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Abstract. In the paper, the problem of dynamic reconstruction of controls and trajectories for deterministic control-
affine systems is considered. The reconstruction is performed in real time using known discrete inaccurate mea-
surements of the observed trajectory of the system. This trajectory is generated by an unknown measurable control
that satisfies known geometrical restrictions. In this paper, the case of non-convex restrictions is considered. In the
previous works, the authors of this paper considered only convex restrictions. To describe the motion of the system
with non-convex control restrictions, generalized dynamics and controls are introduced. A well-posed statement
of the dynamic reconstruction problem is given. An algorithm for construction of approximations of the solution
is proposed and justified. It is based on the variational approach developed by the authors. This approach uses
auxiliary variational problems with regularized integral residual functionals. The key feature of the approach is that
the integrants of the functionals in the auxiliary variational problems are d.c. functions. The suggested algorithm
reduces the dynamic reconstruction problem to integration of Hamiltonian systems of ordinary linear differential
equations. The results of numerical simulation are demonstrated.
Keywords. Dynamic reconstruction; Calculus of variations; D.c. functions; Non-convex restrictions; Hamiltonian
systems.

1. INTRODUCTION

Forward and inverse problems of the mathematical control theory for dynamic systems have
many applications in a wide spectrum of modern areas of science and engineering. The algo-
rithms for construction of optimal feedback and programmed controls were used in robotics,
navigation, cosmonautics, economics, medicine, and many other applied areas. There exist
numerous fundamental and empirical approaches to solving optimal control problems.
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Tn this paper, we consider inverse problems for dynamic controlled systems. Namely, the
dynamic reconstruction problem is considered. That is the problem of finding unknown controls
and trajectory of a dynamic controlled system by inaccurate data on the observed motion. The
reconstruction is done in real time with the arrival of new data. Control-affine deterministic
dynamical systems are under consideration. The admissible controls are measurable functions
with values in a given compact set. Discrete inaccurate measurements of the observed trajectory
of the system, that arrive in real time, are known.

There exists a variety of mathematical approaches to solving inverse problems. For exam-
ple, an approach, based on the classical least squares method, is suggested in [14]. In [21],
inverse problems are solved empirically by analyzing the response of the dynamical system to
special controls. Another method, developed in [9], relies on an optimization approach based
on gradient-type methods. In this paper, inverse problems are formulated as operator equations
and are reduced to the minimization of the corresponding discrepancy functionals. The adjoint
variables are used to calculate the gradients. An inverse parameter identification problem for
data, oscillating in time, is considered in [3]. In this paper, the parameter identification problem
is reduced to Fourier-regularized parameter optimization problem constrained by ODEs that
describe the dynamics.

There exists a series of methods that use variants of Tikhonov regularization [26]. For exam-
ple, the work [18] suggests an optimization method based on discrete linear operator equations
that reduces inverse problems to minimization of Tikhonov-regularized functionals in which an
additional penalty term leads to smoothness of the minimizer. The ideas of Tikhonov regular-
ization are also developed in [16] to solve inverse problems of identification.

A method for solving the dynamic reconstruction problem was proposed in [11]. This ap-
proach consists of minimizing a Tikhonov-regularized residual between the dynamics and mea-
surements of the observed states of the system. It uses the extreme aiming procedure, which
has roots in the works of the school of N. N. Krasovskii on the theory of positional optimal
control [12].

More detailed reviews of modern methods for solving inverse problems can be found in [19,
17].

The authors of this paper have suggested an original variational approach [22, 23] to solving
inverse dynamic reconstruction problems. It provides a method for construction of approxima-
tions of the desired controls with the use of constructions from auxiliary variational problems
with integral regularized residual functionals. The key feature of the method is the use of func-
tionals which’s integrants are d.c. functions [20].

Let us briefly summarise the previous results, obtained by the authors of this paper. In the
works [22, 23], there was described and justified an algorithm for construction of approxima-
tions of the solution of the dynamic reconstruction problem. These approximating controls
generate the trajectories of the dynamics that converge uniformly to the observed trajectory.
The drawback of this method is that the constructed control approximations are bounded, but
not necessary satisfy the given geometrical control restrictions. Thus, they are not necessary ad-
missible controls. In [24], a development of this algorithm was suggested. It allows to construct
admissible piecewise-constant controls satisfying given convex geometrical restrictions.

In this paper, we consider the case of non-convex geometrical restrictions on the controls. In
such case, so-called sliding modes often appear [27]. To describe the dynamics of the system
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with sliding modes, generalised controls and dynamics are introduced. A well-posed dynamic
reconstruction problem is stated for generalised dynamics. An algorithm for construction of
admissible (that is, satisfying non-convex geometrical restrictions) approximations of the prob-
lems’s solution is suggested and justified. The results of numerical simulation are shown on the
example of a mechanical model.

2. MATERIALS AND METHODS

2.1. Dynamics. Dynamic deterministic controlled systems of the following form are consid-
ered:

dx(t)
dt

= G(t,x(t))u(t)+ f (t,x(t)),

x ∈ Rn, u ∈ Rm, G(·) : [0,T ]×Rn→ Rn×m, f (·) : [0,T ]×Rn→ Rn,

m≥ n, t ∈ [0,T ], T < ∞,

(2.1)

where x(·) is the state variables vector and u(·) is the vector of the controls.
The admissible controls are measurable functions satisfying the restrictions

u(t) ∈ U⊂ Rm a. e. on [0,T ], (2.2)

where the control restriction set U is compact.

Remark 2.1. Note that the set U is not necessarily convex. Previously [22, 23], only convex
control restriction sets were considered.

2.2. Generalised and averaged controls. In some cases, non-convex control restriction (2.2)
can lead to appearance of sliding modes (for references on sliding modes see, for example,
[27], and [7, Ch. 2.2], and [28, Ch. III.2]). To describe the behavior of dynamics (2.1) with
sliding modes, generalised controls are introduced, following R. V. Gamkrelidze [7, Ch. 2.1]
and J. Warga [28, Ch. III.2].

Definition 2.2. A generalised control is a measurable function µ(·|du) : [0,T ]→ rpm(U) with
values in the set of regular probability Borel measures on U with the topology, induced by the
weak* topology of the space C∗(U) [28, Ch. III.2].

Generalised controls play the role of a mathematical model of sliding modes in real observed
system. Instead of dynamics (2.1), we consider the generalised dynamics

dx(t)
dt

= G(t,x(t))
∫
U

uµ(t|du)+ f (t,x(t)),

µ(t|du) : [0,T ]→ rpm(U).

(2.3)

Definition 2.3. We will refer to the result of integration of a generalised control as an averaged
control u(·) : [0,T ]→ Conv(U):

t→ u(t) =
∫
U

uµ(t|du), (2.4)

where the notation Conv(·) means the convex hull of a set.
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All values of any averaged control belong to the convex hull of U [7, Ch. 2.1]. Any averaged
control u(·) is a measurable function [7, Ch. 2.1].

Introduction of generalised controls is equivalent to convexification of the geometrical re-
strictions on the controls U (2.2). Indeed, instead of dynamics (2.3) with generalized controls,
we can consider dynamics (2.1) with measurable controls satisfying the convex geometrical
restrictions

u(t) ∈ Conv(U) a. e. on [0,T ]. (2.5)
The following propositions explain the relation between generalized (2.3) and convexified (2.1),

(2.5) dynamics.

Proposition 2.4. A trajectory of (2.3), generated by a generalised control, coincides with the
trajectory of (2.1), (2.5) that is generated by the corresponding averaged control [7, Ch. 2.1].

Proposition 2.5. Only one averaged control (2.4) corresponds to a generalised control, while
an averaged control can correspond to more than one generalised controls [7, Ch. 2.1].

Definition 2.6. All generalised controls that correspond to the same averaged control are equiv-
alent.

The notations, introduced in this section, are needed for regularization of the problem of
reconstruction of an unknown control that generates the observed trajectory (section 2.5).

2.3. Input data. In this section, the input data for the dynamic reconstruction problem is de-
scribed.

It is assumed that some trajectory of system (2.3), generated by an unknown generalized
control, is being observed. It is called the basic trajectory x∗(·) : [0,T ]→ Rn.

Discrete inaccurate measurements of the basic trajectory arrive in real time. The measure-
ments have error δ > 0 and arrive with regular time step hδ > 0:

{yδ
k : ‖yδ

k − x∗(tk)‖ ≤ δ , tk = khδ , k = 0, . . . ,N, N = dT/hδ e}. (2.6)

The notation ‖ · ‖ means the Euclidean norm.

2.4. Assumptions. We assume that the input data (2.1)–(2.6) satisfy the following assump-
tions.

A.1 There exist constants d0 > 0, δ0 > 0, h0 > 0 and a compact Ψ ⊂ Rn such that for any
accuracy δ ∈ (0,δ0] and any measurement step hδ ∈ (0,h0]⋃

k=0,...,N

Bd0[y
δ
k ]⊂Ψ,

where Br[x] is the closed ball of the radius r with the center in x.
A.2 The matrix function G(·) and the vector function f (·) from dynamics (2.1) are Lipschitz

continuous on D0
4
= [0,T ]×Ψ with the Lipschitz constant LD0 > 0:

∀(t1,x1),(t2,x2) ∈ D0 ‖G(t2,x2)−G(t1,x1)‖2 ≤ LD0‖(t2,x2)− (t1,x1)‖,
‖ f (t2,x2)− f (t1,x1)‖ ≤ LD0‖(t2,x2)− (t1,x1)‖.

The notation ‖ · ‖2 means the spectral Matrix norm induced by the Euclidean norm

‖A‖2 ,max
x 6=0

‖Ax‖
‖x‖

.
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A.3 Rang of G(t,x) equals n for (t,x) ∈ D0.

2.5. Regularisation of the control reconstruction problem. Since sliding modes are allowed,
we assume that the basic trajectory is the observed trajectory of (2.3), generated by an unknown
generalized control. It follows from definitions 2.3–2.6 that all equivalent generalised controls
will generate the same trajectory (2.3). Therefore, the problem of reconstruction of a unknown
generalised control is ill-posed. Then, instead, we will find the unique (see Proposition 2.5)
averaged control that corresponds to all such generalised controls.

It follows from Proposition 2.4 that the desired averaged control generates the trajectory x∗(·)
of (2.1) and satisfy (2.5). So, we can consider the ”convex” dynamic reconstruction problem
for dynamics (2.1) with restrictions (2.5). Convex dynamic reconstruction problems have been
studied in [22, 23, 24].

It was shown in [23] that convex problem is still ill-posed since more than one averaged
control may generate x∗(·) (and all such averaged controls correspond to different sets of gen-
eralised controls). In turn, to regularize the convex problem, a notation of the normal control is
introduced.

Definition 2.7. The normal control u∗(·) : [0,T ]→Rm is the measurable control, generating the
basic trajectory x∗(·) of (2.1), that has the minimal norm in L2([0,T ],Rm) space.

It was proved [23] that for a basic trajectory x∗(·), satisfying assumptions A.1–A.3, there
exists the unique normal control.

An additional assumption is introduced:
A.4 The normal control u∗(·) satisfies restrictions (2.5).

Remark 2.8. In particular, assumption A.4 is always true in the case of coinciding control and
state variables dimensions m = n and in the case of ball geometrical restrictions on the controls

U = BR[0̄], R > 0.

2.6. The dynamic control reconstruction problem. The following dynamic reconstruction
problem (the DRP) is considered in this paper:

For any δ ∈ (0,δ0], hδ ∈ (0,h0] and the set of measurements {yδ
k , k = 1, . . . , i ≤ N} (2.6),

obtained up to the moment ti, to construct a piece-wise constant control uδ (·) : [0, ti]→Rm such
that at the terminal instant tN = T the following conditions are fulfilled:

B.1 The functions uδ (·) : [0,T ]→Rm are admissible controls (that is, they satisfy the restric-
tions (2.2)).

B.2 Each control uδ (·) generates a trajectory xδ (·) : [0,T ]→ Rn of system (2.1) with the
boundary conditions xδ (0) = yδ

0 such that these trajectories converge uniformly to the basic
trajectory:

lim
δ→0
‖xδ (·)− x∗(·)‖C([0,T ],Rn) = 0.

The notation ‖ f (·)‖C([0,T ],Rn) = max
t∈[0,T ]

‖ f (t)‖ means the norm in the space of continuous func-

tions C([0,T ],Rn).
B.3 The functions uδ (·) converge to the normal control in the sense

T∫
0

〈g(τ),uδ (τ)−u∗(τ)〉dτ
δ→0−→ 0 ∀g(·) ∈ C([0,T ],Rm). (2.7)
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The notation 〈·, ·〉 means the scalar product.

2.7. Previous results. In the works [22, 23, 24] an algorithm for construction of approxima-
tions of the normal control was described and justified. The constructed approximations are
piecewise-constant functions satisfying convex restrictions (2.5). The description and justifi-
cation of the new algorithm for solving the DRP, suggested in this paper, rely on the material
of [22, 23, 24]. This section offers a brief review of these results.

First, let us describe the previously suggested algorithm [22, 23, 24]. It is stepwise, and each
step of the algorithm is performed for the interval [tk−1, tk] = [(k−1)hδ ,khδ ], k = 1, . . . ,N when
the measurement yδ

k arrives. On each step the following procedures are performed:

(1) Interpolation of the measurements. A third-order spline interpolation yδ (·) : [0, tk]→
Rn of the discrete measurements (2.6) is constructed. It is continued on each step on the
interval [tk−1, tk] and is continuously differentiable on [0, tk].

(2) Solving auxiliary variational problem. The constructed function yδ (·) is used to
state an auxiliary variational problem. It consists of finding a pair of functions xk(·) :
[tk−1, tk]→ Rn, uk(·) : [tk−1, tk]→ Rm such that:
(a) They are continuously differentiable functions that satisfy the dynamics’ equa-

tion (2.1) and uk(·) has such structure that there exists a function sk(·)∈C1([tk−1, tk],Rn)
such that

uk(t) =−
1

α2 G>(tk−1,yδ
k−1)sk(t), t ∈ [tk−1, tk]. (2.8)

(b) They satisfy the boundary conditions

k = 1 : x1(0) = yδ
0 , s1(0) = 0,

k = 2, . . . ,N : xk(tk−1) = yδ
k−1, sk(tk−1) = sk−1(tk−1).

(c) They provide the unique stationary point of the functional

I(x(·),u(·)) =
tk∫

tk−1

‖x(t)− yδ
k (t)‖

2

2
− α2‖u(t)‖2

2
dt,

where α > 0 is a small regularizing parameter.

Remark 2.9. In the suggested method just stationary point of the functional is used.
So, there is no need to find extremum of the functional. It is an original feature of the
method.

The conditions for the stationary point can be written in the form of a Hamiltonian
system of non-linear ODEs [8]. This system is linearized and after linearization has the
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form
dxk(t)

dt
=− 1

α2 Qksk(t)+ fk,

dsk(t)
dt

= xk(t)− yδ (t),

uk(t) =−
1

α2 G>k sk(t),

t ∈ [tk−1, tk],

k = 1 : x1(0) = yδ
0 , s(0) = 0,

k = 2, . . . ,N : xk(tk−1) = yδ
k−1, sk(tk−1) = sk−1(tk−1),

(2.9)

where
Qk
4
= GkG>k , Gk

4
= G(tk−1,yδ

k−1), fk
4
= f (tk−1,yδ

k−1). (2.10)
The function sk(·) is the vector of the adjoint variables, which plays the role of the
function sk(·) from condition (2.8).

(3) Construction of an auxiliary approximation of the normal control. The solution
sk(·) of system (2.9) is used to construct the auxiliary piecewise-continuous control

ũδ (t), {ũδ
k (t), t ∈ [tk−1, tk]}, ũδ

k (t) =−
1

α2 Gksk(t). (2.11)

The following theorem about properties of the auxiliary controls (2.11) was proved
in [22, Theorem 1], [23, Theorem 1].

Theorem 2.10. Let assumptions A.1–A.4 hold for the input data (2.1)–(2.6). Let the
approximation parameters δ ≤ δ0, hδ ≤ h0, α tend to zero in the following agreement:

hδ = hδ (δ ), α = α(δ ),

lim
δ→0

hδ = 0, lim
δ→0

α = 0, lim
δ→0

δ

hδ
= 0,

α

(hδ )2 = K0 > 0.
(2.12)

Then, the constructed functions ũδ (·) (2.11) satisfy the following conditions:
B.1 They are bounded essentially and uniformly with respect to the parameters

δ , hδ , α .
B.2 The trajectories of system (2.1), generated by these controls, converge uniformly

to the basic trajectory.
B.3 These controls converge to the normal control in the sense (2.7).

Remark 2.11. The results B.2 and B.3 of Theorem 2.10 coincide with the DRP condi-
tions B.2 and B.3. Yet, the result B.1 is weaker than condition B.1. Indeed, it says than
the approximations are bounded, but does not guarantee that they satisfy the restric-
tions (2.2), and thus, they may not be admissible controls. This fact was the motivation
to introduce the next two procedures in the algorithm [24].

(4) Averaging the auxiliary approximation. The auxiliary function ũδ
k (·) is averaged be

the formula

ūδ
k ,

1
hδ

tk∫
tk−1

ũδ
k (t)dt. (2.13)
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(5) ”Cut-off” of the averaged control. The averaged control ūδ
k is ”cut-off”:

ûδ
k ,

 ūδ
k , ūδ

k ∈ Conv(U);
û ∈ Conv(U) : ‖û− ūδ

k ‖= min
u∈Conv(U)

‖u− ūα,δ
k ‖ , ūδ

k /∈ Conv(U). ,

t ∈ [tk−1, tk], k = 1, . . . ,N.

(2.14)

The following theorem about properties of the ”cut-off” controls (2.14) was proved in [24,
Theorem 2].

Theorem 2.12. Let assumptions A.1–A.4 hold for the input data (2.1)–(2.6). Let the approxi-
mation parameters δ ≤ δ0, hδ ≤ h0, α tend to zero in the agreement (2.12).

Then, the constructed functions ûδ (·) (2.14) satisfy the following conditions:
B.1 They satisfy the convex restrictions on the controls (2.5).
B.2 The trajectories of system (2.1), generated by these controls, converge uniformly to the

basic trajectory.
B.3 These controls converge almost everywhere on [0,T ] to the normal control.

Remark 2.13. The result B.2 coincides with the DRP condition B.2. Moreover, it will be
proved further in this paper (3.11) that from the result B.3 follows the DRP condition B.3.
Yet, the result B.1 is still weaker than condition B.1. Indeed, it says than the approximations
ûδ (·) satisfy only convexified control restrictions (2.5), but does not guarantee that they satisfy
the restrictions (2.2), and thus, they still may not be admissible controls. This fact was the
motivation to introduce another additional procedure into the algorithm, which will be explained
and justified further in this paper.

The algorithm 1–5 is described in details in [23] (parts 1–3) and in [24] (parts 4,5).

2.8. New algorithm for solving the DRP. In this paper, a special case of non-convex geomet-
rical restrictions on the controls is considered. Namely, a set of 2m discrete points, which are
the vertices of an m-dimensional orthotope:

U = {u1,u1}× . . .×{um,um}, u j < u j, ‖u j‖,‖u j‖ ≤U > 0, (2.15)

where A×B is the Cartesian product of sets A and B. Consider the DRP B.1–B.3 for the control
restriction set (2.15).

The previously developed algorithm, described in Section 2.7, is modified. An additional
procedure is done on each step. The procedures 1–5 remain the same. After obtaining the
value ûδ

k on the k-th step (procedure 5), a piecewise-constant function vδ
k (·) : [tk−1, tk]→ U is

constructed:

vδ
k, j =

{
u j, t ∈ [tk−1,τk, j];
u j, t ∈ (τk, j, tk].

,

τk, j = tk−
hδ (u j− ûδ

k, j)

u j−u j
,

j = 1, . . . ,m, t ∈ [tk−1, tk], k = 1, . . . ,N.

(2.16)

The procedure is graphically explained on Fig. 1. At the end of the reconstruction process (when
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FIGURE 1. Construction of admissible approximating control vδ
j (·).

all functions vδ
k (·), k = 1, . . . ,N (2.16) have been constructed) the function vδ (·) : [0,T ]→ U

can be defined piecewise:

vδ (t) = {vδ
k (t), t ∈ [tk−1, tk], k = 1, . . . ,N}. (2.17)

The functions vδ (·) (2.17) are proposed as admissible approximations of the averaged normal
control.

3. RESULTS AND DISCUSSION

3.1. The main result. The main result of this work is the following theorem.

Theorem 3.1. Let assumptions A.1–A.4 hold for the input data (2.1)–(2.6). Let the approxima-
tion parameters δ ≤ δ0, hδ ≤ h0, α tend to zero in the agreement (2.12).

Then, the constructed functions vδ (·) (2.16), (2.17) satisfy conditions B.1–B.3.

To prove this theorem, we first formulate an auxiliary proposition and prove an auxiliary
lemma.

Proposition 3.2. Let assumptions A.1–A.4 hold for the input data (2.1)–(2.6). Let the approxi-
mation parameters δ ≤ δ0, hδ ≤ h0, α tend to zero in the agreement (2.12).

Then, the values ūδ
k (2.11) satisfy the condition

‖ūδ
k − ū∗k‖ ≤ rû(δ ,hδ ,α), k = 1, . . . ,N, (3.1)

where

ū∗k ,
1

hδ

tk∫
tk−1

u∗(t)dt.
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The function rû(δ ,hδ ,α) is

rû(δ ,hδ ,α),
(LD0K

λ 2
∗

(
2T K0

√
λ ∗n+2K +3λ∗

)
+24

1
λ 1.5
∗

K0

)
(δ +(K +1)hδ )

+T K2
0 Kn
√

λ ∗
1

λ 2
∗

(
96δα +48Khδ

α +

(
48√
λ∗

+
96
λ∗

)
(K0δhδ

α +Kα
2)

)
+2K

1
λ∗

δ

hδ
,

where
K , max

(t,x)∈D0, u∈Conv(U)
‖G(t,x)u+ f (t,x)‖. (3.2)

The parameters λ∗ and λ ∗ are respectively the minimum and the maximum eigenvalues of the
matrix function Q(t,x) = G(t,x)G>(t,x), (t,x) ∈ D0.

Moreover,
lim

δ ,hδ ,α→0
‖rû(δ ,hδ ,α)‖= 0.

Note that the matrix function Q(·) is symmetric for each t ∈ [0,T ] [13, ch. 1, p. 6] and contin-
uous on D0 (Assumption A.2). Therefore, its eigenvalues {λ1(·), . . . ,λn(·)} are also continuous
on D0 [13, ch. 8, p. 8]. Therefore, λ∗ and λ ∗ exist.

The proof of the proposition is a part of the proof of Theorem 2 from [24, formulae (9)–(21)].

Lemma 3.3. Let assumptions A.1–A.4 hold for the input data (2.1)–(2.6). Then, the following
relation is true for the values ûδ

k (2.14) and ūδ
k (2.13):

‖ûδ
k −u‖ ≤ ‖ūδ

k −u‖, k ∈ {1, . . . ,N}, u ∈ Conv(U). (3.3)

Proof. If ûδ
k = u, then the lemma is true. If ūδ

k ∈ Conv(U), then ūδ
k = ûδ

k by the construc-
tion (2.14) and lemma is true. So, consider the case ûδ

k 6= u, ūδ
k /∈ Conv(U).

Assume in contradiction to (3.3) that

‖ûδ
k −u‖> ‖ūδ

k −u‖. (3.4)

Then, let ωk be a point on the line
←−→
ûδ

k ,u such that it is closest to the point ūδ
k . In other words,

ūδ
k ,ωk ⊥ ûδ

k ,u. In other words,

∃lk ∈ R : ωk = u+ lk(ûδ
k −u),

〈(ūδ
k −ωk),(ûδ

k −u)〉= 0

⇒

〈(ūδ
k −u− lk(ûδ

k −u)),(ûδ
k −u)〉= 0

⇒

lk =
〈(ūδ

k −u),(ûδ
k −u)〉

‖ûδ
k −u‖2

=
cos
( ̂(ūδ

k −u),(ûδ
k −u)

)
‖ūδ

k −u‖
‖ûδ

k −u‖
< 1,

since we assumed (3.4).
But lk < 1 means that ωk belongs to the line segment ûδ

k ,u. But by the construction (2.14),

ûδ
k ∈ Conv(U) and u ∈ Conv(U). Therefore, ωk ∈ Conv(U). But ωk is the point on ûδ

k ,u,
closest to the point ūδ

k by the definition of ωk. Therefore, ωk is closer to ūδ
k than to ûδ

k . But by
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the construction (2.14), ûδ
k is the point of Conv(U), closest to ūδ

k . So, we got a contradiction
and (3.4) is false. �

Now, we can prove theorem 3.1.

Proof. Condition B.1 is fulfilled by the construction (2.16), (2.17).
First, let us prove the fulfilment of condition B.3. Fix an arbitrary ϕ(·) ∈ C([0,T ],Rm),

following the definition of convergence (2.7):

T∫
0

〈ϕ(t),vδ (t)−u∗(t)〉dt

±ûδ (t)
= ∑

k=1,...,N

 tk∫
tk−1

〈ϕ(t),vδ
k (t)− ûδ

k 〉dt

+ T∫
0

〈ϕ(t), ûδ (t)−u∗(t)〉dt,

(3.5)

where ûδ
k is the ”cut-off” auxiliary control (2.14), constructed in the procedure 5 (2.14) on the

k-th step of the algorithm. In expression (3.5),

tk∫
tk−1

ϕ j(t)(vδ
k, j(t)− ûδ

k, j)dt

±ϕ j(tk−1)
=

tk∫
tk−1

ϕ j(tk−1)(vδ
k, j(t)− ûδ

k, j)dt +

tk∫
tk−1

(ϕ j(t)−ϕ j(tk−1))(vδ
k, j(t)− ûδ

k, j)dt, (3.6)

j = 1, . . . ,m.

Evaluate the first term in (3.6). By the definition (2.16),

tk∫
tk−1

ϕ j(tk−1)(vδ
k, j(t)− ûδ

k, j)dt

=

τk, j∫
tk−1

ϕ j(tk−1)(u j− ûδ
k, j)dt +

tk∫
τk, j

ϕ j(tk−1)(u j− ûδ
k, j)dt

= ϕ j(tk−1)
(
(τk, j− tk−1)(u j− ûδ

k, j)+(tk− τk, j)(u j− ûδ
k, j)
)

= ϕ j(tk−1)

(
hδ (ûδ

k, j−u j)(u j− ûδ
k, j)

u j−u j
+

hδ (u j− ûδ
k, j)(u j− ûδ

k, j)

u j−u j

)
= 0

(3.7)

Thus, the first term in (3.6) equals zero. In the second term of (3.6),

|ϕ j(t)−ϕ j(tk−1)| ≤ ωϕ(|t− tk−1|)≤ ωϕ(hδ ),
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where ωϕ(·) is the modulus of continuity of ϕ(·). So, by the construction of vδ
k, j(t) (2.16) and

ûδ
k, j (2.14), we have in (3.6) that∥∥∥∥∥∥

tk∫
tk−1

(ϕ j(t)−ϕ j(tk−1))(vδ
k, j(t)− ûδ

k, j)dt

∥∥∥∥∥∥≤ hδ
ωϕ(hδ )2U, (3.8)

where the constant U is from (2.15).
Thus, substituting (3.8) and (3.7) into (3.6), we get∥∥∥∥∥∥

tk∫
tk−1

ϕ j(t)(vδ
k, j(t)− ûδ

k, j)dt

∥∥∥∥∥∥≤ hδ
ωϕ(hδ )2U. (3.9)

Apply estimate (3.9) to the first term (the sum) of (3.5):∥∥∥∥∥∥ ∑
k=1,...,N

 tk∫
tk−1

〈ϕ(t),vδ
k (t)− ûδ

k 〉dt

∥∥∥∥∥∥≤ T
hδ

√
mhδ

ωϕ(hδ )2U

= T
√

mωϕ(hδ )2U hδ→0−→ 0.

(3.10)

Now, we consider the second term of (3.5):
T∫

0

〈ϕ(t), ûδ −u∗(t)〉dt.

We will prove that it converges to zero under agreement (2.12). Indeed, consider the functions

ψ
δ (t), 〈ϕ(t), ûδ (t)−u∗(t)〉, δ ∈ (0,δ0].

By Theorem 2.12,

ûδ (t) a.e.−→
[0,T ]

u∗(t) ⇒ ûδ (t)−u∗(t) a.e.−→
[0,T ]

0̄ ⇒ ‖ûδ (t)−u∗(t)‖ a.e.−→
[0,T ]

0

⇒ |〈ϕ(t), ûδ (t)−u∗(t)〉| ≤ ( max
t∈[0,T ]

‖ϕ(t)‖)‖ûδ (t)−u∗(t)‖ a.e.−→
[0,T ]

0

⇒ ψ
δ (t) = 〈ϕ(t), ûδ (t)−u∗(t)〉 a.e.−→

[0,T ]
0,

where the notation a.e.−→
[0,T ]

means ”converges almost everywhere on [0,T ] under agreement (2.12)”.

So, the functions ψδ (·) converge almost everywhere to identical zero. Moreover,

|ψδ (t)| ≤ K , max
t∈[0,T ]

‖ϕ(t)‖2
√

mU, δ ∈ (0,δ0].

Then, by the Lebesgue theorem on passage to the limit under the integral sign [10, Ch. V, §5.5],
T∫

0

ψ
δ (t)dt =

T∫
0

〈ϕ(t), ûδ
k (t)−u∗(t)〉dt→ 0 (3.11)

under agreement (2.12). Which means by the definition (2.7) that ûδ
k (·) converge to u∗(·) in the

sense (2.7) under agreement (2.12).
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Return to expression (3.5). Both terms of it converge to zero (3.10), (3.11). Therefore,

T∫
0

〈ϕ(t),vδ (t)−u∗(t)〉dt δ→0−→ 0

under agreement (2.12). In other words, vδ (t) converges in the sense (2.7) to u∗(·) and condition
B.3 is fulfilled.

Let us now prove the fulfillment of condition B.2. To do it we will estimate the residual

‖x̌δ (t)− x∗(t)‖.

It will be done in a series of successive nested estimates. To structurise the proof, the estimated
expressions will be denoted as A1, A2, . . . , B1, B2, . . . , C1, C2, . . . .

Since x̌δ (·) and x∗(·) are the trajectories of (2.1), generated by the controls vδ (·) and u∗(·),

‖x̌δ (t)− x∗(t)‖

=

∥∥∥∥∥∥y0 +

t∫
0

[
G(t, x̌δ (t))vδ (t)+ f (t, x̌δ (t))

]
dt− x∗(0)−

t∫
0

[
G(t,x∗(t))u∗(t)+ f (t,x∗(t))

]
dt

∥∥∥∥∥∥
±

t∫
0

G(t,x∗(t))vδ (t)dt

≤

∥∥∥∥∥∥
t∫

0

[(
G(t, x̌δ (t))−G(t,x∗(t))

)
vδ (t)+ f (t, x̌δ (t))− f (t,x∗(t))

]
dt

∥∥∥∥∥∥︸ ︷︷ ︸
A1(t)

+

∥∥∥∥∥∥
t∫

0

[
G(t,x∗(t))(vδ (t)−u∗(t))

]
dt

∥∥∥∥∥∥︸ ︷︷ ︸
A2(t)

+‖y0− x∗(0)‖︸ ︷︷ ︸
A3

.

(3.12)
We will successively estimate the terms A1(t), A2(t), A3 of (3.12).

Estimation of A1(t) from (3.12). The matrix function G(·) and the vector function f (·) are
Lipschitz-continuous (2.4) by Assumption A.2. Moreover, the functions vδ (·) and ûδ (·) are
bounded by construction (2.14), (2.16):

‖vδ (t)‖ ≤
√

mU, ‖ûδ (t)‖ ≤
√

mU, t ∈ [0,T ]. (3.13)

Therefore,

A1(t) =

∥∥∥∥∥∥
t∫

0

[(
G(t, x̌δ (t))−G(t,x∗(t))

)
vδ (t)+ f (t, x̌δ (t))− f (t,x∗(t))

]
dt

∥∥∥∥∥∥
≤

t∫
0

LD0

∥∥∥x̌δ (t)− x∗(t)
∥∥∥(√mU +1)dt.

(3.14)
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Estimation of A2(t) from (3.12). Break the integral into the sum:

A2(t) =

∥∥∥∥∥∥
t∫

0

[
G(t,x∗(t))(vδ (t)−u∗(t))

]
dt

∥∥∥∥∥∥
≤ ∑

k=1,...,i−1

∥∥∥∥∥∥
tk∫

tk−1

[
G(t,x∗(t))(vδ

k −u∗(t))
]

dt

∥∥∥∥∥∥


︸ ︷︷ ︸
B1(t)

+

∥∥∥∥∥∥
t∫

ti−1

[
G(t,x∗(t))(vδ

i −u∗(t))
]

dt

∥∥∥∥∥∥︸ ︷︷ ︸
B2(t)

,

i = b t
hδ
c,

(3.15)

where b·c means the floor function.
Estimation of B1(t) from (3.15). Let us add ±Gk (2.10) in each term of the sum:

B1(t) = ∑
k=1,...,i−1

∥∥∥∥∥∥
tk∫

tk−1

[
G(t,x∗(t))(vδ

k −u∗(t))
]

dt

∥∥∥∥∥∥


±Gk
≤ ∑

k=1,...,i−1

 tk∫
tk−1

‖G(t,x∗(t))−Gk‖‖vδ
k −u∗(t)‖dt


︸ ︷︷ ︸

C1(t)

+ ∑
k=1,...,i−1

‖Gk‖

∥∥∥∥∥∥
tk∫

tk−1

vδ
k −u∗(t)dt

∥∥∥∥∥∥


︸ ︷︷ ︸
C2(t)

(3.16)
Estimation of C1(t) from (3.16). Since the definition (2.10),

‖G(t,x∗(t))−Gk‖=
∥∥∥G(t,x∗(t))−G(t,yδ

k−1)
∥∥∥

±G(t,yδ (t))
=

∥∥∥G(t,x∗(t))−G(t,yδ (t))
∥∥∥+∥∥∥G(t,yδ (t))−G(t,yδ

k−1)
∥∥∥ . (3.17)

It was shown in [23, formulae (3.1), (3.5), (3.6)] that

‖x∗(t)− yδ (t)‖ ≤ 14(δ +hδ K),

∥∥∥∥∥dyδ (t)
dt

∥∥∥∥∥≤ Y δ
1 , 27K +26

δ

hδ
, t ∈ [0,T ],

where K is defined in (3.2).
The matrix function G(·) is Lipschitz continuous (2.4). Therefore, we can estimate (3.17):

‖G(t,x∗(t))−Gk‖ ≤ LD0(14(δ +hδ K)+hδY δ
1 ), t ∈ [tk−1, tk], k = 1, . . . ,N.

Thus, using the controls boundness (3.13),

C1(t) = ∑
k=1,...,i−1

 tk∫
tk−1

‖G(t,x∗(t))−Gk‖‖vδ
k −u∗(t)‖dt


≤ T

hδ
hδ LD0(14(δ +hδ K)+hδY δ

1 )2
√

mU.

(3.18)



TO THE DYNAMIC RECONSTRUCTION PROBLEM WITH NON-CONVEX CONTROLS RESTRICTIONS 15

Estimation of C2(t) from (3.16). First, note that∥∥∥∥∥∥
tk∫

tk−1

vδ
k −u∗(t)dt

∥∥∥∥∥∥
±ûδ

k
≤

∥∥∥∥∥∥
tk∫

tk−1

vδ
k − ûδ

k dt

∥∥∥∥∥∥︸ ︷︷ ︸
D1

+

∥∥∥∥∥∥
tk∫

tk−1

ûδ
k −u∗(t)dt

∥∥∥∥∥∥︸ ︷︷ ︸
D2

. (3.19)

Estimation of D1 from (3.19). One can prove in the same way it was done in (3.7) that, by
the definition (2.16),

tk∫
tk−1

vδ
k, j− ûδ

k, jdt = 0.

And therefore,

D1 = 0. (3.20)

Estimation of D2 from (3.19). It follows from Proposition 3.1 Lemma 3.3 that

‖ûδ
k − ū∗k‖ ≤ rû(δ ,hδ ,α), k = 1, . . . ,N.

But then,∥∥∥∥∥∥
tk∫

tk−1

ûδ
k −u∗(t)dt

∥∥∥∥∥∥=
∥∥∥hδ (ûδ

k − ū∗k)
∥∥∥≤ hδ rû(δ ,hδ ,α), k = 1, . . . ,N. (3.21)

Substituting estimates for D1 (3.20) and D2 (3.21) into expression (3.19),

C2(t) = ∑
k=1,...,i−1

‖Gk‖

∥∥∥∥∥∥
tk∫

tk−1

vδ
k −u∗(t)dt

∥∥∥∥∥∥


≤ T
hδ

Khδ rû(δ ,hδ ,α),

(3.22)

where the constant K is defined in (3.2).
Now, we can apply the estimates for C1(t) (3.18) and C2(t) (3.22) to B1(t) (3.16):

B1(t)≤ T LD0(14(δ +hδ K)+hδY δ
1 )2
√

mU +T Krû(δ ,hδ ,α). (3.23)

Estimation of B2(t) from (3.15). We estimate the norm of the integrant:

B2(t) =

∥∥∥∥∥∥
t∫

tk−1

[
G(t,x∗(t))(vδ

k −u∗(t))
]

dt

∥∥∥∥∥∥≤ hδ K2
√

mU. (3.24)

Apply the estimates for B1(t) (3.23) and B2(t) (3.24) to A2(t) (3.15):

A2(t)≤ T LD0(14(δ +hδ K)+hδY δ
1 )2
√

mU +T Krû(δ ,hδ ,α)+hδ K2
√

mU. (3.25)

Estimation of A3 from (3.12). All measurements have the error δ (2.6). Therefore,

A3 = ‖y0− x∗(0)‖ ≤ δ . (3.26)
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Finally, apply the estimates for A1(t) (3.14), A2(t) (3.25) and A3 (3.26) to the residual (3.12):

‖x̌δ (t)− x∗(t)‖ ≤
t∫

0

∥∥∥x̌δ (t)− x∗(t)
∥∥∥LD0(

√
mU +1)dt + rx̌(δ ,hδ ,α), (3.27)

rx̌(δ ,hδ ,α), T LD0(14(δ +hδ K)+hδY δ
1 )2
√

mU +T Krû(δ ,hδ ,α)+hδ K2
√

mU +δ .

The inequality (3.27) allows to apply the Grönwall lemma [2], from which it follows that

‖x̌δ (t)− x∗(t)‖ ≤ rx̌(δ ,hδ ,α)exp(T LD0(
√

mU +1)), t ∈ [0,T ].

It follows from Proposition 3.1 that

lim
δ ,hδ ,α→0

‖rx̌(δ ,hδ ,α)‖= 0

when the parameters δ , hδ , α tend to zero in the agreement (2.12). Therefore,

lim
δ ,hδ ,α→0

‖x̌δ (t)− x∗(t)‖= 0, t ∈ [0,T ].

Thus, condition B.2 is fulfilled and the theorem is proved. �

3.2. Example. A numerical simulation of solving the DRP by the suggested algorithm was
done. The so-called car quarter model from the paper [6] was considered. This model represents
the dynamics of a wheel damper with two springs (see Fig. 2). The dynamics are

FIGURE 2. The car quarter model.
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dt

dx2(t)
dt

=

(
x3(t)
x4(t)

)
,


dx3(t)

dt
dx4(t)

dt
dx5(t)

dt

=


−x1(t)

m1
+

x2(t)
m1

0
1

m1
0

x1(t)
m2
− x2(t)

m2
−x2(t)

m1
0

1
m2

0 0 1 1




k1(t)
k2(t)
u1(t)
u2(t)

 ,

t ∈ [0,1], k1(t) ∈ {0,0.5}, k2(t) ∈ {0,0.8}, u1 ∈ {0,1}, u2 ∈ {0,1}.

(3.28)

In this model, the state variables x1(t) and x2(t) are the values of the springs’ deflections, x3(t)
and x4(t) are the vertical speeds of the two bodies, attached to the springs’ ends, and x5(t) is
the force impulse. The controls are the springs’ stiffness coefficients k1(t) and k2(t) and the
external forces u1(t) and u2(t), applied to the bodies (see Fig. 2).

To simulate the input data of the problem (the inaccurate measurements (2.6)), the basic
trajectory (x∗1(·),x∗2(·),x∗3(·),x∗4(·),x∗5(·)) was constructed numerically for the controls

k1(t) = 0.5, k2(t) =
{

0.8, t ∈ [0,0.5T ];
0, t ∈ (0.5T,T ].

,

u1(t) =


0.1, t ∈ [0,0.3T ];
0.5, t ∈ (0.3T,0.6T ];
0.9, t ∈ (0.6T,T ].

, u2(t) = 0.5+0.5cos(4t).
(3.29)

The function k2(·) simulates the break of the spring.
Note that the controls (3.29) are averaged controls with values from the convex hull of U =
{0,0.5}×{0,0.8}×{0,1}×{0,1}. It is assumed that each of the controls corresponds to a set
of generalized controls, which represents sliding modes in dynamics (3.28).

The calculated basic trajectory was perturbed several times with different maximal error δ

in discrete points with different steps hδ to simulate inaccurate measurements (2.6) for various
approximation parameters.

Remark 3.4. Note that, generally speaking, the dynamics (3.28) don’t satisfy Assumption A.3
since the first two rows of the matrix G(·) are zero rows. Yet, the first two equations of (3.28)
can be omitted in the application of the algorithm, because it won’t affect the constructions. The
measurements of the trajectories x∗1(·) and x∗2(·) are still needed. This regularization is explained
in details in [25].

The result of numerical simulations for the parameters

δ = 0.01, hδ = 0.02, (N = 50), α = 0.01

are shown on Fig. 3 (the trajectories x̌δ (t)) and Fig. 4
(the controls vδ (t) = (ǩδ

1 (t), ǩ
δ
2 (t), ǔ

δ
1 (t), ǔ

δ
2 (t)).

The result of numerical simulations for the parameters

δ = 0.001, hδ = 0.01, (N = 100), α = 0.001

are shown on Fig. 5 (the trajectories x̌δ (t)) and Fig. 6
(the controls vδ (t) = (ǩδ

1 (t), ǩ
δ
2 (t), ǔ

δ
1 (t), ǔ

δ
2 (t)).
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The legend:
——- the basic trajectory x∗(t) ——- the reconstructed trajectory x̌δ (t)

FIGURE 3. Reconstructed trajectories for the parameters δ = 0.01, hδ =
0.02, (N = 50), α = 0.01.

Remark 3.5. It can be seen, in particular, on the graphs for ǩδ
1 (t) in Fig. 4 and Fig. 6 that the

reconstructed controls are not everywhere close to the controls (3.29) that generated the basic
trajectory. It is explained by the fact that the normal control does not necessarily coincide with
the controls (3.29). In the example, the norm of the approximation ‖ǩδ

1 (·)‖L2 ≈ 0.331, while
the norm of the control (3.29) ‖k1(·)‖L2 = 0.5.

3.3. Discussion. The method, suggested in this paper, allows to construct approximations of
the normal control in the dynamic reconstruction problem in the form of piecewise-constant
functions that converge to the normal control.

Previously [22, 23], another algorithm was developed, which allows to construct piecewise-
continuous approximations of the normal control that converge in the sense (2.7). The drawback
of this approach is that it can’t guarantee that the approximations satisfy the given geometrical
restrictions on the controls. This problem motivated another development of the method that
is described and justified in [24]. It allows to construct piecewise-constant approximations
of the normal control that satisfy the given geometrical restrictions, but only in the case of
convex restrictions. These approximations converge almost everywhere to the normal control
and the trajectories, generated by these approximating controls, converge uniformly to the basic
trajectory. Yet, this approach is unsuitable for the case of non-convex geometrical restrictions
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t
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u1(t)
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t
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u2(t)

The legend:
——- controls (3.29) that generated the basic trajectory

——- the reconstructed admissible controls vδ (t) = (ǩδ
1 (t), ǩ

δ
2 (t), ǔ

δ
1 (t), ǔ

δ
2 (t)) (2.17)

FIGURE 4. Reconstructed admissible controls for the parameters δ =
0.01, hδ = 0.02, (N = 50), α = 0.01.

on the controls. Note that the convergence in the sense (2.7) is equivalent to weak* convergence
in the space C∗([0,T ]×Rm,R).

In comparison with the results of works [22, 23, 24], the approximations, suggested in this pa-
per, satisfy the given geometrical restrictions even in the case of non-convex restrictions (2.15).

4. CONCLUSION

This paper offers a development of an approach to solving dynamic reconstruction problems,
previously published in [22, 23, 24]. Namely, a modification of previously described [22, 23, 24]
algorithm is suggested and justified. This modification allows to solve the dynamic reconstruc-
tion problem for one case on non-convex geometrical restrictions on the controls. Previously,
only convex geometrical restrictions on the controls were considered. The results of numerical
simulation of solving a dynamic reconstruction problem by the suggested algorithm are shown.

Dedication
The paper is dedicated to the memory of R. F. Gabasov. He and his students made a great con-
tribution to the theory of optimal control. In particular, we would like to mention a great con-
tribution to the development of applications of the Pontryagin’s maximum principle [15], done
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The legend:
——- the basic trajectory x∗(t) ——- the reconstructed trajectory x̌δ (t)

FIGURE 5. Reconstructed trajectories for the parameters δ = 0.001, hδ =
0.01, (N = 100), α = 0.001.

by R. F. Gabasov, F. M. Kirillova, and their students [4]. In the early 1970s, R. F. Gabasov and
F. M. Kirillova suggested and justified a new approach to solving linear programming problems.
Their works were a stepping stone for such direction as constructive optimization methods [5].
The ideas, proposed in their works, are still relevant and are used to develop modern applied
methods. For the list of corresponding references, we suggest the bibliography work [1].
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The legend:
——- controls (3.29) that generated the basic trajectory

——- the reconstructed admissible controls vδ (t) = (ǩδ
1 (t), ǩ

δ
2 (t), ǔ

δ
1 (t), ǔ

δ
2 (t)) (2.17)

FIGURE 6. Reconstructed admissible controls for the parameters δ =
0.001, hδ = 0.01, (N = 100), α = 0.001.
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