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JOËL BLOT∗, HASAN YILMAZ
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Abstract. We provide an improvement to the maximum principle of Pontryagin for Optimal Control problems.
We establish differentiability properties of the value function for these problems with assumptions that are as low
as possible. Notably, we lighten the assumptions by using Gâteaux and Hadamard differentials.
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1. INTRODUCTION

The paper provides envelope theorems for parameterized problems of Optimal Control (prob-
lem of Bolza) as

(B,π)


Maximize

∫ T
0 f 0(t,x(t),u(t),π)dt +g0(x(T ),π)

subject to x ∈ PC1([0,T ],Ω),u ∈ NPC0
R([0,T ],U),

∀t ∈ [0,T ], dx(t) = f (t,x(t),u(t),π), x(0) = ξ0,
∀i ∈ {1, ...,m}, gi(x(T ),π)≥ 0,
∀ j ∈ {1, ...,q}, h j(x(T ),π) = 0.

For all parameters π , V [π] is the value of the problem (B, π). We establish properties of
the value function [π 7→ V [π]] in terms of Gâteaux variation, Gâteaux differentiability, and
Fréchet continuous differentiability. We try to establish such results using assumptions as low
as possible. Envelope theorems for static optimization and Calculus of Variations can be found
in [4] where references on economic motivations are cited.
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In the literature about optimal control in a continuous time framework, concerning the Pon-
tryagin principle, there exist two different choices of formalism. In the first one, the state func-
tions are piecewise continuously differentiable and the control functions are piecewise continu-
ous. In the second choice, the state functions are absolutely continuous and the control functions
are measurable and essentially bounded. Our works belong to the first choice of formalism.

In this paper, in the continuous time framework, we start by establishing new Pontryagin
principles for the problems of Bolza and Mayer without parameter. In the continuous-time
framework, some results on the Pontryagin principle for Optimal Control problems can be
found in L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko in [12],
V. Alexeev, V.M. Tikhomirov, and S.V. Fomine in [1], A. Ioffe and V.M. Tikhomirov in [9], P.
Michel in [11], and J. Blot and H. Yilmaz in [3]. Notice that, in [3], the authors generalize the
proof of the Pontryagin principle in [11] with infinite dimensional state space. In this paper,
we improve the Pontryagin principle of [3] in the following way. Firstly, the control space is
a Hausdorff topological space instead of a metric space. Next, for the functions which define
the final constraints, we replace the assumptions of Fréchet differentiability at a point by the
assumptions of Hadamard differentiablity at a point. Moreover, for the vector field and the inte-
grand of the criterion, we lighten assumptions of Fréchet differentiability by using assumptions
of the Gâteaux differentiability. Besides, we provide, on the one hand, qualification conditions
to obtain the multiplier associated to the criterion equal to 1 and, on the other hand, another
qualification conditions to obtain the uniqueness of the multiplier and the adjoint function when
the multiplier associated to the criterion equal to 1. Furthermore, these qualification conditions
are very useful to treat the question of the envelope theorems. Notice that we provide condi-
tions on the Gâteaux differentials to obtain Lipschitz conditions, we provide a new result on the
differentiability of nonlinear functionals. Moreover, we do not do assumptions on the regularity
of the multipliers and the adjoint function with respect to the parameter (as it is often the case
in the literature).

We summarize the content of this paper as follows. In Section 2, we establish Pontryagin
principles for the Optimal Control. In a first subsection, we state a Pontryagin principle for the
problem of Bolza, and we provide new qualification conditions. In a second subsection, we
state a Pontryagin principle for the problem of Mayer, and we give qualification conditions. In
a third subsection, we prove the results on the problem of Mayer; in order to do that we use a
new multiplier rule which is an improvement of a multiplier rule in [2]. In the last subsection,
in order to prove the Pontryagin principle of the problem of Bolza, we transform the problem of
Bolza into a problem of Mayer. In Section 3, we establish envelope theorems for parameterized
problems of optimal control. In the first subsection, we state envelope theorems. In the second
subsection, we prove the first envelope theorem. In order to do that, we provide new results
on the differentiability of nonlinear integral functionals and we use the new Pontryagin prin-
ciples and qualification conditions for the problems of Bolza without parameter. In the third
subsection, by using the first envelope theorem, we prove that the value function is Gâteaux
differentiable at a point. In the last subsection, we prove the last envelope theorem by using the
second envelope theorem.
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2. STATEMENTS OF THE PONTRYAGIN PRINCIPLES

2.1. Pontryagin principle for the problem of Bolza. E is a real Banach space, Ω is a non-
empty subset of E, U is a Hausdorff topological space, f : [0,T ]×Ω×U → E, f 0 : [0,T ]×
Ω×U → R, gα : Ω → R (0 ≤ α ≤ m), and hβ : Ω → R (1 ≤ β ≤ q) are functions when
(m,q) ∈ N∗×N∗, where N∗ = N\{0}.

When X is a Hausdorff topological space, PC0([0,T ],X) denotes the space of the piecewise
continuous functions from [0,T ] into X . As in [3], we specify that x ∈ PC0([0,T ],X) when x is
continuous on [0,T ] or when there exists a subdivision of [0,T ], 0 = τ0 < τ1 < ... < τk < τk+1 =
T such that x is continuous at t when t /∈{τi : 0≤ i≤ k+1} and the right-hand limit x(τi+) exists
in X and when i ∈ {0, ...,k} and the left hand limit x(τi−) exists in X when i ∈ {1, ...,k+ 1}.
We define NPC0

R([0,T ],X) as the set of the x ∈ PC0([0,T ],X) which are right-continuous on
[0,T [ and left-continuous at T . An element of NPC0

R([0,T ],X) is called a normalized piecewise
continuous function, cf. [3]. When X is a real normed vector space, O is a non-empty open
subset of X and Y is a Hausdorff topological space. A mapping g : [0,T ]×O→ Y is piecewise
continuous with a parameter on [0,T ]×O when there exists a subdivision of [0,T ], 0 = τ0 <
τ1 < ... < τk < τk+1 = T such that, for all i ∈ {0, ...,k− 1}, g is continuous on [τi,τi+1[×O,
g is continuous on [τk,τk+1]×O, and for all i ∈ {1, ...,k}, for all x ∈ O, limt→τi−,z→x g(t,z)
exists in Y . The space of all the piecewise continuous functions with a parameter is denoted
by PCP0([0,T ]×O,Y ). When X is included into a real normed vector space, PC1([0,T ],X)
denotes the space of the piecewise continuously differentiable functions from [0,T ] into X .
We specify that x ∈ PC1([0,T ],X) when x is continuously differentiable on [0,T ] or when x is
continuous on [0,T ] and there exists a subdivision , 0 = τ0 < τ1 < ... < τk < τk+1 = T such that
x is continuously differentiable at t if t /∈ {τi : 0≤ i≤ k+1} the right derivative x′R(τi) = x′(τi+)
exists when i ∈ {0, ...,k}, the left derivative x′L(τi) = x′(τi−) exists when i ∈ {1, ..,k+ 1}, cf.
[3]. As in [3], we consider the extended derivative of x ∈ PC1([0,T ],X) as follows:

dx(t) :=


x′(t) if t ∈ [0,T ]\{τi : i ∈ {0, ...,k+1}},
x′R(t) if t = τi, i ∈ {0, ...,k},
x′L(t) if t = T.

(2.1)

Note that if x ∈ PC1([0,T ],X), then dx ∈ NPC0
R([0,T ],X). Moreover, d is a continuous linear

operator from PC1([0,T ],X) into NPC0
R([0,T ],X). When X is included in a Banach space, the

following relation holds:

for all s < t in [0,T ], x(t)− x(s) =
∫ t

s
dx(r)dr,

where the integral is taken in the sense of Riemann as exposed in [5]. We refer to [3] for the de-
tails about these function spaces. When X is a real normed vector space, O is a non-empty open
subset of X , x ∈O, v ∈ X , and Y is a real normed vector space, when f : O→ Y is a mapping,
when it exists D+

Gf(x;v) denotes the right-directional derivative (also called the right Gâteaux
variation) of f at x in the direction v cf. [4] (Subsection 2.1). When it exists, DGf(x) (respec-
tively DHf(x), respectively DF f(x)) denotes the Gâteaux (respectively Hadamard, respectively
Fréchet) differential of f at x. Moreover, when X is a finite product of n real normed spaces,
X := ∏

n
i=1 Xi, if i ∈ {1, ...,n}, DG,if(x) (respectively DH,if(x), respectively DF,if(x)) denotes the

partial Gâteaux (respectively Hadamard, respectively Fréchet) differential of f at x with respect
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to the i− th vector variable. If 1≤ i1 ≤ i2 ≤ i3 ≤ n, DH,(i1,i2,i3)f(x) denotes the Hadamard diff-
ential of the mapping [(xi1 ,xi2 ,xi3) 7→ f(x1, ...,xi1, ...,xi2, ...,xi3, ...,xn)] at the point (xi1,xi2,xi3).

We formulate the problem of Bolza:

(B)


Maximize J(x,u) :=

∫ T
0 f 0(t,x(t),u(t))dt +g0(x(T ))

subject to x ∈ PC1([0,T ],Ω),u ∈ NPC0
R([0,T ],U),

∀t ∈ [0,T ], dx(t) = f (t,x(t),u(t)), x(0) = ξ0,
∀α ∈ {1, ...,m}, gα(x(T ))≥ 0,
∀β ∈ {1, ...,q}, hβ (x(T )) = 0.

Generally the controlled dynamical system which is present in (B) is formulated as follows:
x′(t) = f (t,x(t),u(t)) when x′(t) exists. In [3], we explain why the present formulation is
equivalent.

If f 0 = 0, (B) is called a problem of Mayer and it is denoted by (M ). When (x,u) is an
admissible process for (B) or (M ), we consider the following condition of qualification, for
i ∈ {0,1}.

(QC, i)


If (cα)i≤α≤m ∈ R1−i+m

+ ,(dβ )1≤β≤q ∈ Rq satisfy
(∀α ∈ {1, ...,m}, cαgα(x(T )) = 0),and
∑

m
α=i cαDGgα(x(T ))+∑

q
β=1 dβ DGhβ (x(T )) = 0, then

(∀α ∈ {i, ...,m}, cα = 0) and (∀β ∈ {1, ...,q}, dβ = 0).

When i = 0, this condition is due to Michel [11].
Now we formulate the assumptions for our theorems. Let (x0,u0) be an admissible process

of (B) or (M ).
Conditions on the integrand of the criterion.

(AI1) f 0 ∈ C0([0,T ]×Ω×U,R), for all (t,ξ ,ζ ) ∈ [0,T ]×Ω×U , DG,2 f 0(t,ξ ,ζ ) exists,
for all (t,ζ ) ∈ [0,T ]×U , DF,2 f 0(t,x0(t),ζ ) exists and [(t,ζ ) 7→ DF,2 f 0(t,x0(t),ζ )] ∈
C0([0,T ]×U,E∗).

(AI2) For all non-empty compact K ⊂Ω, for all non-empty compact M ⊂U ,
sup(t,ξ ,ζ )∈[0,T ]×K×M ‖DG,2 f 0(t,ξ ,ζ )‖<+∞,

where C0 means the continuity and E∗ denotes the topological dual space of E.
Conditions on the vector field.

(AV1) f ∈C0([0,T ]×Ω×U,E), for all (t,ξ ,ζ ) ∈ [0,T ]×Ω×U , DG,2 f (t,ξ ,ζ ) exists, for all
(t,ζ )∈ [0,T ]×U , DF,2 f (t,x0(t),ζ ) exists and [(t,ζ ) 7→DF,2 f (t,x0(t),ζ )]∈C0([0,T ]×
U,L (E,E)).

(AV2) For all non-empty compact K ⊂Ω, for all non-empty compact M ⊂U ,
sup(t,ξ ,ζ )∈[0,T ]×K×M ‖DG,2 f (t,ξ ,ζ )‖<+∞,

where L (E,E) denotes the space of bounded linear mappings from E into E.
Conditions on terminal constraints functions and on terminal part of the criterion.

(AT1) For all α ∈ {0, ...,m}, gα is Hadamard differentiable at x0(T ).
(AT2) For all β ∈ {1, ...,q}, hβ is continuous on a neighborhood of x0(T ) and Hadamard

differentiable at x0(T ).
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(AI1) and (AI2) are an improvement of condition (A3) of [3], (AV1) and (AV2) are an improve-
ment of condition (A4) of [3], (AT1) is an improvement of condition (A1) of [3], and (AT2) is
an improvement of condition (A2) of [3].

The Hamiltonian of (B) is the function HB : [0,T ]×Ω×U×E∗×R→ R defined by
HB(t,ξ ,ζ , p,λ ) := λ f 0(t,ξ ,ζ )+ p · f (t,ξ ,ζ ) when (t,ξ ,ζ , p,λ ) ∈ [0,T ]×Ω×U×E∗×R.

Theorem 2.1. (Pontryagin Principle for the problem of Bolza)
When (x0,u0) is a solution of (B), under (AI1), (AI2), (AV1), (AV2), (AT1) and (AT2), there ex-
ist multipliers (λα)0≤α≤m ∈R1+m, (µβ )1≤β≤q ∈Rq and an adjoint function p∈ PC1([0,T ],E∗)
which satisfy the following conditions.

(NN) ((λα)0≤α≤m,(µβ )1≤β≤q) is non zero.
(Si) For all α ∈ {0, ...,m}, λα ≥ 0.
(S`) For all α ∈ {1, ...,m}, λαgα(x0(T )) = 0.

(TC) ∑
m
α=0 λαDHgα(x0(T ))+∑

q
β=1 µβ DHhβ (x0(T )) = p(T ).

(AE.B) d p(t) =−DF,2HB(t,x0(t),u0(t), p(t),λ0) for all t ∈ [0,T ].
(MP.B) For all t ∈ [0,T ], for all ζ ∈U,

HB(t,x0(t),u0(t), p(t),λ0)≥HB(t,x0(t),ζ , p(t),λ0).
(CH.B) H̄B := [t 7→HB(t,x0(t),u0(t), p(t),λ0)] ∈C0([0,T ],R),

(NN) means non nullity, (Si) means sign, (S`) means slackness, (TC) means transversality con-
dition, (AE.B) means adjoint equation, (MP.B) means maximum principle and (CH.B) means
continuity of the Hamiltonian.

Corollary 2.2. In this setting and under the assumptions of Theorem 2.1, if, in addition, we
assume that, for all (t,ξ ,ζ ) ∈ [0,T ]×Ω×U, the partial derivatives with respect to the first
variable ∂1 f 0(t,ξ ,ζ ) and ∂1 f (t,ξ ,ζ ) exist and ∂1 f 0 and ∂1 f are continuous on [0,T ]×Ω×U,
then H̄B ∈ PC1([0,T ],R) and, for all t ∈ [0,T ], dH̄B(t) = ∂1HB(t,x0(t),u0(t), p(t),λ0).

We introduce other conditions.

(AV3) U is a subset of real normed vector space Y , there exists t̂ ∈ [0,T ] s.t. U is a neighbor-
hood of u0(t̂) in Y , DG,3 f (t̂,x0(t̂),u0(t̂)) exists and it is surjective

and

(LI) U is a subset of a real normed vector space Y s.t. U is a neighborhood of u0(T ) in Y ,
DG,3 f (T,x0(T ),u0(T )) exists and
((DHgα(x0(T ))◦DG,3 f (T,x0(T ),u0(T )))1≤α≤m,

(DHhβ (x0(T ))◦DG,3 f (T,x0(T ),u0(T )))1≤β≤q) is free.

Corollary 2.3. In this setting and under the assumptions of Theorem 2.1, the following asser-
tions hold.

(i) Under (QC, 1) for (x,u) = (x0,u0), we have for all t ∈ [0,T ], (λ0, p(t)) 6= 0.
(ii) Under (QC, 1) for (x,u) = (x0,u0) and (AV3), we can choose λ0 = 1.

(iii) Under (LI), we can choose λ0 = 1.
(iv) Under (LI), if, in addition, we assume that DG,3 f 0(T,x0(T ),u0(T )) exists, then

((λα)0≤α≤m,(µβ )1≤β≤q, p) ∈R1+m×Rq×PC1([0,T ],E∗) with λ0 = 1, which satisfies
the conclusions of Theorem 2.1, are unique.
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2.2. Pontryagin principles for the problem of Mayer. The Hamiltonian of (M ) is the func-
tion HM : [0,T ]×Ω×U×E∗→R defined by HM(t,ξ ,ζ , p) := p · f (t,ξ ,ζ ) when (t,ξ ,ζ , p)∈
[0,T ]×Ω×U×E∗.

Theorem 2.4. (Pontryagin Principle for the problem of Mayer)
When (x0,u0) is a solution of (M ), under (AV1), (AV2), (AT1) and (AT2), there exist multipliers
(λα)0≤α≤m ∈R1+m, (µβ )1≤β≤q ∈Rq and an adjoint function p ∈ PC1([0,T ],E∗) which satisfy
the following conditions.

(NN) ((λα)0≤α≤m,(µβ )1≤β≤q) is non zero.
(Si) For all α ∈ {0, ...,m}, λα ≥ 0.
(S`) For all α ∈ {1, ...,m}, λαgα(x0(T )) = 0.

(TC) ∑
m
α=0 λαDHgα(x0(T ))+∑

q
β=1 µβ DHhβ (x0(T )) = p(T ).

(AE.M) d p(t) =−DF,2HM(t,x0(t),u0(t), p(t)) for all t ∈ [0,T ].
(MP.M) For all t ∈ [0,T ], for all ζ ∈U,

HM(t,x0(t),u0(t), p(t))≥HM(t,x0(t),ζ , p(t)).
(CH.M) H̄M := [t 7→HM(t,x0(t),u0(t), p(t))] ∈C0([0,T ],R).

Corollary 2.5. In this setting and under the assumptions of Theorem 2.4, if in addition we
assume that, for all (t,ξ ,ζ ) ∈ [0,T ]×Ω×U, the partial derivatives with respect to the first
variable ∂1 f (t,ξ ,ζ ) exist and ∂1 f are continuous on [0,T ]×Ω×U, then H̄M ∈ PC1([0,T ],R)
and, for all t ∈ [0,T ], dH̄M(t) = ∂1HM(t,x0(t),u0(t), p(t)).

Corollary 2.6. In this setting and under the assumptions of Theorem 2.4, the following asser-
tions hold.

(i) Under (QC, 1) for (x,u) = (x0,u0), we have for all t ∈ [0,T ], (λ0, p(t)) 6= 0.
(ii) Under (QC, 0) for (x,u) = (x0,u0), we have for all t ∈ [0,T ], p(t) 6= 0.

(iii) Under (QC, 1) for (x,u) = (x0,u0) and (AV3), we can choose λ0 = 1.
(iv) Under (LI), the ((λα)0≤α≤m,(µβ )1≤β≤q, p)∈R1+m×Rq×PC1([0,T ],E∗) with λ0 = 1,

which satisfies the conclusions of Theorem 2.4, are unique.

2.3. Proofs of results for the problem of Mayer. We consider
S := ((ti,vi))1≤i≤N where ti ∈ [0,T ] satisfying 0 < t1 ≤ t2 ≤ ... ≤ tN < T , where vi ∈ U and
where N ∈ N∗. We denote by S the set of such S.

When S ∈ S and a = (a1, ...,aN) ∈ RN
+, we define the following objects: J(i) = J(i,S) :=

{ j ∈ {1, ..., i− 1} : t j = ti}, bi(a) = bi(a,S) := 0 if J(i) = /0 and bi(a) = bi(a,S) = ∑ j∈J(i) a j
if J(i) 6= /0. We also define Ii(a) = Ii(a,S) := [ti + bi(a), ti + bi(a) + ai[. We define δ (S) =
min{ ti+1− ti : i ∈ {1, ...,N − 1}, ti < ti+1} and ‖a‖1 = ∑

N
i=1 | ai |= ∑

N
i=1 ai ≤ δ (S). When

a ∈ B‖·‖1(0,δ (S))∩R
N
+, we have Ii(a) ⊂ [0,T ] and Ii(a)∩ I j(a) = /0 when i 6= j and we can

define the needlelike variation of u0:

ua(t) = ua(t,S) :=
{

vi if t ∈ Ii(a),1≤ i≤ N,
u0(t) if t ∈ [0,T ]\∪1≤i≤NIi(a).

(2.2)

It is easy to verify that
ua = ua(·,S) ∈ NPC0

R([0,T ],U). (2.3)
We associate to the control function ua the non extendable solution xa of the Cauchy problem
on [0,T ].

dxa(t) = f (t,xa(t),ua(t)), xa(0) = ξ0. (2.4)
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In the sequel of this subsection, we arbitrarily fix a list S = ((ti,vi))1≤i≤N in S.

Lemma 2.7. Let X be a metric space, Y be a non empty set, Z be a real normed vector space and
φ : X×Y → Z be a mapping. We assume that: for all non-empty compact subset K of X, we have
sup(x,y)∈K×Y ‖φ(x,y)‖<+∞. Then, for all non-empty compact subset K of X, there exists ρ > 0
s.t. sup(x,y)∈V (K,ρ)×Y ‖φ(x,y)‖<+∞, where V (K,ρ) := {z ∈ X : d(z,K) := infk∈K d(z,k)< ρ}.

Proof. We proceed by contradiction, we assume that there exists a non-empty compact sub-
set K ⊂ X s.t. ∀ε > 0,∀γ ∈ R+∃(xε,γ ,yε,γ) ∈ V (K,ε)×Y,‖φ(xε,γ ,yε,γ)‖ > γ . Therefore tak-
ing ε = 1

n , γ = n with n ∈ N∗, we obtain ∀n ∈ N∗,∃(xn,yn) ∈ V (K, 1
n)×Y,‖φ(xn,yn)‖ > n.

Hence, for all n ∈ N∗, ∃un ∈ K s.t. d(xn,un) = d(xn,K) < 1
n . Since K is a compact, there ex-

ists ψ : N∗ → N∗ strictly increasing and z ∈ K s.t. limn→+∞ uψ(n) = z. Hence, we have also
limn→+∞ xψ(n) = z. Since K0 := {xψ(n) : n ∈ N∗}∪ {z} is compact, there exists γ0 ∈ R+ s.t.,
∀n ∈ N∗, ‖φ(xψ(n),yψ(n))‖ ≤ sup(x,y)∈K0×Y ‖φ(x,y)‖ ≤ γ0 <+∞. Besides, we have also for all
n ∈ N∗, ψ(n) < ‖φ(xψ(n),yψ(n))‖ ≤ γ0. Since lim

n→+∞
ψ(n) = +∞, we obtain the contradiction

+∞≤ γ0 <+∞. �

Lemma 2.8. Let X and Z be two real normed vector spaces, Y be a non-empty set, G be a non-
empty open subset of X, and φ : G×Y → Z be a mapping. We assume that the two following
conditions are fulfilled.

(a) ∀(x,y) ∈G×Y , DG,1φ(x,y) exists.
(b) ∀K ⊂G, K non-empty compact set, sup(x,y)∈K×Y ‖DG,1φ(x,y)‖<+∞.

For each non-empty compact subset K ⊂ G, there exist η > 0, κ > 0 s.t. for all x ∈ K, for all
x1,x2 ∈ B(x,η), for all y ∈ Y , ‖φ(x1,y)−φ(x2,y)‖ ≤ κ‖x1− x2‖.

Proof. Let K ⊂ G, K non-empty, and compact. From Lemma 2.7, there exists ρ > 0 s.t.
κ := sup(x,y)∈V (K,ρ)×Y ‖DG,1φ(x,y)‖ < +∞. We set η := ρ

2 . Let x ∈ K and x1,x2 ∈ B(x,η).
Since the balls are convex, we have [x1,x2] ⊂ B(x,η) ⊂ V (K,ρ). Using the mean value in-
equality ([1], Subsection 2.2.3, p. 143), we obtain, for all y ∈ Y , ‖φ(x1,y)− φ(x2,y)‖ ≤
supξ∈[x1,x2]

‖DG,1φ(ξ ,y)‖‖x1− x2‖ ≤ κ‖x1− x2‖. �

Remark 2.9. Noting that we do not use a condition of continuity on φ in Lemma 2.7, we
replace it by a condition of boundedness on the compact subsets. It is similar in Lemma 2.8 for
DG,1φ instead of φ . These lemmas permit us to replace the condition of partial differentiable
continuity in (A3) and (A4) of [3] by the conditions (AI2) and (AV2).

Lemma 2.10. Let X and Y be metric spaces and φ ∈C0([0,T ]×X ,Y ). The Nemytskii operator
Nφ : PC0([0,T ],X)→PC0([0,T ],Y ), defined by Nφ (z) := [t 7→ φ(t,z(t))] when z∈PC0([0,T ],X),
is well defined and continuous. Moreover, Nφ (NPC0

R([0,T ],X))⊂ NPC0
R([0,T ],Y ).

Proof. Let z ∈ PC0([0,T ],X); we set w(t) := φ(t,z(t)) when t ∈ [0,T ]. Since φ is continu-
ous, we have, for all t ∈ [0,T [, w(t+) = φ(t,z(t+)) and, for all t ∈ ]0,T ], w(t−) = φ(t,z(t−)).
Since the set of discontinuity points of z, discont(z), is finite, discont(w) is necessarily finite,
and so w ∈ PC0([0,T ],Y ). We denote by G (z) the graph of z. Since z ∈ PC0([0,T ],X),
cl(G (z)) is compact and then, we can use the Heine-Schwartz lemma ([13] p. 355, note
(**)) and assert that: ∀ε > 0, ∃dε > 0, ∀(t,s) ∈ [0,T ], ∀ξ ∈ X , |t − s|+ d(z(t),ξ ) ≤ dε ⇒
d(φ(t,z(t)),φ(s,ξ )) ≤ ε. Hence, ∀ε > 0, ∃dε > 0, ∀t ∈ [0,T ], ∀ξ ∈ X , d(z(t),ξ ) ≤ dε ⇒
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d(φ(t,z(t)),φ(t,ξ ))≤ ε. Let ε > 0. If z1 ∈ PC0([0,T ],X) satisfies sup0≤t≤T d(z(t),z1(t))≤ dε ,
then sup0≤t≤T d(φ(t,z(t)),φ(t,z1(t)))≤ ε . The continuity of Nφ at z is proven. Therefore, Nφ is
well defined and continuous. Moreover, when z ∈ NPC0

R([0,T ],X), since z is right-continuous
on [0,T [ and φ is continuous, we have also Nφ (z) ∈ NPC0

R([0,T ],Y ). �

Lemma 2.11. Let 0= s0 < s1 < ...< sn< sn+1 =T , and, for all i∈{0, ...,n}, hi ∈PC0([0,T ],E).
We consider h : [0,T ]→ E defined by h(t) = ∑0≤i≤n−1 1[si,si+1[(t)hi(t)+ 1[sn,T ](t)hn(t) when
t ∈ [0,T ]. We have h ∈ PC0([0,T ],E).

Proof. Note that discont(h)⊂ {si : 0 ≤ i ≤ n+ 1}∪
⋃

0≤i≤n discont(hi). Hence, discont(h) is
finite. When t ∈ [0,T [, we have h(t+) = ∑0≤i≤n−1 1[si,si+1[(t+)hi(t+)+1[sn,T ](t+)hn(t+) and,
when t ∈ ]0,T ], h(t−) = ∑0≤i≤n−1 1[si,si+1[(t−)hi(t−) + 1[sn,T ](t−)hn(t−). This proves h ∈
PC0([0,T ],E). �

Now, we consider the linearization of the evolution equation

dy(t) = DF,2 f (t,x0(t),u0(t)) · y(t). (2.5)

We denote by R(·, ·) the resolvent of (2.5). We know that, for all (t,s) ∈ [0,T ]2, R(t, ·) ∈
PC1([0,T ],L (E,E)) and R(·,s) ∈ PC1([0,T ],L (E,E)). For all a ∈ B‖·‖1(0,δ (S))∩R

N
+, we

also consider the following Cauchy problem on an inhomogeneous ODE:

dza(t) = DF,2 f (t,x0(t),u0(t)) · za(t)+ f (t,x0(t),ua(t))− f (t,x0(t),u0(t))
z(0) = 0.

}
(2.6)

We denote by za the non extendable solution of (2.6). Since (2.6) is an inhomogeneous linear
ODE, za is defined on all over [0,T ].

Lemma 2.12. We consider the linear mapping L : RN → E, defined by L ·a := ∑
N
i=1 aiR(T, ti) ·

[ f (ti,x0(ti),vi)− f (ti,x0(ti),u0(ti))] when a=(a1, ...,aN)∈RN . There exists ρ1 : B‖·‖1(0,δ (S))∩
RN
+ → E s.t. lim

a→0
ρ1(a) = 0 and, for all a ∈ B‖·‖1(0,δ (S)) ∩R

N
+, za(T ) = z0(T ) + L · a +

‖a‖1ρ1(a).

Proof. For all a ∈ B‖·‖1(0,δ (S))∩R
N
+, the second member of (2.6) is ∆a, defined by ∆a(t) := 0

when t /∈
⋃

1≤i≤N Ii(a) and ∆a(t) := f (t,x0(t),vi)− f (t,x0(t),u0(t)) when t ∈ Ii(a) (1≤ i≤ N).
Using Lemma 2.10 and 2.11, we see that ∆a ∈PC0([0,T ],E). Since R(t, ·) is continuous, R(t, ·) ·
∆a ∈ PC0([0,T ],E), hence it is Riemann integrable. Using the Variation of Constants formula,
we can write za(t) = za(0)+

∫ t
0 R(t,s) ·∆a(s)ds. Note that z0 = 0 since the second member of

(2.6) is zero and the initial value is zero. Hence, we have, for all a ∈ B‖·‖1(0,δ (S))∩R
N
+,

za(T )− z0(T )−L ·a =
N

∑
i=1

∫
Ii(a)

R(T,s) ·∆a(s)ds−
N

∑
i=1

aiR(T, ti) ·∆a(ti)

=
N

∑
i=1

∫
Ii(a)

(R(T,s) ·∆a(s)−R(T, ti) ·∆a(ti))ds.

We set, for all i ∈ {1, ...,N}, φi(a) := 0 if ai = 0 and

φi(a) :=
1
ai

∫ ti+bi+ai

ti+bi

[R(T,s) ·∆(s,a)−R(T, ti) ·∆(ti)]ds. (2.7)
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if ai 6= 0. Hence, we obtain the following relation

za(T ) = z0(T )+L ·a+ ∑
1≤i≤N

aiφi(a). (2.8)

We introduce the mappings, ψi : [0,1]× (B‖·‖1(0,δ (S))∩R
N
+)→ E, (1≤ i≤ N), defined by

ψi(θ ,a) := R(T, ti +bi +θai) ·∆a(ti +bi +θai,a)−R(T, ti) ·∆a(ti). (2.9)

Note that ψi(·,a) ∈ PC0([0,1],E) and so it is Riemann integrable and using a change of vari-
able, we obtain φi(a) :=

∫ 1
0 ψi(θ ,a)dθ (1 ≤ i ≤ N). Since x0 and R(T, ·) are continuous, since

u0 is right-continuous, we have lim
a→0

x0(ti + bi + θai) = x0(ti), lim
a→0

u0(ti + bi + θai) = u0(ti),

lim
a→0

R(T, ti +bi +θai) = R(T, ti), and then we obtain lim
a→0

ψi(θ ,a) = 0 for all θ ∈ [0,1] and also

lim
a→0
‖ψi(θ ,a)‖= 0 for all θ ∈ [0,1]. (2.10)

Since ∆a ∈ PC0([0,T ],E) and since a is not present in the formula of ∆a, we see that

∃c1 ∈ R+, ∀a ∈ B‖·‖1(0,δ (S))∩R
N
+, ∀t ∈ [0,T ], ‖∆a(t)‖ ≤ c1. (2.11)

Consequently, we obtain, for all θ ∈ [0,1] and for all a ∈ B‖·‖1(0,δ (S))∩R
N
+,

‖ψi(θ ,a)‖ ≤ 2 sup
0≤s≤T

‖R(T,s)‖‖∆a(s)‖ ≤ 2‖R(T, ·)‖∞c1. (2.12)

Since ‖ψi(·,a)‖ ∈ PC0([0,T ],R), it is Riemann integrable and also Borel integrable on [0,1],
and since the constants are Riemann integrable on [0,1], with (2.10) and (2.12) we can use the
theorem of the Dominated Convergence of Lebesgue to obtain

lim
a→0

∫ 1

0
‖ψi(θ ,a)‖dθ =

∫ 1

0
lim
a→0
‖ψi(θ ,a)‖dθ = 0.

Since, for all a ∈ B‖·‖1(0,δ (S))∩R
N
+, ‖φi(a)‖ ≤

∫ 1
0 ‖ψi(θ ,a)‖dθ , we obtain lim

a→0
‖φi(a)‖ = 0,

i.e. lim
a→0

φi(a) = 0. Setting, for all a ∈ RN
+∩B‖·‖1(0,δ (S)), ρ1(a) := 0 when a = 0 and ρ1(a) :=

1
‖a‖1

∑
N
i=1 aiφi(a) when a 6= 0, we see that lima→0 ρ1(a) = 0, and we have proven the lemma. �

Lemma 2.13. There exists k ∈ R+∗, for all a ∈ B‖·‖1(0,δ (S))∩R
N
+, we have∫ T

0
‖ f (t,x0(t),ua(t))− f (t,x0(t),u0(t))‖dt ≤ k‖a‖1.

Proof. We set k := c1 provided by (2.11). Let a ∈ RN
+ ∩ B‖·‖1(0,δ (S)). Using the Chasles

relation, we have∫ T

0
‖ f (t,x0(t),ua(t))− f (t,x0(t),u0(t))‖dt =

∫ T

0
‖∆a(t)‖dt

=
N

∑
i=1

∫ ti+bi+ai

ti+bi

‖∆a(t)‖dt ≤ c1

N

∑
i=1

ai = k‖a‖1.

�

The discontinuity points of u0 are denoted by τ j (0 ≤ j ≤ k+ 1). We consider the set M :=
(
⋃

0≤i≤k cl(u0([τi,τi+1]))∪{vi : 1≤ i≤ N}, which is compact as a finite union of compacts.
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Lemma 2.14. There exist L ∈ R+∗ and r ∈ R+∗ such that, ∀t ∈ [0,T ], ∀ξ ,ξ1 ∈ B(x0(t),r),
∀ζ ∈M, ‖ f (t,ξ ,ζ )− f (t,ξ1,ζ )‖ ≤ L‖ξ −ξ1‖.

Proof. We set K := x0([0,T ]), which is compact and non-empty. Using (AV1) and (AV2), we
can apply Lemma 2.8 to the mapping φ(ξ ,(t,ζ )) := f (t,ξ ,ζ ) with Y := [0,T ]×M to obtain
the result. �

Setting r1 := re−L·T , we consider the set X := B(x0,r1) ⊂ C0([0,T ],Ω) ⊂ C0([0,T ],E).
This last vector space is endowed with the norm of Bielecki ‖ϕ‖b := supt∈[0,T ](e

−Lt‖ϕ(t)‖)
for which it is a Banach space (see [7], p.56). When a ∈ B‖·‖1(0,δ (S))∩R

N
+, we consider the

operator Φa : X →C0([0,T ],E) defined by

Φa(x) := [t 7→ ξ0 +
∫ t

0
f (s,x(s),ua(s))ds]. (2.13)

This operator was used in [3].

Lemma 2.15. The following assertions hold.
(i) There exists r2 ∈ R+∗ s.t. for all a ∈ RN

+, ‖a‖1 ≤ r2⇒Φa(X )⊂X .
(ii) For all a ∈ B‖·‖1(0,r2)∩RN

+, for all x,z ∈X , ‖Φa(x)−Φa(z)‖b ≤ (1−e−L·T )‖x− z‖b.
(iii) For all x ∈X , the mapping [a 7→Φa(x)] is continuous from B‖·‖1(0,r2)∩RN

+ into X .

Proof. Using Lemma 2.13 instead of Lemma 4.1 in [3] and Lemma 2.14 instead of Lemma 4.2,
the proof of (i) is similar to the proof of Lemma 4.3 of [3], the proof of (ii) is similar to the
proof of Lemma 4.4 of [3], and the proof of (iii) is similar to the proof of Lemma 4.5 of [3] �

Lemma 2.16. The following assertions hold.
(i) For all a∈B‖·‖1(0,r2)∩RN

+, there exists a solution xa of the Cauchy problem (2.4) which
is defined on [0,T ] all over.

(ii) The mapping [a 7→ xa], from B‖·‖1(0,r2)∩RN
+ into X , is continuous.

(iii) There exists k1 ∈ R+∗ such that, ∀a ∈ B‖·‖1(0,r2)∩RN
+, ∀t ∈ [0,T ], ‖x(t,a)− x0(t)‖ ≤

k1‖a‖1.

Proof. For (i) and (ii), the proof is similar to the proof of the Proposition 4.1 in [3], and the only
difference is to use the Lemma 2.15 of the present paper instead of Lemmas 4.3, 4.4, 4.5 of [3].

For (iii), we set k1 = keL·T . Let a ∈ B‖·‖1(0,r2)∩RN
+. Since xa is a fixed point of Φa and x0 is

a fixed point of Φ0, for all t ∈ [0,T ], we have xa(t)− x0(t) = ξ0 +
∫ t

0 f (s,xa(s),ua(s))ds−ξ0−∫ t
0 f (s,x0(s),u0(s))ds, which implies

‖xa(t)− x0(t)‖ ≤
∫ t

0
‖ f (s,xa(s),ua(s))− f (s,x0(s),u0(s))‖ds

≤
∫ t

0
‖ f (s,xa(s),ua(s))− f (s,x0(s),ua(s))‖ds

+
∫ t

0
‖ f (s,x0(s),ua(s))− f (s,x0(s),u0(s))‖ds.

Using Lemma 2.13 and 2.14, we have ‖xa(t)− x0(t)‖ ≤
∫ t

0(L‖xa(s)− x0(s)‖)ds+ k‖a‖1. Con-
sequently, using the lemma of Gronwall ([8], p.24), we obtain, ∀t ∈ [0,T ],

‖xa(t)− x0(t)‖ ≤ k‖a‖1e
∫ T

0 Lds = k1‖a‖1,
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and so (iii) is proven. �

Lemma 2.17. There exists ρ : B‖·‖1(0,r2)∩RN
+ → E s.t. lim

a→0
ρ(a) = 0 and s.t. for all a ∈

B‖·‖1(0,r2)∩RN
+, xa(T ) = x0(T )+L ·a+‖a‖1ρ(a), where L is provided by Lemma 2.12.

Proof. We arbitrarily fix a ∈ B‖·‖1(0,r2)∩RN
+, and we introduce, ∀t ∈ [0,T ],

ya(t) = (xa(t)− za(t))− (x0(t)− z0(t)) = xa(t)− za(t)− x0(t). (2.14)

and
γa(t) := dya(t)−DF,2 f (t,x0(t),u0(t)) · ya(t). (2.15)

Doing a straightforward calculation, we obtain

dya(t) = f (t,xa(t),ua(t))−DF,2 f (t,x0(t),u0(t)) · za(t)− f (t,x0(t),ua(t)).

Consequently, ∀t ∈ [0,T ],

γa(t) := f (t,xa(t),ua(t))− f (t,x0(t),ua(t))−DF,2 f (t,x0(t),u0(t)) · (xa(t)− x0(t)). (2.16)

For all t ∈ [0,T ], we define ε1
a (t) := 0 if xa(t)= x0(t), and ε1

a (t) := 1
‖xa(t)−x0(t)‖( f (t,xa(t),ua(t))−

f (t,x0(t),ua(t))−DF,2 f (t,x0(t),ua(t)) ·(xa(t)−x0(t))) if xa(t) 6= x0(t). We also define ε2
a (t) =

DF,2 f (t,x0(t),ua(t))−DF,2 f (t,x0(t),u0(t)). Doing a straightforward calculation, we obtain

γa(t) = ‖xa(t)− x0(t)‖ε1
a (t)+ ε

2
a (t) · (xa(t)− x0(t)). (2.17)

Now, we study the properties of ε1
a . Let a ∈ B‖·‖1(0,r2)∩RN

+. Let t0 ∈ [0,T ] s.t. xa(t0) =
x0(t0). Since xa and x0 are continuous, there exists ν > 0 s.t. xa(t) 6= x0(t) when t ∈ ]t0−ν , t0+
ν [. Using the continuity of xa and x0, the piecewise continuity of ua and u0, the continuity of f ,
Lemma 2.10 and (AV1), we obtain that ε1

a (t0+) and ε1
a (t0−) exist in E. When xa(t0) 6= x0(t0),

from the existence of DF,2 f (t,x0(t),ua(t)), we have

∀ε > 0, ∃dε,a > 0, ∀ξ ∈ E,‖ξ − x0(t)‖ ≤ dε,a⇒
‖ f (t,ξ ,ua(t))− f (t,x0(t),ua(t))
−DF,2 f (t,x0(t),ua(t)) · (ξ − x0(t))‖ ≤ ε‖ξ − x0(t)‖.

 (2.18)

Since lim
t→t0

(xa(t)− x0(t)) = xa(t0)− x0(t0) = 0, when we fix ε > 0, there exists bε,a > 0 s.t.

t0 < t < t0 +bε,a⇒‖xa(t)− x0(t)‖ ≤ dε,a

⇒

‖ f (t,xa(t),ua(t))− f (t,x0(t),ua(t))−DF,2 f (t,x0(t),ua(t)) · (xa(t)−x0(t))‖ ≤ ε‖xa(t)−x0(t)‖

thanks to (2.18). Therefore ‖ε1
a (t)‖ ≤ ε if xa(t) 6= x0(t) or if xa(t) = x0(t). Hence, we have

proven that ‖ε1
a (t0+)‖= 0. Similarly, we obtain ‖ε1

a (t0−)‖= 0. Consequently, we have proven

‖ε1
a‖ ∈ Reg([0,T ],R), (2.19)

where Reg([0,T ],R) denotes the space of the regulated functions from [0,T ] into R cf. [5]
(Chapter 7, Section 6). Hence, ‖ε1

a‖ is Riemann integrable on [0,T ] and also Borel integrable
on [0,T ]. From (AV2), we know that L1 := supζ∈M ‖DF,2 f (t,x0(t),ζ )‖ < +∞. Using Lemma
2.14, we obtain ‖ε1

a (t)‖ ≤max{0,L}+L1 =: L2, and so

∃L2 ∈ R+∗, ∀a ∈ B‖·‖1(0,r2)∩RN
+, ∀t ∈ [0,T ], ‖ε1

a (t)‖ ≤ L2. (2.20)
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We introduce the mapping Θ : Ω× [0,T ]×U → E defined by

Θ(ξ , t,ζ ) :=
1

‖ξ − x0(t)‖
( f (t,ξ ,ζ )− f (t,x0(t),ζ )−DF,2 f (t,x0(t),ζ ) · (ξ − x0(t)))

when ξ 6= x0(t) and Θ(ξ , t,ζ ) = 0 when ξ = x0(t). We fix (t,ζ ) ∈ [0,T ]×U . From (AV1), for
all ε > 0, there exists dε > 0 s.t.

‖ξ −x0(t)‖ ≤ dε ⇒‖ f (t,ξ ,ζ )− f (t,x0(t),ζ )−DF,2 f (t,x0(t),ζ ) ·(ξ −x0(t))‖ ≤ ε‖ξ −x0(t)‖,

which implies
∀(t,ζ ) ∈ [0,T ]×U, lim

ξ→x0(t)
Θ(ξ , t,ζ ) = 0. (2.21)

Fix t ∈ [0,T ]. For all a ∈ B‖·‖1(0,r2)∩RN
+, we have

‖ε1(t,a)‖= ‖Θ(xa(t), t,ua(t))‖= ‖1[0,t1[(t)Θ(xa(t), t,u0(t))+
∑

N
i=1 1Ii(a)(t)Θ(xa(t), t,vi)+∑

N−1
i=1 1[ti+bi(a)+ai,ti+1+bi+1(a)[(t)Θ(xa(t), t,u0(t))

+1[tN+bN(a)+aN ,T ](t)Θ(xa(t), t,u0(t))‖.
≤ (N +1)‖Θ(xa(t), t,u0(t))‖+∑

N
i=1 ‖Θ(xa(t), t,vi)‖.

Using (2.21), we obtain
∀t ∈ [0,T ], lim

a→0
‖ε1

a (t)‖= 0. (2.22)

From (2.19), (2.20), (2.22), and the Dominated Convergence Theorem of Lebesgue, since the
constants are Lebesgue integrable, we obtain

lim
a→0

∫ T

0
‖ε1

a (t)‖dt =
∫ T

0
lim
a→0
‖ε1

a (t)‖dt = 0. (2.23)

Using (AV1) and Lemma 2.10, we see that ε2
a is a difference of two piecewise continuous

functions on [0,T ]. Consequently, we have

for all a ∈ B‖·‖1(0,r2)∩RN
+, ‖ε2

a‖ ∈ PC0([0,T ],R). (2.24)

Thus ‖ε2
a‖ is Riemann integrable and Lebesgue integrable on [0,T ]. Besides, we have also∫ T

0 ‖ε2
a (t)‖dt ≤ ∑1≤i≤N

∫ ti+bi+ai
ti+bi

(2L1)dt = 2L1‖a‖1, and so we obtain

lim
a→0

∫ T

0
‖ε2

a (t)‖dt = 0. (2.25)

From (2.17), (2.23), and (2.25), we have ‖γa(t)‖≤ ‖xa(t)−x0(t)‖‖ε1(t,a)‖+‖ε2(t,a)‖‖xa(t)−
x0(t)‖ ≤ k1‖a‖1(‖ε1

a (t)‖+ ‖ε2
a (t)‖)⇒

∫ T
0 ‖γa(t)‖dt ≤ k1‖a‖1(

∫ T
0 ‖ε1

a (t)‖dt +
∫ T

0 ‖ε2
a (t)‖dt).

Consequently, using (2.23) and (2.25), we have

lim
a→0

(
1
‖a‖

∫ T

0
‖γa(t)‖dt

)
= 0. (2.26)

From (2.15) and the formula of the Variation of Constants, we obtain ya(T ) =
∫ T

0 R(T,s) ·
γa(s)ds. We introduce ϖ(a) := 0 when a = 0 and ϖ(a) := 1

‖a‖
∫ T

0 R(T,s) · γa(s)ds when a 6= 0;
hence we have ya(T ) = ‖a‖1ϖ(a). Since R(T, ·) is piecewise continuous, it is bounded. We
set q := sup0≤s≤T ‖R(T,s)‖. We have ‖ϖ(a)‖ ≤ q. 1

‖a‖
∫ T

0 ‖γa(s)‖ds when a 6= 0, and using
(2.26), we obtain lim

a→0
‖ϖ(a)‖ = 0, i.e. lim

a→0
ϖ(a) = 0. Using (2.14) and Lemma 2.12, we
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obtain that xa(T ) = x0(T ) + za(T ) + ya(T ) = x0(T ) + L · a + ‖a‖1(ρ1(a) + ϖ(a)). Setting
ρ(a) := ρ1(a)+ϖ(a), we have lim

a→0
ρ(a) = 0. The lemma is proven. �

Lemma 2.18. Let S = ((ti,vi))1≤i≤N ∈ S. There exist (λ S
α)0≤α≤m ∈R1+m and (µS

β
)1≤β≤q ∈Rq

which satisfy the following conditions.

(a) (λ S
α)0≤α≤m and (µS

β
)1≤β≤q are not simulteanously equal to zero.

(b) ∀α ∈ {0, ...,m}, λ S
α ≥ 0.

(c) ∀α ∈ {1, ...,m}, λ S
αgα(x0(T )) = 0.

(d) ∀i ∈ {1, ...,N}, p(ti)[ f (ti,x0(ti),vi)− f (ti,x0(ti),u0(ti))]≤ 0, where
p(t) := (∑m

α=0 λ S
αDHgα(x0(T )) +∑

q
β=1 µS

β
DHhβ (x0(T )))R(T, t), R(t,s) being defined

just before Lemma 2.12.

Proof. Using Lemma 2.17, the Proposition 4.2 of [3] ensures the existence of r3 ∈ ]0,r2] and a
function x̃ ∈C0(B‖·‖1(0,r3),Ω) which is Fréchet differentiable at a = 0 and which satisfies, for
all a ∈ B‖·‖1(0,r3)∩RN

+, x̃(a) = xa(T ), and DF x̃(0) = L ·a. Since (x0,u0) is a solution of (M ),
a = 0 is a solution of the following finite-dimensional optimization problem

(F 1
S ) :=


Maximize g0(x̃(a))
subject to a ∈ B(0,r3)

∀α ∈ {1, ...,m}, gα(x̃(a))≥ 0
∀β ∈ {1, ...,q}, hβ (x̃(a)) = 0
∀i ∈ {1, ...,N}, b∗i a≥ 0

where (b∗i )1≤i≤N is the dual basis of the canonical basis of RN . Since x̃ is Fréchet differentiable
at 0, we have from (AT1) and (AT2) that gα ◦ x̃ when α ∈ {0, ...,m} and hβ ◦ x̃ when β ∈
{1, ...,q} are Hadamard differentiable at 0. Moreover, since x̃ ∈ C0(B‖·‖1(0,r3),Ω), by using
(AT2), for all β ∈ {1, ...,q}, hβ ◦ x̃ is continuous on a neighborhood of 0. Hence we can use the
Multiplier rule of [14] (Theorem 2.2) to obtain our result. �

With respect to Lemma 5.1 of [3], in Lemma 2.18, the Hadamard differentiability replaces
the Fréchet differentiability. To finish the proof of Theorem 2.4, we exactly proceed as in
Subsection 5.2 of [3]. We just recall the schedule of the reasoning. For all S ∈ S, we consider
K(S), which is the set of the ((λα)0≤α≤m,(µβ )1≤β≤q) ∈ R1+m+q which satisfy the conclusions
(a,b,c,d) of Lemma 2.18 and ∑0≤α≤m |λα |+∑1≤β≤q |µβ | = 1. Σ(0,1) being the unit sphere of
R1+m+q, K(S) is a non-empty closed subset of Σ(0,1). Since Σ(0,1), (K(S))S∈S possesses the
finite intersection property ([10], p.31) and consequently we have

⋂
S∈SK(S) 6= /0. An element

of this intersection is convenient for the conclusions (NN), (Si), (S`), (AE.M), and (MP.M) of
Theorem 2.4. The conclusions (CH.M) is proven by Lemma 5.2 of [3]. The proof of Corollary
2.5 is similar to the proof of Part (II) of Theorem 2.2 in [3] which is given in Subsection 5.3
in [3]. To prove assertion (i) of Corollary 2.6, we proceed by contradiction. We assume the
existence of s ∈ [0,T ] s.t. (λ0, p(s)) = (0,0). Since p(s) = 0, we have p(T ) = 0 since (AE.M)
is linear homogeneous. From (TC), we have ∑

m
α=1 λαDHgα(x0(T ))+∑

q
β=1 µβ DHhβ (x0(T )) =

0. Hence using (TC), (Si), (S`), (QC, 1) implies that (∀α ∈ {1, ...,m},λα = 0) and (∀β ∈
{1, ...,q},µβ = 0). Moreover, since λ0 = 0, we obtain a contradiction with (NN). The proof of
assertion (ii) of Corollary 2.6 is similar to the proof of Part (III) of Theorem 2.2 in [3].
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To prove assertion (iii) of Corollary 2.6, we proceed by contradiction. We assume that λ0 = 0.
Since DG,3 f (t̂,x0(t̂),u0(t̂)) exists, DG,3HM(t̂,x0(t̂),u0(t̂), p(t̂)) exists and DG,3HM(t̂,x0(t̂),u0(t̂), p(t̂))=
p(t̂)◦DG,3 f (t̂,x0(t̂),u0(t̂)). Therefore, by using (MP.M), we have p(t̂)◦DG,3 f (t̂,x0(t̂),u0(t̂)) =
0. Since DG,3 f (t̂,x0(t̂),u0(t̂)) is surjective, we have p(t̂) = 0. Hence, (λ0, p(t̂)) = 0 that is a
contradiction with the assertion (i). We have proven that λ0 6= 0, and it suffices to divide all the
multipliers and p by λ0 to obtain the assertion (iii).

To prove the assertion (iv) of Corollary 2.6, we begin to prove that λ0 6= 0. To do that,
we proceed by contradiction, we assume that λ0 = 0. Since DG,3 f (T,x0(T ),u0(T )) exists,
DG,3HM(T,x0(T ),u0(T ), p(T )) exists and we have DG,3HM(T,x0(T ),u0(T ), p(T )) = p(T ) ◦
DG,3 f (T,x0(T ),u0(T )). From (MP.M), we obtain p(T ) ◦DG,3 f (T,x0(T ),u0(T )) = 0. From
(TC), we obtain

m

∑
α=1

λαDHgα(x0(T ))◦DG,3 f (T,x0(T ),u0(T ))+
q

∑
β=1

µβ DHhβ (x0(T ))◦DG,3 f (T,x0(T ),u0(T ))

= p(T )◦DG,3 f (T,x0(T ),u0(T )) = 0.

By using (LI), we obtain ((λα)1≤α≤m,(µβ )1≤β≤q) = 0, which is a contradiction with (NN).
Hence, we have proven that λ0 6= 0. Dividing λα ,µβ , p by λ0, we normalize all these terms,
and we have λ0 = 1. To prove the uniqueness, let ((λ 1

α)0≤α≤m,(µ
1
β
)1≤β≤q, p1) ∈ R1+m+q×

PC1([0,T ],E∗) which satisfy the conclusions of the Theorem 2.4 are verified with λ 1
0 = 1.

From (MP.M), we have, p1(T )◦DG,3 f (T,x0(T ),u0(T )) = 0. Thus

(p(T )− p1(T ))◦DG,3 f (T,x0(T ),u0(T )) = 0.

From (TC), we obtain
m

∑
α=1

(λα −λ
1
α)DHgα(x0(T ))◦DG,3 f (T,x0(T ),u0(T ))

+
q

∑
β=1

(µβ −µ
1
β
)DHhβ (x0(T ))◦DG,3 f (T,x0(T ),u0(T )) = 0.

Hence, using (LI), (λα)0≤α≤m = (λ 1
α)0≤α≤m and (µβ )1≤β≤q = (µ1

β
)1≤β≤q. Consequently, us-

ing (TC), we obtain p(T ) = p1(T ). Using the uniqueness of the solution of a Cauchy problem
on (AE.M), we obtain p = p1. Corollary 2.6 is proven.

2.4. Proof of the results of the problem of Bolza. As in [3], we transform the problem of
Bolza into a problem of Mayer to deduce Theorem 2.1 from Theorem 2.4. That is why, we
introduce an additional state variable denoted by σ . We set X := (σ ,ξ ) ∈ R×Ω as a new
state variable; we set F(t,(σ ,ξ ),ζ ) := ( f 0(t,ξ ,ζ ), f (t,ξ ,ζ )) as the new vectorfield; we set
G0(σ ,ξ ) := σ +g0(ξ ), Gα(σ ,ξ ) := gα(ξ ) when α ∈ {1, ...,m}, and we set Hβ (σ ,ξ ) := hβ (ξ )
when β ∈ {1, ...,q}. We formulate the new following problem of Mayer:

(MB)


Maximize G0(X(T ))
subject to X ∈ PC1([0,T ],R×Ω),u ∈ NPC0

R([0,T ],U)
dX(t) = F(t,X(t),u(t)), X(0) = (0,ξ0)
∀α ∈ {1, ...,m}, Gα(X(T ))≥ 0
∀β ∈ {1, ...,q}, Hβ (X(T )) = 0.
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Proceeding as in the section 6 of [3], the proofs of Theorem 2.1, of Corollary 2.2 and of asser-
tion (i) of Corollary 2.3 are similar to the proof of Theorem 2.1, Part (I), Part (II), and Part (III)
of [3].
Proof of assertion (ii) of Corollary 2.3.
First we want to prove that λ0 6= 0. To do that, we proceed by contradiction, we assume that
λ0 = 0. Using (MP.B), we obtain p(t̂) ◦DG,3 f (t̂,x0(t̂),u0(t̂)) = 0. Since DG,3 f (t̂,x0(t̂),u0(t̂))
is onto, we have necessarily p(t̂) = 0. Since we have assumed (QC,1), (λ0, p(t̂)) = (0,0) pro-
vides a contradiction after assertion (i) of Corollary 2.3. Hence we have proven that λ0 6= 0. To
conclude it suffices to divide λ0, ...,λm,µ1, ...,µq and p by λ0.
Proof of assertion (iii) of Corollary 2.3.
First we want to prove that λ0 6= 0. To do that, we proceed by contradiction, we assume
that λ0 = 0. Using (MP.B), we obtain p(T ) ◦DG,3 f (T,x0(T ),u0(T )) = 0. That is why, us-
ing (TC), we obtain ∑

m
α=1 λαDHgα(x0(T ))◦DG,3 f (T,x0(T ),u0(T ))+∑

q
β=1 µβ DHhβ (x0(T ))◦

DG,3 f (T,x0(T ),u0(T )) = p(T ) ◦DG,3 f (T,x0(T ),u0(T )) = 0. It follows from (LI) that (∀α ∈
{1, ...,m}, λα = 0) and (∀β ∈ {1, ...,q}, µβ = 0); hence we have ((λα)0≤α≤m,(µβ )1≤β≤q) =
(0,0); which contradicts (NN). We have proven that λ0 6= 0. We conclude as in the proof of (ii).
Proof of assertion (iv) of Corollary 2.3.
From assertion (iii), we know that there exists ((λα)0≤α≤m,(µβ )1≤β≤q) with λ0 = 1, and p
which satisfy the conclusions of Theorem 2.1. Let ((λ 1

α)0≤α≤m,(µ
1
β
)1≤β≤q) with λ 1

0 = 1, and
p1 which satisfy the conclusions of Theorem 2.1. Using (MP.B), we have

p1(T )◦DG,3 f (T,x0(T ),u0(T ))+DG,3 f 0(T,x0(T ),u0(T )) = 0

and
p(T )◦DG,3 f (T,x0(T ),u0(T ))+DG,3 f 0(T,x0(T ),u0(T )) = 0.

Using twice (TC), we obtain ∑
m
α=1(λα−λ 1

α)DHgα(x0(T ))◦DG,3 f (T,x0(T ),u0(T ))+∑
q
β=1(µβ−

µ1
β
)DHhβ (x0(T )) ◦DG,3 f (T,x0(T ),u0(T )) = 0. The linear independence provided by (LI)

implies (∀α ∈ {1, ...,m}, λα − λ 1
α = 0) and (∀β ∈ {1, ...,q}, µβ − µ1

β
= 0). Consequently,

we have ((λα)0≤α≤m,(µβ )1≤β≤q) = ((λ 1
α)0≤α≤m,(µ

1
β
)1≤β≤q). Using twice (TC), we obtain

p(T ) = p1(T ). Using (AE.B) and the uniqueness of the solution of a Cauchy problem, we
obtain p = p1. We have proven the uniqueness.

3. ENVELOPE THEOREMS

X is a Banach space, Y and Z are real normed spaces, Ω is a non-empty open subset of X , and
U is a non-empty open subset of Y , f 0 : [0,T ]×Ω×U ×Z→ R, f : [0,T ]×Ω×U ×Z→ X
gi : Ω×Z→ R (0 ≤ i ≤ m) and h j : Ω×Z→ R (1 ≤ j ≤ q) are mappings. Let ξ0 ∈ Ω, for all
π ∈ Z, we consider the following problem of Bolza.

(B,π)


Maximize

∫ T
0 f 0(t,x(t),u(t),π)dt +g0(x(T ),π)

subject to x ∈ PC1([0,T ],Ω),u ∈ NPC0
R([0,T ],U)

∀t ∈ [0,T ], dx(t) = f (t,x(t),u(t),π), x(0) = ξ0
∀i ∈ {1, ...,m}, gi(x(T ),π)≥ 0
∀ j ∈ {1, ...,q}, h j(x(T ),π) = 0.
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The Hamiltonian of Pontryagin of this problem of Bolza is Hπ : [0,T ]×Ω×U×X∗×R→R,
defined by Hπ(t,ξ ,ζ , p,λ ) := p · f (t,ξ ,ζ ,π)+λ f 0(t,ξ ,ζ ,π) when t ∈ [0,T ],ξ ∈ Ω, ζ ∈U ,
p ∈ X∗ and λ ∈ R. For each π ∈ Z, we denote by V [π] the value of (B, π).

3.1. Main results. We fix π0 ∈ Z and we consider the following list of conditions.
Conditions on the solutions.

(SO) There exists an open neighborhood P of π0 in Z s.t., ∀π ∈ P, there exists (x[π],u[π]) ∈
PC1([0,T ],Ω)×NPC0

R([0,T ],U), a solution of (B,π). There exists δπ ∈ Z s.t.
D+

Gx[π0;δπ] and D+
Gu[π0;δπ] exist.

Conditions on the integrand of the criterion.
(IC1) f 0 ∈C0([0,T ]×Ω×U×P,R), and, ∀(t,ξ ,ζ ,π)∈ [0,T ]×Ω×U×P, DG,2 f 0(t,ξ ,ζ , π)

exists. Moreover, for all π ∈ P, for all non-empty compact K s.t. K ⊂Ω×U ,
sup(t,ξ ,ζ )∈[0,T ]×K ‖DG,2 f 0(t,ξ ,ζ ,π)‖<+∞.

(IC2) For all t ∈ [0,T ], DH,(2,3,4) f 0(t,x[π0](t),u[π0](t),π0) exists. Moreover, for all π ∈ P,
DH,3 f 0(T,x[π](T ),u[π](T ),π) exists, and the function
[π 7→ DH,3 f 0(T,x[π](T ),u[π](T ),π)] ∈C0(P,Y ∗).

(IC3) There exists κ ∈L 1(([0,T ],B([0,T ])),m1;R+), there exists ρ > 0 s.t.,
∀t ∈ [0,T ], ∀(ξ1,ζ1,π1), (ξ2,ζ2,π2) ∈ B‖·‖1((x[π0](t),u[π0](t),π0),ρ),

| f 0(t,ξ1,ζ1,π1)− f 0(t,ξ2,ζ2,π2)| ≤ κ(t)‖(ξ1,ζ1,π1)− (ξ2,ζ2,π2)‖.
(IC4) For all (t,ζ ,π) ∈ [0,T ]×U×P, DF,2 f 0(t,x[π](t),ζ ,π) exists and, ∀π ∈ P,

[(t,ζ ) 7→ DF,2 f 0(t,x[π](t),ζ ,π)] ∈C0([0,T ]×U,X∗),

where B([0,T ]) is the Borel tribe on [0,T ] and m1 is the canonical Borel measure on [0,T ].
Notice that (IC1) concerns the continuity and the partial Gâteaux differentiability; (IC2) con-
cerns the Hadamard differentiability, (IC3) concerns a partial Lipschitz condition, and (IC4)
concerns the partial Fréchet differentiability. if, x ∈C0(P,C0([0,T ],Ω)) and, for all t ∈ [0,T ],
f 0(t, ·, ·, ·) is Fréchet differentiable on Ω×U ×P, and if DF,(2,3,4) f 0 is continuous on [0,T ]×
Ω×U×P then (IC1)-(IC4) are fulfilled. In our approach we want to weaken the conditions on
f 0.
Conditions on the vector field.

(V1) For all π ∈ P, [(t,ξ ,ζ ) 7→ f (t,ξ ,ζ ,π)]∈C0([0,T ]×Ω×U,X), and, for all (t,ξ ,ζ ,π)∈
[0,T ]×Ω×U ×P, DG,2 f (t,ξ ,ζ , π) exists. Moreover, for all π ∈ P, for all non-empty
compact K s.t. K ⊂Ω×U , sup(t,ξ ,ζ )∈[0,T ]×K ‖DG,2 f (t,ξ ,ζ ,π)‖<+∞.

(V2) For all t ∈ [0,T ], DH,(2,3,4) f (t,x[π0](t),u[π0](t),π0) exist and, for all π ∈ P,
DH,3 f (T,x[π](T ),u[π](T ),π) exists.

(V3) For all (t,ζ ,π) ∈ [0,T ]×U×P, DF,2 f (t,x[π](t),ζ ,π) exists and, ∀π ∈ P,
[(t,ζ ) 7→ DF,2 f (t,x[π](t),ζ ,π)] ∈C0([0,T ]×U,L (X ,X)).

We can do a comment on (V1)-(V3) which is similar to the comment on (IC1)-(IC4) which is
given just after (IC4).
Conditions on the terminal constraints functions and the terminal function of the crite-
rion.
(CT1) For all φ ∈ {gi : 0 ≤ i ≤ m} ∪ {h j : 1 ≤ j ≤ q}, DHφ(x[π0](T ),π0) exists and, ∀π ∈

P, DH,1φ(x[π](T ),π) exists.
(CT2) For all π ∈ P, for all j ∈ {1, ...,q}, h j(·,π) is continuous on a neighborhood of x[π](T ).
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Conditions on the terminal constraints functions, the terminal function of the criterion
and the vector field.

(CVT1) (DH,1gi(x[π0](T ),π0)◦DH,3 f (T,x[π0](T ),u[π0](T ),π0),
DH,1h j(x[π0](T ),π0)◦DH,3 f (T,x[π0](T ),u[π0](T ),π0))1≤i≤m,1≤ j≤q is free.

(CVT2) For all φ ∈ {gi : 0≤ i≤ m}∪{h j : 1≤ j ≤ q},
[π 7→ DH,1φ(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π)] belongs to
C0(P,Y ∗).

Conditions on the control space
(ESP) There exists (·|·) an inner product on Y ∗ s.t. (·|·) ∈C0((Y ∗,‖ · ‖Y ∗)2,R).

Theorem 3.1. Under (SO), (IC1), (IC2), (IC3), (IC4), (V1), (V2), (V3), (CT1), (CT2), (CVT1),
(CVT2) and (ESP), D+

GV [π0;δπ] exists and
D+

GV [π0;δπ] = DH,2g0(x[π0](T ),π0) ·δπ +∑
m
i=1 λi[π0]DH,2gi(x[π0](T ),π0) ·δπ

+∑
q
j=1 µ j[π0]DH,2h j(x[π0](T ),π0) ·δπ

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t), where (λi[π0])0≤i≤m, with λ0[π0] =

1, (µ j[π0])1≤ j≤q (respectively p[π0]) are the unique multipliers (respectively the unique adjoint
function) of the Pontryagin Theorem applied to the solution (x[π0],u[π0]) of (B, π0).

In order to provide a result on the Gâteaux differentiability of V at π0, we introduce the follow-
ing strengthened conditions.

(SO-bis) For all δπ ∈ Z, D+
Gx[π0;δπ] and D+

Gu[π0;δπ] exists.
(V4) There exists c ∈L 1(([0,T ],B([0,T ])),m1;R+) s.t.

∀t ∈ [0,T ], ‖DH,4 f (t,x[π0](t),u[π0](t),π0)‖ ≤ c(t).

Corollary 3.2. Under the assumptions of Theorem 3.1, assuming in addition (SO-bis) and (V4),
V is Gâteaux differentiable at π0 and the formula of DGV [π0] is given by the formula of Theorem
3.1.

In order to provide a result on the continuous Fréchet differentiability of V , we introduce the
following strengthened conditions

(SO-ter) The functions [π 7→ x[π]] and [π 7→ u[π]] are continuous at π0 and, for all π ∈ P, for all
δπ ∈ Z, D+

Gx[π;δπ] and D+
Gu[π;δπ] exist.

(IC5) For all π ∈ P, for all t ∈ [0,T ], DH,(2,3,4) f 0(t,x[π](t),u[π](t),π) and, for all t ∈ [0,T ],
[π 7→ DH,(2,4) f 0(t,x[π](t),u[π](t),π)] ∈C0(P,(X×Z)∗).

(IC6) For all π ∈ P, [t 7→ DH,4 f 0(t,x[π](t),u[π](t),π)] belongs to
L 0(([0,T ],B([0,T ])),(Z∗,B(Z∗))).

(V5) For all π ∈P, for all t ∈ [0,T ], DH,(2,3,4) f (t,x[π](t),u[π](t),π) exist and for all t ∈ [0,T ],
[π 7→ DH,(2,4) f (t,x[π](t),u[π](t),π)] ∈C0(P,L (X×Z,X)).

(V6) For all π ∈ P, [t 7→ DH,4 f (t,x[π](t),u[π](t),π)] belongs to
L 0(([0,T ],B([0,T ])),(L (Z,X),B(L (Z,X))) and there exists
c ∈L 1(([0,T ],B([0,T ])),m1;R+) s.t. ∀t ∈ [0,T ], ∀π ∈ P,
‖DH,(2,4) f (t,x[π](t),u[π](t),π)‖ ≤ c(t).

(CT3) For all φ ∈ {gi : 0≤ i≤m}∪{h j : 1≤ j≤ q}, for all π ∈P, φ is Hadamard differentiable
at (x[π](T ),π) and, [π 7→ DHφ(x[π](T ),π)] ∈C0(P,(X×Z)∗).
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L 0 denotes the space of all measurable functions.

Corollary 3.3. Under the assumptions of Corollary 3.2, if, in addition (SO-ter), (IC5), (IC6),
(V5), (V6) and (CT3) are fulfilled, then V is continuously Fréchet differentiable on W which is
an open neighborhood of π0 and for all π ∈W, for all δπ ∈ Z,
DFV [π] ·δπ = DH,2g0(x[π](T ),π) ·δπ +∑

m
i=1 λi[π]DH,2gi(x[π](T ),π) ·δπ

+∑
q
j=1 µ j[π]DH,2h j(x[π](T ),π) ·δπ

+
∫
[0,T ]DH,4 f 0(t,x[π](t),u[π](t),π) ·δπ dm1(t)

+
∫
[0,T ] p[π](t) ·DH,4 f (t,x[π](t),u[π](t),π) ·δπ dm1(t), where (λi[π])0≤i≤m, with

λ0[π] = 1, (µ j[π])1≤ j≤q (respectively p[π]) are the unique multipliers (respectively the unique
adjoint function) of the Pontryagin Theorem applied to the solution (x[π],u[π]) of (B, π).

3.2. Proof of Theorem 3.1. We begin to establish a generalization of Lemma 5.2 in [4].

Lemma 3.4. Let E be a real normed vector space, G be a non-empty open subset of E, f :
[0,T ]×G→ R be a function and x0 ∈ NPC0

R([0,T ],G). We consider the following conditions:
(i) f ∈ PCP0([0,T ]×G,R).

(ii) There exists ρ1 > 0 and there exists ζ ∈L 1(([0,T ],B([0,T ])),m1;R+) s.t., ∀t ∈ [0,T ],
∀u1,u2 ∈ B(x0(t),ρ1), |f(t,u1)− f(t,u2)| ≤ ζ (t)‖u1−u2‖.

(iii) For all t ∈ [0,T ], DH,2f(t,x0(t)) exists.
We consider the functional F : NPC0

R([0,T ],G)→ R defined by,
for all x ∈ NPC0

R([0,T ],G), F(x) :=
∫ T

0 f(t,x(t))dt. The following assertions hold.
(a) NPC0

R([0,T ],G) is open in NPC0
R([0,T ],E).

(b) Under (i)-(ii), F is well defined and Lipschitzian on B‖·‖∞
(x0,ρ1).

(c) Under (i)-(iii), F is Hadamard differentiable at x0 and for all h ∈ NPC0
R([0,T ],E),

[t 7→ DH,2f(t,x0(t)) ·h(t)] ∈L 1(([0,T ],B([0,T ])),m1;R) and
for all h ∈ NPC0

R([0,T ],E), DHF(x0) ·h=
∫
[0,T ]DH,2f(t,x0(t)) ·h(t) dm1(t).

Proof. (a) Let x ∈ NPC0
R([0,T ],G); we have the closure cl(x([0,T ])) ⊂ G. If (τi)0≤i≤n+1 is

the list of discontinuity points of x, when i ∈ {0, ...,n}, we define xi : [τi,τi+1]→ G by setting
xi(t) := x(t) if t ∈ [τi,τi+1[ and xi(τi+1) := x(τi+1−). Hence, we have xi ∈C0([τi,τi+1],G), and
then xi([τi,τi+1]) is compact and moreover we have cl(x([0,T ])) :=

⋃
0≤i≤n xi([τi,τi+1]) which

is compact as a finite union of compacts.
Using the continuity of the function [u 7→ d(u,E \G) := inf{‖u− v‖ : v ∈ E \G}], the closed-
ness of E \G and the Optimization theorem of Weierstrass setting α := inf{d(u,E \G) : u ∈
cl(x([0,T ]))}, we have α > 0, and then we easily verify that B‖·‖∞

(x, α

2 )⊂NPC0
R([0,T ],G); and

so (a) is proven.
(b) When x ∈ NPC0

R([0,T ]), we see that [t 7→ f(t,x(t))] is regulated and consequently, it is Rie-
mann integrable on [0,T ] cf. ([5], p. 168) hence F(x) is well defined. (ii) implies that F is
Lipschitzian on B‖·‖∞

(x,ρ1); and so (b) is proven.
(c) Let h ∈ NPC0

R([0,T ],E), h 6= 0. We set θ 0 := 1
‖h‖∞

min{ρ, α

2 } > 0. Let (θn)n∈N ∈ ]0,θ 0[N

s.t. lim
n→+∞

θn = 0.

Since the Hadamard differentiability implies the Gâteaux differentiability, from (iii), for all
t ∈ [0,T ], we have DH,2f(t,x0(t)) ·h(t) = DG,2f(t,x0(t)) ·h(t) = lim

n→+∞
Ψn(t).

where Ψn(t) := 1
θn
(f(t,x0(t)+θnh(t))− f(t,x0(t))).
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Since [t 7→ f(t,x0(t)+ θnh(t))] and [t 7→ f(t,x0(t))] are regulated, they are uniform (therefore
pointwise) limits of sequences of step functions, hence they are Borel functions, and then
Ψn is a Borel function as a pointwise limit of a sequence of Borel functions. Hence [t 7→
DH,2f(t,x0(t)) ·h(t)] is a Borel functions. Using (ii), we see that that ‖Ψn(t)‖ ≤ ζ (t)‖h‖∞ for
all t ∈ [0,T ] and for all n ∈ N. Since ζ‖h‖∞ ∈ L 1(([0,T ],B([0,T ])),m1;R+) we can use
the Dominated Convergence Theorem of Lebesgue to assert that [t 7→ DH,2f(t,x0(t)) · h(t)] ∈
L 1(([0,T ],B([0,T ])),m1;R) and also that∫
[0,T ]DH,2f(t,x0(t)) · h(t)dm1(t) = lim

n→+∞

∫
[0,T ]Ψn(t)dm1(t) = lim

n→+∞

1
θn
(F(x0 + θnh)− F(x0));

hence D+
GF(x0;h) exists and we have

D+
GF(x0;h) =

∫
[0,T ]

DH,2f(t,x0(t)) ·h(t)dm1(t). (3.1)

Using the linearity of the integral and of the Hadamard differential, we obtain that D+
GF(x0; ·)

is linear, and since |D+
GF(x0,h)| ≤ ‖ζ‖L1‖h‖∞ for all

h ∈ NPC0
R([0,T ],E), we obtain that D+

GF(x0; ·) is continuous and consequently F is Gâteaux
differentiable at x0. Under (a), since F is Lipschitzian on a ball centered at x0, using ([6],
p.259), we obtain that DHF(x0) exists and the formula of DHF(x0) · h is given by D+

GF(x0;h)
and (3.1). �

We are able now to prove Theorem 3.1.
1st step: existence of D+

GV (π0). We consider E := X ×Y × Z, G := Ω×U × P which is
open in E, f : [0,T ]×G→ R the function defined by f(t,(ξ ,ζ ,π)) := f 0(t,ξ ,ζ ,π), x[π](t) =
(x[π](t),u[π](t),π) and when x ∈ NPC0

R([0,T ],G), we consider the function
F(x) :=

∫ T
0 f(t,x(t))dt as in Lemma 3.4. We want to use Lemma 3.4 with

x0 = x[π0] ∈ NPC0
R([0,T ],G). From (IC1), (IC2) and (IC3), the assumptions (i)-(iii) of Lemma

3.4 are fulfilled, therefore we obtain that, for all v ∈ NPC0
R([0,T ],X×Y ×Z),

[t 7→ DH,(2,3,4) f 0(t,x[π0](t),u[π0](t),π0) · v(t)] ∈L 1(([0,T ],B([0,T ])),m1;R), (3.2)

and F is Hadamard differentiable at x[π0]. Next, after (SO), D+
Gx[π0;δπ] exists and for all

t ∈ [0,T ], D+
Gx[π0;δπ](t) := (D+

Gx[π0;δπ](t),D+
Gu[π0;δπ](t),δπ).

From (SO), we have also, for all π ∈ P, V [π] = F(x[π]) + g0(x[π](T ),π). Therefore, using
([6], (4.2.5) p.263), we have D+

GV [π0;δπ] = DHF(x[π0]) ·D+
Gx[π0;δπ] +DHg0(x[π0](T ),π0) ·

(D+
Gx[π0;δπ](T ),δπ).

2st step: a first formulation of D+
GV (π0). Using the formula of Lemma 3.4 for F with x0 = x[π0]

and the partial differentials in the previous formula, we obtain

D+
GV [π0;δπ]

=
∫
[0,T ]DH,2 f 0(t,x[π0](t),u[π0](t),π0) ·D+

Gx[π0;δπ](t)dm1(t)
+
∫
[0,T ]DH,3 f 0(t,x[π0](t),u[π0](t),π0) ·D+

Gu[π0;δπ](t)dm1(t)
+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+DH,1g0(x[π0](T ),π0) ·D+
Gx[π0;δπ](T )+DH,2g0(x[π0](T ),π0) ·δπ.


(3.3)

At this time, we see that the second and last terms of (3.3) are present in the formula of Theorem
3.1. We ought to transform the other terms.
3st step: the existence of multipliers and the adjoint function of the Pontryagin Theorem.
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Thanks to (CVT1) and (CVT2), by using Lemma 4.1 in [4], there exists Q, an open neighbor-
hood of π0, Q⊂ P, s.t.

∀π ∈ Q, ((DH,1gi(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π))1≤i≤m,
(DH,1h j(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π))1≤ j≤q)
is free.

 (3.4)

Setting, ∀(π, t,ξ ,ζ )∈Q× [0,T ]×Ω×U , f 0
π (t,ξ ,ζ ) = f 0(t,ξ ,ζ ,π), fπ(t,ξ ,ζ ) = f (t,ξ ,ζ ,π),

gi
π(ξ ) := gi(ξ ,π) (0 ≤ i ≤ m), h j

π(ξ ) := h j(ξ ,π)(1 ≤ j ≤ q), we see that (B,π) is a special
case of the problem of (B) of Section 2 of this paper. For all π ∈ Q, note that (SO) implies
that (x[π],u[π]) is a solution of (B,π), (IC1) and (IC4) imply that (AI1) is fulfilled, (IC1)
implies that (AI2) is fulfilled, (V1) and (V3) imply that (AV1) is fulfilled, (V1) implies that
(AV2) is fulfilled, (CT1) implies that (AT1) is fulfilled, (CT2) implies that (AT2) is fulfilled,
(CT2) implies that (AT2) is fulfilled. Hence, the assumptions of Theorem 2.1 are fulfilled.
Moreover, note that (3.4) and (V2) implies that (LI) is fulfilled, and using (IC2), the assumptions
of Corollary 2.3, (iv), hold.
Hence, we obtain the existence and the uniqueness of ((λi[π])0≤i≤m, (µ j[π])1≤ j≤q,

p[π]) ∈ Rk+1×Rl×PC1([0,T ],X∗) with λ0[π] = 1 s.t. the following conditions are fulfilled.

(Si) For all π ∈ Q, for all i ∈ {0, ...,m}, λi[π]≥ 0.
(S`) For all π ∈ Q, for all i ∈ {1, ...,m}, λi[π]gi(x[π](T ),π) = 0.
(TC) For all π ∈ Q,

DH,1g0(x[π](T ),π)+∑
m
i=1 λi[π]DH,1gi(x[π](T ),π)

+∑
q
j=1 µ j[π]DH,1h j(x[π](T ),π) = p[π](T ).

(AE) For all π ∈ Q, for all t ∈ [0,T ], d p[π](t)
=−p[π](t)◦DF,2 f (t,x[π](t),u[π](t),π)−DF,2 f 0(t,x[π](t),u[π](t),π).

(MP) For all π ∈ Q, for all t ∈ [0,T ], for all ζ ∈U ,
Hπ(t,x[π](t),u[π](t), p[π](t),1)≥Hπ(t,x[π](t),ζ , p[π](t),1).

4th step: the transformation of the partial differentials of f 0 with respect to the state
variable and the control variable. For all t ∈ [0,T ], for all real normed space Y, we con-
sider the evaluation operator evYt : NPC0

R([0,T ],Y) → Y defined by evYt (ϕ) := ϕ(t) when
ϕ ∈ NPC0

R([0,T ],Y). Note that evYt ∈L (NPC0
R([0,T ],Y),Y). We can rewrite the evolution

equation of (B,π) in the following form,
∀π ∈P, ∀t ∈ [0,T ], (evX

t ◦d ◦x)[π] = f (t, ·, ·, ·)◦(evX
t (x)[·],evY

t (u)[·], idZ)[π]. Using ([6], p.253),
we obtain D+

G(evX
t ◦d ◦ x)[π0;δπ] = DH(evX

t ◦d)(x([π0]) ·D+
Gx[π0;δπ]

= (evX
t ◦d) ·D+

Gx[π0;δπ] = evX
t (d(D

+
Gx[π0,δπ])

= d(D+
Gx[π0;δπ])(t) i.e. we have the following inversion of the two notions of differentiation

d and D+
G .

D+
G(dx(t))[π0;δπ] = d(D+

Gx[π0;δπ])(t). (3.5)

From (V2), we also have D+
G( f (t, ·, ·, ·)◦ (evX

t (x)[·],evY
t (u)[·], idZ))[π0;δπ]

=DH,(2,3,4) f (t,x[π0](t),u[π0](t),π0)·(D+
Gx[π0;δπ](t),D+

Gu[π0;δπ](t),δπ). Therefore, we have,
for all t ∈ [0,T ], d[D+

Gx[π0;δπ](t)
= DH,(2,3,4) f (t,x[π0](t),u[π0](t),π0) · (D+

Gx[π0;δπ](t),D+
Gu[π0;δπ](t),δπ).

From (MP), (V2) and (IC2), we have, for all t ∈ [0,T ],
p[π0](t)◦DH,3 f (t,x[π0](t),u[π0](t),π0)+DH,3 f 0(t,x[π0](t),u[π0](t),π0) = 0.
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Consequently, for all t ∈ [0,T ], we have

DH,(2,3) f 0(t,x[π0](t),u[π0](t),π0) · (D+
Gx[π0;δπ](t),D+

Gu[π0;δπ](t))
=−d[p[π0]](t) ·D+

Gx[π0;δπ](t)−
p[π0](t) ·DH,2 f (t,x[π0](t),u[π0](t),π0) ·D+

Gx[π0;δπ](t)−
p[π0](t) ·DH,3 f (t,x[π0](t),u[π0](t),π0) ·D+

Gu[π0;δπ](t)
=−d[p[π0]](t) ·D+

Gx[π0;δπ](t)− p[π0)(t) ·DH,(2,3,4) f (t,x[π0](t),u[π0](t),π0)·
(D+

Gx[π0;δπ](t),D+
Gu[π0;δπ](t),δπ)

+p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ

=−d[p[π0]](t) ·D+
Gx[π0;δπ](t)− p[π0](t) ·d[D+

Gx[π0;δπ]](t)+
p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ.

Therefore, we have

D+
GV [π0;δπ] =∫
[0,T ]−d[p[π0]](t) ·D+

Gx[π0;δπ](t)− p[π0](t) ·d[D+
Gx[π0;δπ]](t)dm1(t)

+
∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+DH,1g0(x[π0](T ),π0) ·D+
Gx[π0;δπ](T )+DH,2g0(x[π0](T ),π0) ·δπ.


(3.6)

We consider the function ψ : [0,T ]→ R defined by, for all t ∈ [0,T ],
ψ(t) = p[π0](t) ·D+

Gx[π0;δπ](t). Since ψ ∈ PC1([0,T ],X∗) and D+
Gx[π0;δπ] ∈ PC1([0,T ],X),

we have ψ ∈ PC1([0,T ],R) and, for all t ∈ [0,T ], we have d p[π0](t) ·D+
Gx[π0;δπ](t)+ p[π0](t) ·

d[D+
Gx[π0;δπ]](t). i.e. dψ(t) = d p[π0](t) ·D+

Gx[π0;δπ](t)+ p[π0](t) ·d[D+
Gx[π0;δπ]](t). Since

ψ ∈ PC1([0,T ],R), we have, for all t ∈ [0,T ], ψ(T )−ψ(0) =
∫ T

0 dψ(t)dt.
Moreover, we have D+

Gx[π0;δπ](0) = 0.
Therefore −

∫ T
0 dψ(t)dt =−ψ(T )+ψ(0) =−p[π0](T ) ·D+

Gx[π0;δπ](T ).
Therefore, we obtain

D+
GV [π0;δπ] =−p[π0](T ) ·D+

Gx[π0;δπ](T )
+
∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+DH,1g0(x[π0](T ),π0) ·D+
Gx[π0;δπ](T )

+DH,2g0(x[π0](T ),π0) ·δπ.

 (3.7)

5th step: the transformation of the first and the second to last terms of (3.7). From (TC),
we obtain

D+
GV [π0;δπ] =−∑

m
i=1 λi[π0]DH,1gi(x[π0](T ),π0) ·D+

Gx[π0;δπ](T )
−∑

q
j=1 µ j[π0]DH,1h j(x[π0](T ),π0) ·D+

Gx[π0;δπ](T )
+
∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+DH,2g0(x[π0](T ),π0) ·δπ.


(3.8)

Besides, by using (MP) and (V2), we have, for all π ∈ Q,
p[π](T ) ◦DH,3 f (T,x[π](T ),u[π](T ),π) +DH,3 f 0(T,x[π](T ),u[π](T ),π) = 0. Consequently,
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by using (TC), we have

∀π ∈ Q, ∑
m
i=1 λi[π]DH,1gi(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π)

+∑
q
j=1 µ j[π]DH,1h j(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π)

=−DH,1g0(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π)
−DH,3 f 0(T,x[π](T ),u[π](T ),π).

 (3.9)

In the following lemma, we etablish the continuity of the multipliers with respect to π .

Lemma 3.5. For all i ∈ {1, ..., m}, λi ∈C0(Q,R+), and, for all j ∈ {1, ..., q}, µ j ∈C0(Q,R).

Proof. First, for all π ∈Q, we set Fπ := span{ei[π] : 1≤ i≤m+q} and F :=
⋃

π∈Q(Fπ×{π})
where for all i ∈ {1, ...,m}, ei[π] = DH,1gi(x[π](T ),π) ◦DH,3 f (T,x[π](T ),u[π](T ),π) and for
all j ∈ {1, ...,q},
em+ j[π] = DH,1h j(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π). For all (x,π) ∈ F , we denote by
xα(x,π) the α-th coordinate of x in the basis (e j[π])1≤ j≤m+q.
From (IC2), (V2), (CVT2), (ESP) and (3.4), by using Lemma 4.3 in [4], with E = Y ∗,W =
Z,W = Q, we obtain that, ∀α ∈ {1, ...,m+q}, xα is continuous on

⋃
π∈Q(Fπ ×{π}).

Consequently, since (3.9), we have, for all π ∈ Q,
x[π] :=−DH,1g0(x[π](T ),π)◦DH,3 f (T,x[π](T ),u[π](T ),π)−
DH,3 f 0(T,x[π](T ),u[π](T ),π) ∈ Fπ .
Hence, we have for all i ∈ {1, ...,m}, λi = xi ◦ (x, idQ) ∈C0(Q,R), and
for all j ∈ {1, ...,q}, µ j = xm+ j ◦ (x, idQ) ∈C0(Q,R). �

Let i ∈ {1, ..., m}; if λi[π0] > 0, using Lemma 3.5, there exists a neighborhood N of π0
in Q s.t., for all π ∈ N, λi[π] > 0. Consequently, by using (S`), we obtain that, for all π ∈
N, gi(x[π](T ), π) = 0. From (SO) and (CT1), we have DH,1gi(x[π0](T ),π0) ·D+

Gx[π0;δπ](T )+
DH,2gi(x[π0](T ),π0) ·δπ = 0. Hence we have
λi[π0]DH,2gi(x[π0](T ),π0) ·δπ =−λi[π0]DH,1gi(x[π0](T ),π0) ·D+

Gx[π0;δπ](T ).
Moreover, if λi[π0] = 0, then we also have λi[π0]DH,2gi(x[π0](T ),π0) ·δπ

=−λi[π0]DH,1gi(x[π0](T ),π0) ·D+
Gx[π0;δπ](T ). Hence, we obtain

∀i ∈ {1, ..., m}, λi[π0]DH,2gi(x[π0](T ),π0) ·δπ

=−λi[π0]DH,1gi(x[π0](T ),π0) ·D+
Gx[π0;δπ](T ).

}
(3.10)

Let j ∈ {1, ..., q}; remark that for all π ∈ Q, h j(x[π](T ),π) = 0.
From (SO) and (CT1), we have
DH,1h j(x[π0](T ),π0) ·D+

Gx[π0;δπ](T )+DH,2h j(x[π0](T ),π0) · δπ = 0. Consequently, we ob-
tain

µ j[π0]DH,2h j(x[π0](T ),π0) ·δπ =−µ j[π0]DH,1h j(x[π0](T ),π0) ·D+
Gx[π0;δπ](T ). (3.11)

From (3.8), (3.10) and (3.11), we have

D+
GV [π0;δπ] = DH,2g0(x[π0](T ),π0) ·δπ +∑

m
i=1 λi[π0]DH,2gi(x[π0](T ),π0) ·δπ

+∑
q
j=1 µ j[π0]DH,2h j(x[π0](T ),π0) ·δπ

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t).



PONTRYAGIN PRINCIPLE AND ENVELOPE THEOREM 23

3.3. Proof of Corollary 3.2. For all δπ ∈ Z, from (SO-bis), D+
Gx[π0;δπ] and D+

Gu[π0;δπ]
exist.
Consequently, the assumptions of Theorem 3.1 are fulfilled for every direction δπ ∈ Z.
Therefore, using Theorem 3.1, we have

∀δπ ∈ Z,
D+

GV [π0;δπ] = DH,2g0(x[π0](T ),π0) ·δπ

+∑
m
i=1 λi[π0]DH,2gi(x[π0](T ),π0) ·δπ

+∑
q
j=1 µ j[π0]DH,2h j(x[π0](T ),π0) ·δπ

+
∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)

+
∫
[0,T ] p(π0)(t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t).


(3.12)

Moreover, we have

∀t ∈ [0,T ], ‖DH,(2,3,4) f 0(t,x[π0](t),u[π0](t),π0)‖ ≤ κ(t). (3.13)

Since (3.13), using the linearity property of the Borel integral, we have
[δπ 7→

∫
[0,T ]DH,4 f 0(t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)] ∈ Z∗.

Besides, from (V4), we have for all t ∈ [0,T ],
‖p[π0](t)◦DH,4 f (t,x[π0](t),u[π0](t),π0)‖
≤ ‖p[π0](t)‖‖DH,4 f (t,x[π0](t),u[π0](t),π0)‖ ≤ ‖p[π0]‖∞c(t).
Consequently, using the linearity property of the Borel integral, we have
[δπ 7→

∫
[0,T ] p[π0](t) ·DH,4 f (t,x[π0](t),u[π0](t),π0) ·δπ dm1(t)] ∈ Z∗. Therefore, we have

[δπ 7→ D+
GV [π0;δπ]] ∈ Z∗. Therefore V is Gâteaux-differentiable at π0.

3.4. Proof of Corollary 3.3. Note that, by using (SO-ter), the function x : P→NPC0
R([0,T ],Ω×

U ×P), defined by, for all π ∈ P, for all t ∈ [0,T ], x[π](t) = (x[π](t),u[π](t),π) is continuous
at π0.
Therefore, we have

∃r > 0 s.t. ∀π ∈ B(π0,r), ‖x[π]− x[π0]‖∞ <
ρ

2
. (3.14)

We set a := min{r, ρ

2}. Note that, we also have

∀π ∈ B(π0,a), ∀t ∈ [0,T ], B‖·‖1(x[π](t),a)⊂ B‖·‖1(x[π0](t),ρ). (3.15)

From (IC3), by using (3.15), we have

∀π ∈ B(π0,a),∀t ∈ [0,T ], ∀(ξ1,ζ1,π1), (ξ2,ζ2,π2) ∈ B‖·‖1(z(π)(t),a),
| f 0(t,ξ1,ζ1,π1)− f 0(t,ξ2,ζ2,π2)| ≤ κ(t)‖(ξ1,ζ1,π1)− (ξ2,ζ2,π2)‖1.

}
(3.16)

We set W := B(π0,a)∩Q ⊂ P. Let π ∈W. Note that W is an open neighborhood of π in Q
and, for all π ∈W, (x[π],u[π]) is a solution of (B,π), consequently (SO) is fulfilled π0 = π .
π0 is not present in the conditions (IC1), (IC4), (V1), (V3), (CT2) and (CVT2), that is why
using our assumptions these conditions are already verified.
Using our additional assumptions, the conditions (SO-bis), (IC2), (IC3), (V2), (V4) and (CT1)
are fulfilled with π0 = π .
Besides, the assertions (3.16) implies that (IC3) is fulfilled with π0 = π , and the assertion (3.4)
imples that (CVT1) with π0 = π . Hence, for all π ∈W, the assumptions of Corollary 3.2 are
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fulfilled with π0 = π . Therefore, we can use the Theorem 3.1 and we obtain that V is Gâteaux
differentiable for every π ∈W and

∀π ∈W,∀δπ ∈ Z
DGV [π] ·δπ = DH,2g0(x[π](T ),π) ·δπ +∑

m
i=1 λi[π]DH,2gi(x[π](T ),π) ·δπ

+∑
q
j=1 µ j(π)DH,2h j(x[π](T ),π) ·δπ

+
∫
[0,T ]DH,4 f 0(t,x[π](t),u[π](t),π) ·δπ dm1(t)

+
∫
[0,T ] p[π](t) ·DH,4 f (t,x[π](t),u[π](t),π) ·δπ dm1(t).


(3.17)

Besides, by using (3.16) and (IC5), we have

∀π ∈ B(π0,a), ∀t ∈ [0,T ], ‖DH,(2,3,4) f 0(t,x[π](t),u[π](t),π)‖ ≤ κ(t). (3.18)

For all i ∈ {2,4}, for all t ∈ [0,T ], π ∈W, we set
fi(t,π) = DH,i f (t,x[π](t),u[π](t),π) and f0i (t,π) = DH,i f 0(t,x[π](t),u[π](t),π). In the follow-
ing lemma, we prove that the adjoint function is continuous with respect to the parameter π .

Lemma 3.6. [π 7→ p[π]] ∈C0(W,(PC1([0,T ],X∗),‖ · ‖∞)).

Proof. From (TC), (CT3) and Lemma 3.5, we have

[π 7→ p[π](T )] ∈C0(Q,X∗). (3.19)

Let π̂ ∈W. We consider the functions ϕ1 : [0,T ]×W→ R, defined by (t,π) ∈ [0,T ]×W,
ϕ1(t,π) := ‖f2(t,π)− f2(t, π̂)‖, and ϕ0

1 : [0,T ]×W→R, defined by, for all (t,π) ∈ [0,T ]×W,
ϕ0

1 (t,π) := ‖f02(t,π)− f02(t, π̂)‖. Note that using (IC4) and Lemma 2.10, we have for all π ∈W,

ϕ0
1 (·,π) ∈ NPC0

R([0,T ],R). Besides, using (3.18), we have for all π ∈W, for all t ∈ [0,T ],
ϕ0

1 (t,π)≤ 2κ(t). Next, using (IC5), we have, for all t ∈ [0,T ], lim
π→π̂

ϕ0
1 (t,π) = ϕ0

1 (t, π̂) = 0.

Therefore, using the Dominated Convergence Theorem of Lebesgue, the functional ψ0
1 : W→

R, defined by, for all π ∈W, ψ0
1 (π) :=

∫ T
0 ϕ0

1 (t,π)dt, is continuous at π̂ i.e.

lim
π→π̂

ψ
0
1 (π) = ψ

0
1 (π̂) = 0. (3.20)

Using (V3) and Lemma 2.10, we have, for all π ∈W, ϕ1(·,π) ∈ NPC0
R([0,T ],R).

From (V6) we have ,∀π ∈W, ∀t ∈ [0,T ], ϕ1(t,π)≤ 2c(t).
Besides, using (V5), we have, for all t ∈ [0,T ], lim

π→π̂

ϕ1(t,π) = ϕ1(t, π̂) = 0.

Consequently, using the Dominated Convergence Theorem of Lebesgue, the functional ψ1 :
W→ R, defined by, for all π ∈W, ψ1(π) :=

∫ T
0 ϕ1(t,π)dt, is continuous at π̂ i.e.

lim
π→π̂

ψ1(π) = ψ1(π̂) = 0. (3.21)
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For all π ∈W, for all t ∈ [0,T ], we have the following inequalities:

‖p[π](t)− p[π̂](t)‖= ‖p[π](T )+
∫ t

T [−p[π](s)◦ f2(s,π)− f02(s,π)]ds−
(p[π̂](T )+

∫ t
T [−p[π̂](s)◦ f2(s, π̂)− f02(s, π̂)]ds)‖

≤ ‖p[π](T )− p[π̂](T )‖+
∫ T

t ‖p[π](s)◦ f2(s,π)− p[π̂](s)◦ f2(s, π̂)‖ds
+
∫ T

t ‖f02(s,π)− f02(s, π̂)‖ds
≤ ‖p[π](T )− p[π̂](T )‖+

∫ T
t ‖p[π](s)◦ f2(s,π)− p[π̂](s)◦ f2(s,π)+

p[π̂](s)◦ f2(s,π)− p[π̂](s)◦ f2(s, π̂)‖ds+
∫ T

t ‖f02(s,π)− f02(s, π̂)‖ds
≤ ‖p[π](T )− p[π̂](T )‖+

∫ T
t ‖p[π](s)− p[π̂](s)‖‖f2(s,π)‖ds

+
∫ T

t ‖p[π̂](s)‖‖f2(s,π)− f2(s, π̂)‖ds+ψ0
1 (π)

≤ ‖p[π](T )− p[π̂](T )‖+
∫
[t,T ] ‖p[π](s)− p[π̂](s)‖c(s)dm1(s)+‖p[π̂]‖∞ψ1(π)

+ψ0
1 (π).

Since [s 7→ ‖p[π](s)− p[π̂](s)‖] ∈C0([0,T ],R) and c ∈L 1(([0,T ],B([0,T ])),m1;R+), by us-
ing the lemma of Gronwall ([1], p.183), we have, for all t ∈ [0,T ],
‖p[π](t)− p[π̂](t)‖ ≤ [‖p[π](T )− p[π̂](T )‖+‖p[π̂]‖∞ψ1(π)+
ψ0

1 (π)]exp(
∫
[t,T ] c(s)dm1(s)).

Therefore, we have

‖p[π]− p[π̂]‖∞ ≤ [‖p[π](T )− p[π̂](T )‖+‖p[π̂]‖∞ψ1(π)+ψ
0
1 (π)]exp(

∫
[0,T ]

c(s)dm1(s)).

(3.22)
Hence, using (3.19), (3.20) and (3.21), we have lim

π→π̂

‖p[π]− p[π̂]‖∞ = 0.

Consequently, we have [π 7→ p[π]] ∈C0(W,(PC1([0,T ],X∗),‖ · ‖∞)). �

Next, we consider the function Ψ2 : W→ Z∗, defined by, for all π ∈W, for all δπ ∈ Z,

Ψ2(π) ·δπ :=
∫
[0,T ]

DH,4 f 0(t,x[π](t),u[π](t),π) ·δπ dm1(t).

Lemma 3.7. Ψ2 ∈C0(W,Z∗).

Proof. Let π̂ ∈W. We consider the fonction ϕ0
2 : [0,T ]×W → R defined by ϕ0

2 (t,π) :=
‖f04(t,π)− f04(t, π̂)‖.
Using (IC6), we have, for all π ∈W, ϕ0

2 (·,π) ∈L 0(([0,T ],B([0,T ])),(R,B(R))). Next, us-
ing (3.18), we have, ∀π ∈W, ∀t ∈ [0,T ], ϕ0

2 (t,π)≤ 2κ(t). Besides, from (IC5), we have, for all
t ∈ [0,T ], lim

π→π̂

ϕ0
2 (t,π) = ϕ0

2 (t, π̂) = 0. Hence, using the Dominated Convergence Theorem of

Lebesgue, the functional ψ0
2 : W→R, defined by, ψ0

2 (π) :=
∫
[0,T ]ϕ

0
2 (t,π)dm1(t) is continuous

at π̂ i.e.
lim
π→π̂

ψ
0
2 (π) = ψ

0
2 (π̂) = 0. (3.23)

For all π ∈W, we have ‖Ψ2(π)−Ψ2(π̂)‖ ≤ ψ0
2 (π).

Conseqently, using (3.23), we have lim
π→π̂

‖Ψ2(π)−Ψ2(π̂)‖ = 0. Hence, we have proven the

lemma. �

Now, we consider, the function Ψ3 : W→ Z∗, defined by, for all π ∈W, for all δπ ∈ Z,
Ψ3(π) ·δπ :=

∫
[0,T ] p[π](t) ·DH,4 f (t,x[π](t),u[π](t),π) ·δπ dm1(t).

Lemma 3.8. Ψ3 ∈C0(W,Z∗).
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Proof. Let π̂ ∈W. We consider the function ϕ2 : [0,T ]×W → R, defined by ϕ2(t,π) :=
‖f4(t,π)− f4(t, π̂)‖.
From (V6), we have, for all π ∈W, ϕ2(·,π) ∈L 0(([0,T ],B([0,T ])),(R,B(R))). Moreover,
using (V6), we also have, ∀π ∈W, ∀t ∈ [0,T ], ϕ2(t,π) ≤ 2c(t). Besides, from (V5), we have,
for all t ∈ [0,T ], lim

π→π̂

ϕ2(t,π) = ϕ2(t, π̂) = 0. Hence, using the Dominated Convergence Theo-

rem of Lebesgue the functional ψ2 : W→R, defined by π ∈W, ψ2(π) :=
∫
[0,T ]ϕ2(t,π)dm1(t),

is continuous at π̂ i.e.
lim
π→π̂

ψ2(π) = ψ2(π̂) = 0. (3.24)

For all π ∈W, we have ‖p[π](t)◦ f4(t,π)− p[π̂](t)◦ f4(t, π̂)‖
= ‖p[π](t)◦ f4(t,π)− p[π̂](t)◦ f4(t,π)+ p[π̂](t)◦ f4(t,π)− p[π̂](t)◦ f4(t, π̂)‖
≤ ‖p[π]− p[π̂]‖∞c(t)+‖p[π̂]‖∞ϕ2(t,π).
Consequently, we obtain

‖Ψ3(π)−Ψ3(π̂)‖ ≤ ‖p[π]− p[π̂]‖∞

∫
[0,T ]

c(t)dm1(t)+‖p[π̂]‖∞ψ2(π).

Consequently, using Lemma 3.6 and (3.24), we obtain lim
π→π̂

‖Ψ3(π)−Ψ3(π̂)‖ = 0. Therefore,

we have proven this lemma. �

From (3.17), remark that

∀π ∈W,
DGV [π] = DH,2g0(x[π](T ),π)+∑

m
i=1 λi[π]DH,2gi(x[π](T ),π)

+∑
q
j=1 µ j[π]DH,2h j(x[π](T ),π)+Ψ2(π)+Ψ3(π).


Consequently, using (CT3) and Lemmas 3.5, 3.7 and 3.8, we obtain that, DGV ∈ C0(W,Z∗).
Therefore, using Corollary 2, p. 144 in [1], we obtain that V is Fréchet differentiable on W and
DFV [π] = DGV [π] for all π ∈W, and therefore DFV ∈C0(W,Z∗).
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