tuning of the learning rate and number of neurons per layer
during the learning process.

4. NUMERICAL RESULTS

In order to compare our methodology with the one proposed in [62], we consider the same
numerical setting, which is briefly recalled in the following. Using TetGen [30], we build a
triangular mesh with a given size over the boundary ∂Ω and a tetrahedral mesh of the same
size inside the volume Ω. The total number of elements for the generated mesh is 42354. The
inf-sup stable P2−P1 elements are employed for velocity and pressure.

Let tttc be the vector tangent to the vessel centerline (obtained using VMTK as explained
in [62]) in axial direction, R the maximum vessel radius (with respect to the centerline) and
r the distance between the mesh nodes and the centerline. We defined the desired blood flow
velocity in the entire domain Ω as

vvvm = vconst

(
1− r2

R2

)
tttc,

where vconst = 350mm/s is the desired velocity magnitude. At the inlets, we prescribe the
following velocity:

vvvinlet =
νRe
Rinlet

(
1− r2

R2
inlet

)
nnninlet, (4.1)

where ν = 3.6mm2/s is the constant kinematic viscosity, Re is the Reynolds number, Rinlet is the
maximum radius of the given inlet surface, and nnninlet denotes the outward unit normal to the inlet
surface. Notice the inlet velocity profiles are parameterized by the Reynolds number in (4.1),
which is the variable parameter for the study presented in this Section, while the “measured”
velocity vvvm is independent of Re. In fact, we want to address the case when vvvm comes from
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in-vivo flow measurements and the associated Reynolds number is expected to vary in a certain
range. Our optimal control problem will identify the normal stress that must be imposed at the
outlet so that the computed velocity field is the best approximation of vvvm for each chosen Re in
the expected range. We set the regularization parameter α to 1e-02.

Recalling that Φ̄ = {v̄vv, p̄pp, ūuu, w̄ww, q̄qq} is the truth solution and Φr = {vvvr, pppr,uuur,wwwr,qqqr} is the re-
duced solution, we introduce the absolute and relative L2 errors defined as:

ε
abs
Φ =

∥∥Φ̄−Φr
∥∥

L2 , ε
rel
Φ =

εabs
Φ∥∥Φ̄
∥∥

L2

, (4.2)

respectively. The total relative error is defined as:

Erel =

(
(εabs

vvv )2 +(εabs
p )2 +(εabs

uuu )2 +(εabs
www )2 +(εabs

q )2)1/2

(‖v̄vv‖2
L2 +‖p̄pp‖2

L2 +‖ūuu‖2
L2 +‖w̄ww‖2

L2 +‖q̄qq‖2
L2)1/2

. (4.3)

Following [62], we let the Reynolds number vary in the interval [70,80]. The choice of this
interval is to ensure that the flow remains laminar everywhere in the domain, to demonstrate
the feasibility of our approach, and to compare its performance with the method in [62]. We
consider equispaced values µl = Re, for l = 1, . . . ,L with L = 100 as in [62]. We split the finite
dimensional set of parameters into a train set µµµ train and a test set µµµ test. The former is used during
the offline phase to build the reduced basis space and to train the feedforward neural networks,
while the latter is used during the online phase to validate the method by reconstructing the
solutions and comparing them with the corresponding snapshots. We analyze several sets of
training parameters, in order to find the one that minimizes the average relative error and use
that in our tests. Specifically, we set µµµ train = {µ(k−1)m}, for k∈{2,4,20,50} and m= 1, . . . ,L/k,
and µµµ test = {µl |µl /∈ µµµ train}, for l = 1, . . . ,L. Let us set the number of modes to 6. Figure 3
shows the variation of the mean relative error for each variable for the different µµµ train. When
the number of snapshots is greater than 2, each relative error oscillates between 10−3 and 10−4,
with small variations. Since the optimal result for most variables is for 50 snapshots, for the
tests in Sec. 4, we choose µµµ train = {µ2m−1} and µµµ test = {µ2m}, with m = 1, . . . ,L/2.

The solutions associated with all the parameters µl , with l = 1, . . . ,L, are computed during
the offline phase using Python libraries FEniCS [5, 40] and multiphenics [11]. This represents
the snapshots set. Then, we consider subset µµµ train to build the snapshots matrix SΦ and the
corresponding reduced space through the POD algorithm as explained in Sec. 3.2. In Figure 4,
we show the eigenvalues associated with the POD on the snapshots matrix SΦ for all variables
using n = 8 reduced basis functions. We see that for every n the largest eigenvalue is associated
with the pressure, while the smallest eigenvalue is associated with the control variable. In
addition, the eigenvalues for the velocity and pressure snapshots matrices are larger than the
eigenvalues of the respective adjoint counterpart. Table 1 reports the cumulative energy (3.3)
of the first three eigenvalues. We observe that more than the 99.99% of the energy of the
eigenvalues is retained with the first two eigenvalue for all the variables.

Once the POD step is completed, the offline phase is concluded by training the neural net-
works to compute the modal coefficients. The entire ROM has been implemented within Python
package EZyRB [21], developed and maintained by the mathLab group at SISSA. For the neural
networks, we choose the Sigmoid activation function f (x) = (1+ e−x)−1 and we consider two
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FIGURE 3. Variation of the mean relative error for each variable as the number
of snapshots used for training changes.
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FIGURE 4. Eigenvalues of the snapshots matrix for all the variables in our problem.

fully connected hidden layers with the same number of neurons. Since we have obtained sat-
isfactory results with two hidden layers, we have not increased the number of layers. We have
estimated the optimal number of neurons per layer and the optimal learning rate of the neural
network through an exhaustive search. We varied the number of neurons in {20,30, . . . ,100}
and the learning rate in {1e-01,1e-02, . . . ,1e-05} for each variable and for a different number
of reduced basis functions. The results of this search are shown in Table 2. As we can see,
the optimal number of neurons per layer and the optimal learning rate vary widely from one
variable to the other and for different numbers of reduced basis functions. There seems to be no
way to predict the optimal network configuration, which makes the exhaustive search by trial
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Variable λ1 λ2 λ3

Velocity 99.99482% 100% -
Pressure 99.99968% 100% -
Control 99.95826% 99.99999% 100%

Adjoint velocity 99.57621% 99.99910% 100%
Adjoint pressure 99.98195% 100% -

TABLE 1. Cumulative energy associated with the first three eigenvalues.

and error unavoidable. The results reported next have been obtained with the optimal neural
networks.

Variable Parameter
Number of basis functions

1 2 3 4 5 6 7 8

Velocity
Neurons/layer 90 50 100 40 60 70 20 90
Learning rate 1e-05 1e-05 1e-04 1e-05 1e-04 1e-03 1e-05 1e-03

Pressure
Neurons/layer 20 50 100 30 30 60 80 20
Learning rate 1e-05 1e-05 1e-05 1e-05 1e-04 1e-05 1e-03 1e-04

Control
Neurons/layer 40 30 40 70 70 70 20 20
Learning rate 1e-05 1e-05 1e-05 1e-03 1e-04 1e-05 1e-02 1e-05

Adjoint Neurons/layer 50 90 50 30 70 30 40 30
velocity Learning rate 1e-05 1e-05 1e-04 1e-04 1e-05 1e-05 1e-03 1e-03
Adjoint Neurons/layer 20 40 70 60 60 40 90 70
pressure Learning rate 1e-05 1e-05 1e-05 1e-05 1e-02 1e-02 1e-05 1e-05

TABLE 2. Optimal values of neurons per layer and learning rate for each vari-
able and for different numbers of reduced basis functions.

In the online phase, we use the trained neural networks to construct the approximated solu-
tions corresponding to the parameters in µµµ test. Figure 5 (left) shows the average relative error
(4.2) for each variable as the number of reduced basis functions n is increased and Figure 5
(right) displays the maximum and average relative error (4.3) as n varies. We note that the er-
rors reach their minimum for n = 3 or n = 4, depending on the variable. For almost every n,
larger average relative errors are attained for the adjoint variables. The average order of accu-
racy is about O(10−4) when using more than one reduced basis function, which compares well
with [62].

We conclude this section by fixing n= 6 in order to compare our results with those in [62]. We
start by reporting the computational times required by our methodology in Table 3. During the
offline phase, about 540 s are need to compute each snapshot with the full order model, while the
POD and the training of a neural network require about 18 s. The average computational time
required by the online phase for all the cases in µµµ test is O(10−4) leading to an average speed-up
of O(106), which is 4 times larger than the speed-up obtained using the POD-Galerkin approach
in [62]. This is a remarkable improvement.
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FIGURE 5. Left: average relative error (4.2) for each variable as the number of
reduced basis functions is increased. Right: total maximum and average relative
error (4.3) as the number of reduced basis functions is increased.

Offline phase
Online phase

FOM POD NN train

540 0.06 17 9.2e-04

TABLE 3. Computational times in s required by the offline phase (broken into
sub-phases) and the online phase of our ROM.

Figure 6 shows a qualitative comparison between the velocity and pressure fields for Re = 80
computed by ROM and FOM. We see a substantial qualitative agreement over the entire geome-
try for both flow variables. In particular, notice that our ROM approach is able to provide a good
approximation for the velocity also in the region downstream the graft, where the magnitude is
higher due to the flow rate introduced by the RITA (compare the zoomed-in views in Figure 6
(A) and 6 (B)). Figure 7 reports the ROM-FOM comparison for the control variable, again for
Re = 80. We observe very good agreement also between ROM-computed and FOM-computed
control variable over the entire outlet surface.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

We focused on a parameterized optimal blood flow control problem in a patient-specific coro-
nary artery bypass graft geometry. The bypass was performed with the right internal thoracic
artery on the left anterior descending artery. The optimal control variable is the normal stress at
the outlet needed to set the outlet boundary condition in order to minimize in the least squares
sense the difference between computed and measured velocity. The blood flow is modeled by
the steady-state incompressible Navier-Stokes equations and parameterized by the Reynolds
number. We restricted our attention to a physiological range of Reynolds numbers that generate
laminar flow.
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(A) ROM velocity (B) FOM velocity

(C) ROM pressure (D) FOM pressure

FIGURE 6. Comparison of the velocity (mm/s) field computed by (A) ROM and
(B) FOM and pressure (mm2/s2) field given by the (C) ROM and (D) FOM for
Re = 80. The number of POD modes used for the ROM is n = 6.
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(A) ROM control (B) FOM control

FIGURE 7. Control variable (mm2/s2) at the outflow boundary for Re = 80 com-
puted by the (A) ROM and (B) FOM. The number of POD modes used for the
ROM is n = 6.

To reduce the high computational costs of a finite element method (FEM) for our parameter-
ized optimization problem, we introduced a non-intrusive reduced order method based on the
so-called POD-NN approach. During the offline phase of our ROM, three steps are performed:
(i) the high fidelity solutions are computed via FEM and collected into the snapshots matrix,
(ii) proper orthogonal decomposition is performed on the snapshots matrix to build a basis for
the reduced order space, and (iii) a neural network is trained to estimate the modal coefficients
for each variable. After this expensive phase, we were able to simulate the hemodynamics cor-
responding to the desired Reynolds number at a considerably reduced time during the online
phase. Our numerical tests show that this data-driven methodology is as accurate as the POD-
Galerkin approach proposed in [62], but it is considerably faster. In particular, we managed to
achieve a speed-up of about 4 orders of magnitude, i.e., the simulation is almost real-time.

The proposed framework is a preliminary step in the direction of building a user-friendly
virtual platform that could be used for clinical studies [27]. The quantification of the nor-
mal stress at the outlet can be improved with the introduction of surrogate lumped parameter
network models. This would introduce additional parameters that could be found through an
automated quantification via the control variables as done in [26]. This work is limited to one
physical parameter (i.e., the Reynolds number). The introduction of geometrical features, such
as the degree of the stenosis, would expand the set of possible configurations and generalize
our approach to a wider range of clinical cases as shown in [56]. Finally, following [58, 59]
one could increase the realism and complexity of the problem by making it time-dependent and
accounting for the compliance of the arterial wall.
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