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Abstract. In our recent research we studied the turnpike phenomenon for a class of symmetric variational prob-
lems. For this class of problems integrands possess two points of minimum and a certain well-posedness property
holds. In this paper, we show that some versions of the turnpike property hold if a set of minimizers of an integrand
is finite.
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1. INTRODUCTION

The study of the existence and the structure of solutions of variational problems, optimal
control problems and dynamic games defined on infinite intervals and on sufficiently large in-
tervals has been a rapidly growing area of research [3, 4, 10, 11, 16, 19, 21, 22, 24, 37, 39,
40, 47, 66, 69, 71, 74, 75, 76, 79] which has various applications in engineering [1, 16, 66],
in models of economic growth [2, 15, 16, 20, 25, 35, 36, 38, 42, 46, 52, 60, 61, 64, 66, 76], in
infinite discrete models of solid-state physics related to dislocations in one-dimensional crystals
[5, 65], in model predictive control [18, 27] and in the theory of thermodynamical equilibrium
for materials [17, 43, 49, 50, 51]. Discrete-time problems optimal control problems were con-
sidered in [3, 6, 7, 14, 23, 33], finite-dimensional continuous-time problems were analyzed in
[10, 12, 13, 42, 45, 48, 56, 70, 77, 78], infinite-dimensional optimal control was studied in
[16, 28, 29, 30, 54, 55, 57, 59, 62, 63, 80] while solutions of dynamic games were discussed in
[9, 26, 31, 34, 41, 58, 68, 72, 73].

In this paper we study the turnpike phenomenon for symmetric variational problems in in-
finite dimensional spaces. To have the turnpike property means, roughly speaking, that the
approximate solutions of the problems are determined mainly by the objective function and
are essentially independent of the choice of interval and endpoint conditions, except in regions
close to the endpoints.
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The turnpike property was discovered by P. Samuelson in 1948 when he showed that an effi-
cient expanding economy would spend most of the time in the vicinity of a balanced equilibrium
path (also called a von Neumann path). It is well known in the economic literature, where it
was studied for various models of economic growth. Usually for these models a turnpike is a
singleton.

Now it is well-known that the turnpike property is a general phenomenon which holds for
large classes of variational and optimal control problems. In our research, using the Baire
category (generic) approach, it was shown that the turnpike property holds for a generic (typical)
variational problem [66] and for a generic optimal control problem [70].

In this paper we are interested in individual (non-generic) turnpike results for symmetric
variational problems. These problems have applications in crystallography [32, 53, 67]. In
our recent research [81] we studied the turnpike phenomenon for a class of symmetric varia-
tional problems with integrands possessing two points of minimum and a certain well-posedness
property. In this paper, we show that some versions of the turnpike property hold if a set of min-
imizers of an integrand is finite.

2. BANACH SPACE VALUED FUNCTIONS

In this section we present preliminaries which we need in order to study turnpike properties
of infinite dimensional variational problems.

Let (X ,‖ · ‖) be a Banach space and a < b be real numbers. For any set E ⊂ R1 define

χE(t) = 1 for all t ∈ E and χE(t) = 0 for all t ∈ R1 \E.

If a set E ⊂ R1 is Lebesgue measurable, then its Lebesgue measure is denoted by |E| or by
mes(E).

A function f : [a,b] → X is called a simple function if there exists a finite collection of
Lebesgue measurable sets Ei ⊂ [a,b], i ∈ I, mutually disjoint, and xi ∈ X , i ∈ I such that

f (t) = ∑
i∈I

χEi(t)xi, t ∈ [a,b].

A function f : [a,b]→ X is strongly measurable if there exists a sequence of simple functions
φk : [a,b]→ X , k = 1,2, . . . such that

lim
k→∞
‖φk(t)− f (t)‖= 0, t ∈ [a,b] almost everywhere (a. e.). (2.1)

For every simple function f (·) = ∑i∈I χEi(·)xi, where the set I is finite, define its Bochner inte-
gral by ∫ b

a
f (t)dt = ∑

i∈I
|Ei|xi.

Let f : [a,b]→ X be a strongly measurable function. We say that f is Bochner integrable
if there exists a sequence of simple functions φk : [a,b]→ X , k = 1,2, . . . such that (2.1) holds
and the sequence {

∫ b
a φk(t)dt}∞

k=1 strongly converges in X . In this case we define the Bochner
integral of the function f by ∫ b

a
f (t)dt = lim

k→∞

∫ b

a
φk(t)dt.
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It is known that the integral defined above is independent of the choice of the sequence {φk}∞
k=1

[44]. Similar to the Lebesgue integral, for any measurable set E ⊂ [a,b], the Bochner integral
of f over E is defined by ∫

E
f (t)dt =

∫ b

a
χE(t) f (t)dt.

The following result is true (see Proposition 3.4, Chapter 2 of [44]).

Proposition 2.1. Let f : [a,b]→ X be a strongly measurable function. Then f is Bochner
integrable if and only if the function ‖ f (·)‖ is Lebesgue integrable. Moreover, in this case

‖
∫ b

a
f (t)dt‖ ≤

∫ b

a
‖ f (t)‖dt.

The Bochner integral possesses almost the same properties as the Lebesgue integral. If f :
[a,b]→ X is strongly measurable and ‖ f (·)‖ ∈ Lp(a,b), for some p ∈ [1,∞), then we say that
f (·) is Lp Bochner integrable. For every p≥ 1, the set of all Lp Bochner integrable functions is
denoted by Lp(a,b;X) and for every f ∈ Lp(a,b;X),

‖ f‖Lp(a,b;X) = (
∫ b

a
‖ f (t)‖pdt)1/p.

Clearly, the set of all Bochner integrable functions on [a,b] is L1(a,b;X).
Let a < b be real numbers. A function x : [a,b]→ X is absolutely continuous (a. c.) on [a,b]

if for each ε > 0 there exists δ > 0 such that for each pair of sequences {tn}q
n=1, {sn}q

n=1⊂ [a,b]
satisfying

tn < sn, n = 1, . . . ,q,
q

∑
n=1

(sn− tn)≤ δ ,

(tn,sn)∩ (tm,sm) = /0 for all m,n ∈ {1, . . . ,q} such that m 6= n

we have
q

∑
n=1
‖x(tn)− x(sn)‖ ≤ ε.

The following result is true (see Theorem 1.124 of [8]).

Proposition 2.2. Let X be a reflexive Banach space. Then every a. c. function x : [a,b]→ X is
a. e. differentiable on [a,b] and

x(t) = x(a)+
∫ t

a
(dx/dt)(s)ds, t ∈ [a,b]

where dx/dt ∈ L1(a,b;X) is the strong derivative of x.

Let −∞ < τ1 < τ2 < ∞. Denote by W 1,1(τ1,τ2;X) (or W 1,1(τ1,τ2) if the space X is un-
derstood) the set of all functions x : [τ1,τ2]→ X for which there exists a Bochner integrable
function u : [τ1,τ2]→ X such that for all t ∈ (τ1,τ2],

x(t) = x(τ1)+
∫ t

τ1

u(s)ds.
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3. SYMMETRIC VARIATIONAL PROBLEMS

In this section we begin to study the turnpike properties for symmetric variational problems
in Banach spaces. To have the turnpike property means, roughly speaking, that the approximate
solutions of the problems are determined mainly by the integrand and are essentially indepen-
dent of the choice of interval and endpoint conditions, except in regions close to the endpoints.

Assume that (X ,‖ · ‖) is a Banach space. For each x ∈ X and each r > 0 set

B(x,r) = {y ∈ X : ‖y− x‖ ≤ r}.

Suppose that the infimum over an empty set is ∞, the sum over an empty set is zero and denote
by Card(C) the cardinality of a set C.

Assume that f : X×X → R1 is a bounded from below borelian function such that

f (x,y) = f (x,−y) for all x,y ∈ X , (3.1)

m is a natural number and there exists (x̄i, ȳi) ∈ X×X , i = 1, . . . ,m such that

x̄i 6= x̄ j for each i, j ∈ {1, . . . ,m} satisfying i 6= j,

inf( f ) := inf{ f (ξ ,η) : ξ ,η ∈ X}, (3.2)

{(x,y) ∈ X×X : f (x,y) = inf( f )}= {(x̄i, ȳi), (x̄i,−ȳi) : i = 1, . . . ,m}. (3.3)

(Note that it is possible that ȳi = 0 for some i ∈ {1, . . . ,m}.)
Assume that the following assumptions hold:
(A1) for each ε > 0 there exists δ > 0 such that for each (x,y) ∈ X×X satisfying

f (x,y)≤ inf( f )+δ

there exists i ∈ {1, . . . ,m} such that the inequalities

‖x− x̄i‖ ≤ ε

and
min{‖y− ȳi‖, ‖y+ ȳi‖} ≤ ε

hold;
(A2) for each ε > 0 there exists δ > 0 such that for each i∈ {1, . . . ,m} and each (x,y)∈X×X

satisfying
‖x− x̄i‖ ≤ δ , ‖y− ȳi‖ ≤ δ

the inequality
f (x,y)≤ f (x̄i, ȳi)+ ε

is true.
Assumption (A2) means that the function f is continuous at the points (x̄i, ȳi), i = 1, . . . ,m

while assumption (A1) means that the minimization problem

f (x,y)→min, x,y ∈ X

is well posed in a generalized sense.
Let a > 0 and ψ : [0,∞)→ [0,∞) be an increasing function satisfying

lim
t→∞

ψ(t) = ∞. (3.4)

Assume that the following assumption holds:
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(A3) the function f is bounded on all bounded sets and for each (x,u) ∈ X×X ,

f (x,u)≥ ψ(‖u‖)‖u‖−a.

For each pair of nonnegative numbers T1 < T2 and each y,z ∈ X we consider the problems∫ T2

T1

f (x(t),x′(t))dt→min, (PT1,T2)

x ∈W 1,1(T1,T2),∫ T2

T1

f (x(t),x′(t))dt→min, (PT1,T2,y)

x ∈W 1,1(T1,T2), x(T1) = y,∫ T2

T1

f (x(t),x′(t))dt→min, (PT1,T2,y,z)

x ∈W 1,1(T1,T2), x(T1) = y, x(T2) = z
and define

U(T1,T2) = inf{
∫ T2

T1

f (x(t),x′(t))dt : x ∈W 1,1(T1,T2)},

U(T1,T2,y) = inf{
∫ T2

T1

f (x(t),x′(t))dt : x ∈W 1,1(T1,T2), x(T1) = y},

U(T1,T2,y,z) = inf{
∫ T2

T1

f (x(t),x′(t))dt :

x ∈W 1,1(T1,T2), x(T1) = y, x(T2) = z}.
Let i ∈ {1, . . . ,m}. There are two cases: ȳi = 0; ȳi 6= 0. If ȳi = 0, then for each T2 > T1 ≥ 0,

the function x(t) = x̄i, t ∈ [T1,T2] is a solution of the problems (PT1,T2), (PT1,T2,x̄i), (PT1,T2,x̄i,x̄i).
For each pair of numbers T1 < T2 and each x ∈W 1,1(T1,T2) set

I(T1,T2,x) =
∫ T2

T1

f (x(t),x′(t))dt.

Analogously to Theorem 5.1 of [81] we can prove the following result.

Theorem 3.1. Let T > 0 and i ∈ {1, . . . ,m}. Then

U(0,T ) =U(0,T, x̄i) =U(0,T, x̄i, x̄I) = T f (x̄i, ȳi).

Moreover, for each ε > 0 there exists x ∈W 1,1(0,T ) such that

x(0) = x(T ) = x̄i,

I(0,T,x)≤ T f (x̄i, ȳi)+ ε,

‖x(t)− x̄i‖ ≤ ε, t ∈ [0,T ],
x′(t) ∈ {ȳi, −ȳI}, t ∈ [0,T ] a. e..

Analogously to Theorem 5.2 of [81] we can prove the following result.

Theorem 3.2. Let L0,M0 > 0. Then there exist M1 > 0 such that for each T > L0 and each
y,z ∈ X satisfying ‖y‖,‖z‖ ≤M0 the inequality

U(0,T,y,z)≤ T f (x̄1, ȳ1)+M1

holds.
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4. THE FIRST WEAK TURNPIKE RESULT

In this section we prove our first turnpike result. It shows that for approximate solutions
x of our variational problems on intervals [0,T ], where T is sufficiently large and given val-
ues x(0),x(T ) at the end points belong to a given bounded set C, the Lebesgue measure of
all points t ∈ [0,T ] such that (x(t),x′(t)) does not belong to an ε-neighborhood of the set
{(x̄i, ȳi), (x̄i,−ȳi) : i = 1, . . . ,m} does not exceed a constant L which depends only on ε and
the set C and does not depend on T,x(0),x(T ). In the literature this property is known as the
weak turnpike property.

Theorem 4.1. Let ε ∈ (0,1) and L0,M0,M1 > 0. Then there exists L1 > L0 such that for each
T > L1 and each x ∈W 1,1(0,T ) such that

x(0) ∈ B(0,M0) (4.1)

and at least one of the following conditions holds:
(a)

x(T ) ∈ B(0,M0), I f (0,T,x)≤U(0,T,x(0),x(T ))+M1;
(b)

I f (0,T,x)≤U(0,T,x(0))+M1

the inequality
mes({t ∈ [0,T ] : max{‖x(t)− x̄i‖,

min{‖x′(t)− ȳi‖, ‖x′(t)+ ȳi‖}}> ε for each i ∈ {1, . . . ,m}})≤ L1.

Proof. Theorem 3.2 implies that there exists M2 > 0 such that for each T > L0 and each y,z ∈
B(0,M0),

U(0,T,y,z)≤ T f (x̄1, ȳ1)+M2. (4.2)
Assumption (A1) implies that there exists δ ∈ (0,ε) such that for each (x,y) ∈ X ×X satis-

fying for each i ∈ {1, . . . ,m},
max{‖x− x̄i‖+min{‖y− ȳi‖, ‖y+ ȳi‖}}> ε (4.3)

we have
f (x,y)> f (x̄i, ȳi)+δ . (4.4)

Set
L1 = max{L0, δ

−1(M1 +M2)}+1. (4.5)
Assume that T > L1, x∈W 1,1(0,T ), (4.1) is true and at least one of conditions (a) and (b) holds.
Conditions (a) and (b) and (4.1), (4.2), (4.5) imply that

I f (0,T,x)≤ T f (x̄1, ȳ1)+M1 +M2. (4.6)

Set
E = {t ∈ [0,T ] : f (x(t),x′(t))> f (x̄1, ȳ1)+δ}. (4.7)

Equations (4.6) and (4.7) imply that

M1 +M2 +T f (x̄1, ȳ1)≥ I(0,T,x)

=
∫

E
f (x(t),x′(t))dt +

∫
[0,T ]\E

f (x(t),x′(t))dt

≥ T f (x̄1, ȳ1)+δmes(E)
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and in view of (4.5),
mes(E)≤ δ

−1(M1 +M2)≤ L1.

Assume that
t ∈ [T1,T2]\E.

By (4.7),
f (x(t),x′(t))≤ f (x̄1, ȳ1)+δ .

Combined with the choice of δ (see (4.3) and (4.4)) this implies that there exists i ∈ {1, . . . ,m}
such that

‖x(t)− x̄i‖ ≤ ε,

min{‖x′(t)+ ȳi‖ ‖x′(t)+ ȳi‖} ≤ ε.

Theorem 4.1 is proved. �

5. AUXILIARY RESULTS

Analogously to Proposition 5.4 of [81] we can prove the following result.

Proposition 5.1. Let ε,∆ ∈ (0,1]. Then there exist γ ∈ (0,2−1∆) and δ > 0 such that for each
k ∈ {1, . . . ,m} and each

y,z ∈ B(x̄k,δ )

there exists ξ ∈W 1,1(0,γ) such that

ξ (0) = y, ξ (γ) = z,

I(0,γ,ξ )≤ γ f (x̄k, ȳk)+ ε,

‖ξ (t)− x̄k‖ ≤ ε, t ∈ [0,γ],

B(ξ ′(t),ε)∩{ȳk, −ȳk} 6= /0, t ∈ [0,γ] a. e..

Analogously to Proposition 5.5 of [81] we can prove the following result.

Proposition 5.2. Let ε,∆ ∈ (0,1]. Then there exist γ ∈ (0,∆) and δ > 0 such that for each
T > γ , each i ∈ {1, . . . ,m} and each

y,z ∈ B(x̄i,δ )

there exists ξ ∈W 1,1(0,T ) such that

ξ (0) = y, ξ (T ) = z,

I(0,T,ξ )≤ T f (x̄i, ȳi)+ ε,

‖ξ (t)− x̄t‖ ≤ ε, t ∈ [0,T ],

B(ξ ′(t),ε)∩{ȳi, −ȳi} 6= /0, t ∈ [0,T ] a. e..

Denote by M the set of all borelian functions g : X×X → R1 such that

g(x,u)≥ ψ(‖u‖)‖u‖−a (5.1)

(see (3.4) and (A3)) for each (x,u) ∈ X×X .
The following result was obtained in [81] (Proposition 5.6).
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Proposition 5.3. Let M1,ε > 0 and 0 < τ0 < τ1. Then there exists δ > 0 such that for each pair
of numbers T1,T2 satisfying

0≤ T1, T2 ∈ [T1 + τ0,T1 + τ1],

each g ∈M, each x ∈W 1,1(T1,T2) satisfying∫ T2

T1

g(x(t),x′(t))dt ≤M1

and each t1, t2 ∈ [T1,T2] satisfying |t1− t2| ≤ δ the inequality

‖x(t1)− x(t2)‖ ≤ ε

holds.

Proposition 5.4. Let ε,∆∈ (0,1]. Then there exist δ > 0 such that for each k ∈ {1, . . . ,m}, each
T ≥ ∆ and each ξ ∈W 1,1(0,T ) satisfying

‖ξ (0)− x̄k‖ ≤ δ , ‖ξ (T )− x̄k‖ ≤ δ , (5.2)

I(0,T,ξ )≤U(0,T,ξ (0),ξ (T ))+δ ; (5.3)
the inequality

‖ξ (t)− x̄k‖ ≤ ε

holds for all t ∈ [0,T ].

Proof. We may assume without loss of generality that

ε < min{‖x̄i− x̄ j‖ : i, j ∈ {1, . . . ,m}, i < j}/8. (5.4)

Proposition 5.3 implies that there exists

ε0 ∈ (0,min{ε/4, ∆/8})
such that the following property holds:

(a) for each pair of numbers S1,S2 satisfying

0≤ S1, S2 ∈ [S1 +∆/8,S1 +∆/4],

each g ∈M, each x ∈W 1,1(S1,S2) satisfying∫ S2

S1

g(x(t),x′(t))dt ≤ 4−1
∆| f (x̄1, ȳ1)|+1

and each t1, t2 ∈ [S1,S2] satisfying |t1− t2| ≤ ε0 we have

‖x(t1)− x(t2)‖ ≤ ε/4.

By (A1) there exists ε1 ∈ (0,ε0/4) such that the following property holds:
(b) for each (x,y) ∈ X×X satisfying

f (x,y)≤ inf( f )+ ε1

there exists i ∈ {1, . . . ,m} such that ‖x− x̄i‖ ≤ ε/4.
Proposition 5.2 implies that there exists

δ ∈ (0,ε2
1/4) (5.5)

such that the following property holds:
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(c) for each T ≥ ∆, each i ∈ {1, . . . ,m} and each

y,z ∈ B(x̄i,δ )

there exists ξ ∈W 1,1(0,T ) such that

ξ (0) = y, ξ (T ) = z,

I(0,T,ξ )≤ T f (x̄i, ȳi)+ ε
2
1/4.

Assume that T ≥ ∆, ξ ∈W 1,1(0,T ), k ∈ {1, . . . ,m} and (64) holds, Property (c) and (5.3)
imply that

U(0,T,ξ (0),ξ (T ))≤ T f (x̄k, ȳk)+ ε
2
1/4. (5.6)

Equations (5.3)-(5.6) imply that

I(0,T,ξ )≤ T f (x̄k, ȳk)+δ + ε
2
1/4≤ T f (x̄k, ȳk)+ ε

2
1/2. (5.7)

In view of (5.7), for each set E ⊂ [0,T ],∫
E

f (ξ (t),ξ ′(t))dt ≤mes(E) f (x̄k, ȳk)+ ε
2
1/2. (5.8)

We show that for each t ∈ [0,T ],

min{‖ξ (t)− x̄i‖ : i = 1, . . . ,m} ≤ ε. (5.9)

Assume the contrary. Then there exists

t0 ∈ [0,T ]

such that
‖ξ (t0)− x̄i‖> ε, i = 1, . . . ,m. (5.10)

Clearly, there exists a ∈ R1 satisfying

[a,a+∆/4]⊂ [0,T ], t0 ∈ [a,a+∆/4]. (5.11)

In view of (5.8),
I(a,a+∆/4,ξ )≤ 4−1

∆ f (x̄k, ȳk)+1. (5.12)
Property (a) and (5.12) imply that for each

t ∈ [a,a+∆/4]∩ [t0− ε, t0 + ε] (5.13)

and each i ∈ {1, . . . ,m},
‖ξ (t)−ξ (t0)‖ ≤ ε/4

and
‖ξ (t)− x̄i‖ ≥ ‖ξ (t0)− x̄i‖−‖ξ (t)−ξ (t0)‖ ≥ ε− ε/4. (5.14)

Property (b), (5.13) and (5.14) imply that for each t ∈ [a,a+∆/4]∩ [t0− ε, t0 + ε],

f (ξ (t),ξ ′(t))> inf( f )+ ε1. (5.15)

By (5.71) and the inequality, ε0 < ∆/8,

mes([a,a+∆/4]∩ [t0− ε, t0 + ε])≥ ε0. (5.16)

It follows from (5.11), (5.15) and (5.16) that

I(0,T,ξ )≥ (inf( f )+ ε1)mes([a,a+∆/4]∩ [t0− ε, t0 + ε])

+ inf( f )mes([0,T ]\ ([a,a+∆/4]∩ [t0− ε, t0 + ε]))
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≥ inf( f )T + ε0ε1 ≥ T inf( f )+ ε
2
1 .

This contradicts (5.7). The contradiction we have reached proves that for each t ∈ [0,T ] (5.9)
holds. We show that for each t ∈ [0,T ],

‖ξ (t)− x̄k‖ ≤ ε.

Assume the contrary. Then there exists S0 ∈ [0,T ] such that

‖ξ (S0)− x̄k‖> ε. (5.17)

In view of (5.3), (5.4) and (5.17),

S0 ∈ (0,T ).

Set

S1 = sup{τ ∈ (0,T ] : ‖ξ (t)− x̄k‖ ≤ ε, t ∈ [0,T ]}. (5.18)

Clearly, S1 is well-defined,

S1 > 0, S1 < S0, (5.19)

‖ξ (t)− x̄k‖ ≤ ε, t ∈ [0,S1]. (5.20)

By (5.18)-(5.20), there exists a strictly decreasing sequence {τ j}∞
j=1 such that

τ j ∈ (S1,T ], j = 1,2, . . . , lim
j→∞

τ j = S1, (5.21)

‖ξ (τ j)− x̄k‖> ε, j = 1,2, . . . . (5.22)

By (5.9), extracting a subsequence and re-indexing, we may assume without loss of generality
that there exists p ∈ {1, . . . ,m} such that

‖ξ (τ j)− x̄p‖ ≤ ε, p = 1,2, . . . . (5.23)

In view of (5.22) and (5.23),

p 6= k. (5.24)

Equations (5.21) and (5.23) imply that

‖ξ (S1)− x̄p‖ ≤ ε.

Together with (5.20) this implies that

‖x̄p− x̄k‖ ≤ 2ε.

This contradicts (5.5) (see (5.24)). The contradiction we have reached proves that ‖ξ (t)− x̄k‖≤
ε , t ∈ [0,T ]. Proposition 5.4 is proved. �
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6. A TURNPIKE RESULT

Now we state and prove our main result which give the full description of the structure of
approximate solutions u of our variational problems on an interval [0,T ] where T is sufficiently
large. It is shown that there are mutually disjoint subintervals Ei, i = 1, . . . ,q of [0,T ] where q≤
m and an injective mapping p : {1, . . . ,q}→{1, . . . ,m} such that the measure of the complement
[0,T ]\∪q

i=1Ei does not exceed a constant which does not depend on T and for each i∈{1, . . . ,q}
the set u(Ei) is contained in a small neighborhood of x̄p(i).

Theorem 6.1. Let M > 0 and ε ∈ (0,1) satisfy

ε < min{‖x̄i− x̄ j‖ : i, j ∈ {1, . . . ,m}, i < j}/4. (6.1)

Then there exist L > 0, ε1,δ ∈ (0,ε) such that for each T > 2L and each u ∈W 1,1(0,T ) such
that

u(0) ∈ B(0,M) (6.2)

and at least of the following conditions holds:
(i)

u(T ) ∈ B(0,M), I(0,T,u)≤U(0,T,u(0),u(T ))+δ ; (6.3)

(ii)
I(0,T,u)≤U(0,T,u(0))+δ (6.4)

there exist an integer q≥ 1 and numbers Si, S̃i ∈ [0,T ], i = 1, . . . ,q such that

Si ≤ S̃i, i = 1, . . . ,q, Si+1 > S̃i, i ∈ {1, . . . ,q}\{q},

Si < S̃i if i ∈ {1, . . . ,q} and Si < T (6.5)

and there exist j1, . . . , jq ∈ {1, . . . ,m} such that

jp1 6= jp2 for each p,p2 ∈ {1, . . . ,q} satisfying p1 6= p2, (6.6)

S1 ∈ [0,L], min{‖u(S1)− x̄i‖ : i = 1, . . . ,m} ≤ δ ,

for each t ∈ [0,S1),
min{‖u(t)− x̄i‖ : i = 1, . . . ,m}> δ ,

for each p ∈ {1, . . . ,q},
‖u(Sp)− x̄ jp‖ ≤ δ ,

‖u(t)− x̄ jp‖ ≤ ε, t ∈ [Sp, S̃p],

‖u(t)− x̄ jp‖> δ , t ∈ [S̃p,Sp) if p > 1,

ε1 ≤ Sp− S̃p−1 ≤ L if p > 1,

‖u(t)− x̄ jp‖> δ , t ∈ [S̃p,T ]\{S̃p},
if Sp + ε1 ≤ T then S̃p ≥ Sp + ε1,

if Sp + ε1 > T then S̃p = T, p = q,

if S̃p < T then ‖u(S̃p)− x̄ jp‖= ε,

S̃q ≥ T −L,

{t ∈ [S̃q,T ]\{S̃q} : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}= /0.
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Proof. Theorem 3.2 implies that there exist M0 > M such that

U(0,T,y,z)≤ T inf( f )+M0 (6.7)

for each T ≥ 1 and each y,z ∈ B(0,M).
By Proposition 5.3 there exists

ε1 ∈ (0,ε/8)

such that the following property holds:
(a) for each pair of numbers S1,S2 satisfying

0≤ S1, S2 ∈ [S1 +4−1,S1 +4],

each g ∈M, each x ∈W 1,1(S1,S2) satisfying∫ S2

S1

g(x(t),x′(t))dt ≤ 4| inf( f )|+M0 +4

and each t1, t2 ∈ [S1,S2] satisfying |t1− t2| ≤ ε1 the inequality

‖x(t1)− x(t2)‖ ≤ ε/8

holds.
Proposition 5.4 implies that there exists δ ∈ (0,ε1/8) such that the following property holds:
(b) for each k ∈ {1, . . . ,m}, each T ≥ ε1/8 and each ξ ∈W 1,1(0,T ) satisfying

‖ξ (0)− x̄k‖ ≤ δ , ‖ξ (T )− x̄k‖ ≤ δ

and
I(0,T,ξ )≤U(0,T,ξ (0),ξ (T ))+δ

the inequality
‖ξ (t)− x̄k‖ ≤ ε

holds for all t ∈ [0,T ].
Theorem 4.1 implies that there exists L > 1 such that the following property holds:
(c) for each T > L and each x ∈W 1,1(0,T ) such that

x(0) ∈ B(0,M)

and at least one of the following conditions holds:

x(T ) ∈ B(0,M), I f (0,T,x)≤U(0,T,x(0),x(T ))+1;

I f (0,T,x)≤U(0,T,x(0))+1

the inequality

mes({t ∈ [0,T ] : ‖x(t)− x̄i‖> δ for each i ∈ {1, . . . ,m}})< L

is true.
Assume that T ≥ 2L, u ∈W 1,1(0,T ), (6.2) is true and at least of conditions (i) and (ii) hold.

Conditions (i), (ii) and (6.7) imply that

I(0,T,u)≤ T inf( f )+M0 +1. (6.8)
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In view of (6.8) for each measurable set J ⊂ [0,T ],∫
J

f (u(t),u′(t))dt ≤mes(J) inf( f )+M0 +1. (6.9)

Property (a) and (6.9) imply that for each t1, t2 ∈ [0,T ] satisfying |t1− t2| ≤ ε1 we have

‖u(t1)−u(t2)‖ ≤ ε/8. (6.10)

Property (c), conditions (i), (ii) and (6.2) imply that there exists a number S1 such that

S1 ∈ [0,L], min{‖u(S1)− x̄i‖ : i = 1, . . . ,m} ≤ δ (6.11)

and that for each t ∈ [0,S1]\{S1},

min{‖u(t)− x̄i‖ : i = 1, . . . ,m}> δ . (6.12)

By (6.1) and (6.11), there exists a unique integer j1 ∈ {1, . . . ,m} such that

‖u(S1)− x̄ j1‖ ≤ δ . (6.13)

In view of (6.11),
S1 + ε1 ≤ 2L≤ T. (6.14)

It follows from (6.10), (6.11), (6.13) and (6.14) that for each t ∈ [S1,S1 + ε1],

‖u(t)−u(S1)‖ ≤ ε/8,

‖u(t)− x̄ j1‖ ≤ ‖u(t)−u(S1)‖+‖u(S1)− x̄ j1‖ ≤ ε/8+δ ≤ ε

and
‖u(t)− x̄ j1‖ ≤ ε, t ∈ [S1,S1 + ε1]. (6.15)

Define
S̃1 = sup{τ ∈ (S1,T ] : ‖u(t)− x̄ j1‖ ≤ ε, t ∈ [0,τ]}. (6.16)

By (6.15) and (6.16),
S̃1 ≥ S1 + ε1, ‖u(S̃1)− x̄ j1‖ ≤ ε. (6.17)

If S̃1 = T , then our construction is completed.
Assume that S̃1 < T . In view of (6.16),

‖u(S̃1)− x̄ j1‖= ε. (6.18)

Property (b), conditions (i), (ii) and equations (6.13) and (6.17) imply that for each t ∈ (S̃1,T ],

‖u(t)− x̄ j1‖> δ . (6.19)

There are two cases:

{t ∈ [S̃1,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}= /0; (6.20)

{t ∈ [S̃1,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ} 6= /0. (6.21)
If (6.20) holds, then property (c) and (6.17) imply that

S̃1 +L≥ T

and our construction is completed.
Assume that (6.21) holds. Set

S2 = inf{t ∈ [S̃1,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}. (6.22)
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Equations (6.1), (6.18) and (6.22) imply that

S2 > S̃1

and there exists a unique j2 ∈ {1, . . . ,m} such that

‖u(S2)− x̄ j2‖ ≤ δ . (6.23)

By (6.19) and (6.23),
j2 6= j1, ‖u(S2)− x̄ j2‖= δ .

It follows from (6.10), (6.16), (6.17), (6.22) and (6.23) that for every

t ∈ [0,T ]∩ [S2− ε1,S2 + ε1]

we have
‖u(t)− x̄ j2‖ ≤ ‖u(t)−u(S2)‖+‖u(S2)− x̄ j2‖

≤ δ + ε/8≤ ε/4. (6.24)
Equations (6.1), (6.17) and (6.24) imply that

S̃1 ≤ S2− ε1. (6.25)

If S2 + ε1 ≥ T , then S̃2 = T and our construction is completed. Otherwise we set

S̃2 = inf{S ∈ [S2,T ] : ‖u(t)− x̄ j2‖ ≤ ε, t ∈ [S2,S]}. (6.26)

Property (c), (6.22) and (6.26) imply that

S2− S̃2 ≤ L, S2− S̃1 ≤ L. (6.27)

Assume that k is an integer and we defined Si, S̃i ∈ [0,T ], i = 1, . . . ,k such that Si ≤ S̃i, i =
1, . . . ,k, if Si < T , then Si < S̃i for each i ∈ {1, . . . ,k},

Si+1 > S̃i, i ∈ {1, . . . ,k}\{k}
and we defined j1, . . . , jk ∈ {1, . . . ,m} for which

jp1 6= jp2 for each p1, p2 ∈ {1, . . . ,k} satisfying p1 6= p2

and that (91)-(96) are true, for each p ∈ {1, . . . ,k},
‖u(Sp)− x̄ jp‖ ≤ δ , (6.28)

‖u(t)− x̄ jp‖ ≤ ε, t ∈ [Sp, S̃p], (6.29)

‖u(t)− x̄ jp‖> δ , t ∈ [S̃p−1,Sp) if p > 1, (6.30)

ε1 ≤ Sp− S̃p−1 ≤ L if p > 1, (6.31)
‖u(t)− x̄ jp‖> δ , t ∈ [S̃p,T ]\{S̃p}, (6.32)

if Sp + ε1 ≤ T then S̃p ≥ Sp + ε1, (6.33)
if Sp + ε1 > T then S̃p = T, p = k, (6.34)
if Sp < T then ‖u(S̃p)− x̄ jp‖= ε. (6.35)

(It is not difficult to see that for k = 1 our assumption holds.)
If S̃k = T , then our construction is completed. Assume that S̃k < T . There are two cases:

{t ∈ [S̃k,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}= /0; (6.36)

{t ∈ [S̃k,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ} 6= /0. (6.37)
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If (6.36) holds, then property (c), conditions (i), (ii) and (6.29) imply that

S̃k +L≥ T

and our construction is completed.
Assume that (6.37) holds. Set

Sk+1 = inf{t ∈ [S̃k,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}. (6.38)

Equations (6.35), (6.37) and (6.38) imply that

Sk+1 > S̃k

and there exists a unique jk+1 ∈ {1, . . . ,m} such that

‖u(Sk+1)− x̄ jk+1‖ ≤ δ . (6.39)

By (6.32) and (6.39),

jk+1 6= jp, p = 1, . . . ,k.

By (6.10) and (6.38), for every

t ∈ [0,T ]∩ [Sk+1− ε1,Sk+1 + ε1]

we have

‖u(t)− x̄ jk+1‖ ≤ ‖u(t)−u(Sk+1)‖+‖u(Sk+1)− x̄ jk+1‖

≤ δ + ε/8≤ ε/4. (6.40)

It follows from (6.1), (6.35) and (6.40),

S̃k ≤ Sk+1− ε1.

If Sk+1 + ε1 ≥ T , then S̃k+1 = T and our construction is completed. Otherwise we set

S̃k+1 = inf{S ∈ [S̃k+1,T ] : ‖u(t)− x̄ jk+1‖ ≤ ε, t ∈ [Sk+1,S]}. (6.41)

Property (b), (6.37)-(6.41), (6.41) and equations above imply that the assumption made for k
also holds for k+1. Therefore by induction we constructed an integer q ≥ 1, numbers Si, S̃i ∈
[0,T ], i = 1, . . . ,q such that Si ≤ S̃i, i = 1, . . . ,q, if Si < T , then Si < S̃i for each i ∈ {1, . . . ,q},

Si+1 > S̃i, i ∈ {1, . . . ,q}\{q}

and we defined j1, . . . , jq ∈ {1, . . . ,m} for which

jp1 6= jp2 for each p1, p2 ∈ {1, . . . ,q} satisfying p1 6= p2

and that (6.11)-(6.16) are true, for each p ∈ {1, . . . ,q}, (6.28)-(6.35) hold (with p = q),

S̃q ≥ T −L,

{t ∈ [S̃q,T ] : min{‖u(t)− x̄i‖ : i = 1, . . . ,m} ≤ δ}= /0.

Theorem 6.1 is proved. �
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7. THE SECOND TURNPIKE RESULT

Theorem 10 describes the structure of M-approximate solutions u of our variational problems
on an interval [0,T ] where T is sufficiently large and M > 0 is sufficiently small. Our next
solutions is related to the case when M is fixed but not necessarily small. It is shown that
there are mutually disjoint subintervals Ei, i = 1, . . . ,q of [0,T ] where q does not exceed a
constant which does not depend on T and a mapping p : {1, . . . ,q}→{1, . . . ,m} (not necessarily
injective) such that the measure of the complement [0,T ] \∪q

i=1Ei does not exceed a constant
which does not depend on T and for each i ∈ {1, . . . ,q} the set u(Ei) is contained in a small
neighborhood of x̄p(i).

Theorem 7.1. Let ε ∈ (0,1], M1 > 0 and M0 > ‖x̄i‖+ ‖ȳi‖+ 1, i = 1, . . . ,m. Then there exist
l > 0 and a natural number Q such that for each T > lQ and each x ∈W 1,1(0,T ) such that

‖x(0)‖ ≤M0 (7.1)

and at least one of the following conditions holds:
(a)

‖x(T )‖ ≤M0, I(0,T,x)≤U(0,T,x(0),x(T ))+M1;
(b)

I(0,T,x)≤U(0,T,x(0))+M1

there exist an integer q ∈ [1,Q] and intervals [ai,bi]⊂ [0,T ], i = 1, . . . ,q such that

ai+1 ≥ bi, i ∈ {1, . . . ,q}\{q},
for each i ∈ {1, . . . ,q}, there exists pi ∈ {1, . . . ,m}, such that

‖x(t)− x̄pi‖ ≤ ε, t ∈ [ai,bi]

and
mes([0,T ]\∪q

i=1[ai,bi])≤ l.

Proof. Theorem 6.1 implies that there exist L0 > 0, δ > 0 such that the following property
holds:

(c) for each T > 2L0 and each u ∈W 1,1(0,T ) such that

u(0),u(T ) ∈ B(0,M0)

I(0,T,u)≤U(0,T,u(0),u(T ))+δ

there exist an integer q ∈ {1, . . . ,m} and numbers Si, S̃i ∈ [0,T ], i = 1, . . . ,q such that

Si ≤ S̃i, i = 1, . . . ,q, Si+1 > S̃i, i ∈ {1, . . . ,q}\{q},
Si < S̃i if i ∈ {1, . . . ,q} and Si < T

and there exist j1, . . . , jq ∈ {1, . . . ,m} such that

S1 ≤ L0, S̃q ≥ T −L0,

Sp− S̃p−1 ≤ L0, p ∈ {1, . . . ,q}\{1},
‖u(t)− x̄ jp‖ ≤ ε, t ∈ [Sp, S̃p], p = 1, . . . ,q.

Theorem 4.1 implies that there exists L1 > 2L0 such that the following property holds:
(d) for each T ≥ L1 and each x ∈W 1,1(0,T ) such that x(0) ∈ B(0,M0) and at least one of the

following conditions holds:
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x(T ) ∈ B(0,M0), I f (0,T,x)≤U(0,T,x(0),x(T ))+M1 +1;

I f (0,T,x)≤U(0,T,x(0))+M1

the inequality

mes({t ∈ [0,T ] : ‖x(t)− x̄i‖> δ for each i ∈ {1, . . . ,m}})< L1.

Fix
l0 = 4L1 +4, l > 4Ql0. (7.2)

Choose an integer
Q > 2m(4+δ

−1M1). (7.3)
Assume that T > lQ and that x ∈W 1,1(0,T ) satisfies at least one of conditions (a) and (b).
Together with property (d) this implies that there exists

t0 ∈ [0,L1] (7.4)

such that
min{‖x(t0)− x̄i‖ : i = 1, . . . ,m} ≤ δ . (7.5)

Property (d), conditions (a), (b) and equations (7.1), (7.4) and (7.5) imply that there exists a
finite sequence of numbers t0 < t1 · · · < tq belonging to the interval [0,T ] such that for each
k ∈ {0, . . . ,q},

min{‖x(tk)− x̄i‖ : i = 1, . . . ,m} ≤ δ , (7.6)

ti+1− ti ∈ [L1,2L1], i ∈ {0, . . . ,q}\{q}, (7.7)

tq > T −2L1. (7.8)
Now we construct a strictly increasing sequence of numbers Si ∈ {t0, . . . , tq}, i = 0, . . . , p. Set

S0 = t0. (7.9)

Assume that k ≥ 0 is an integer and that we already defined a finite increasing sequence Si ∈
{t0, . . . , tq}, i = 0, . . . ,k. If Sk = tq, then the construction is completed. Assume that

Sk < tq. (7.10)

If
I(Sk, tq,x)≤U(Sk, tq,x(Sk),x(tq))+δ ,

then we set
Sk+1 = tq

and the construction is completed. Assume that

I(Sk, tq,x)>U(Sk, tq,x(Sk),x(tq))+δ . (7.11)

There exists j ∈ {0, . . . ,q} such that
Sk = t j. (7.12)

If
I(Sk, t j+1,x)>U(Sk, t j+1,x(Sk),x(t j+1))+δ ,

then we set
Sk+1 = t j+1.
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Assume that
I(Sk, t j+1,x)≤U(Sk, t j+1,x(Sk),x(t j+1))+δ . (7.13)

We define
Sk+1 = min{ti : i ∈ { j+1, . . . ,q} :

I(Sk, ti,x)>U(Sk, ti,x(Sk),x(ti))+δ}. (7.14)
Therefore by induction we defined a strictly increasing sequence of numbers

Si ∈ {t0, . . . , tq}, i = 0, . . . , p

such that
S0 = t0, Sp = tq,

for each j ∈ {0, . . . , p−1}\{p−1},
I(S j,S j+1,x)>U(S j,S j+1,x(S j),x(S j+1))+δ , (7.15)

for each j ∈ {0, . . . , p−1}, if i ∈ {0, . . . ,q} and

S j < ti < S j+1,

then
I(S j, ti,x)≤U(S j, ti,x(S j),x(ti))+δ , (7.16)

Conditions (a), (b) and (7.15) imply that

M1 ≥ I(0,T,x)−U(0,T,x(0),x(T ))

≥∑{I(S j,S j+1,x)−U(S j,S j+1,x(S j),x(S j+1)) : j ∈ {0, . . . , p−1}\{p−1}}
≥ (p−1)δ

and
p≤ 1+δ

−1M1. (7.17)
Assume that j ∈ {0, . . . , p−1} satisfies

S j+1−S j ≥ l0. (7.18)

Property (d), conditions (a) and (b) and equations (7.2), (7.6), (7.14) and (7.18) imply that there
exists

S̃ j ∈ [S j+1−3L1,S j+1−2L1] (7.19)
such that

min{‖x(S̃ j)− x̄i‖ : i = 1, . . . ,m} ≤ δ . (7.20)
It follows from (7.7), (7.16) and (7.19) that

I(S j, S̃ j,x)≤U(S j, S̃ j,x(S j),x(S̃ j))+δ . (7.21)

Property (c) and equations (7.2), (7.18)-(7.21) imply that there exist an integer q j ≥ 1 and
numbers S j,i, S̃ j,i ∈ [S j, S̃ j], i = 1, . . . ,q j such that

S j,i ≤ S̃ j,i, i = 1, . . . ,q j, S j,i+1 > S̃ j,i, i ∈ {1, . . . ,q j}\{q j},
S j,i < S̃ j,i if i ∈ {1, . . . ,q j} and S j,i < T

and there exist k j,1, . . . ,k j,q j ∈ {1, . . . ,m} such that

S j,1 ≤ L0 +S j, S̃ j,q j ≥ S̃ j−L0,

S j,p− S̃ j,p−1 ≤ L0, j ∈ {1, . . . ,q j}\{1},
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‖u(t)− x̄ j,kτ
‖ ≤ ε, t ∈ [S j,τ , S̃ j,τ ], τ = 1, . . . ,q j.

Consider the collection of intervals [S j,τ , S̃ j,τ ], τ = 1, . . . ,q j, j ∈ {0, . . . , p−1} such that S j+1−
S j ≥ l0. The number of these intervals does not exceed (p+ 2)m < Q (see (7.2) and (7.17)).
The completion of their union in [0,T ] is also a union of a finite collection of subintervals of
[0,T ] and in view of (7.3), (7.17) their number does not exceed

2(p+2)m≤ 2m(4+δ
−1M1)< Q.

By (7.2), (7.4) and (7.8) the measure of this complement does not exceed

Ql0 +3QL1 +3L1 < Ql0 +3(Q+1)L1 < l.

Theorem 7.1 is proved. �
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