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RECONSTRUCTION OF AN UNKNOWN DISTURBANCE IN A SYSTEM OF
DIFFERENTIAL EQUATIONS BASED ON MEASUREMENTS OF PHASE STATES
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Abstract. A system, which is nonlinear with respect to phase coordinates and linear with respect to disturbance,
is considered. The problem of the dynamical reconstruction of unknown disturbances acting on the system is
investigated. It is assumed that inaccurate measurements of the phase states are available at discrete times. An
algorithm that is stable under informational noises and computational errors is designed. This algorithm is based
on constructions of feedback control theory. The general construction is illustrated by two examples.
Keywords. Dynamical reconstruction; Differential equations; Disturbance; Feedback control theory; Measure-
ments of phase states.

1. INTRODUCTION AND PROBLEM STATEMENT

Let a dynamical system described by the nonlinear system of differential equations

ẋ(t) = f (t,y(t),x(t),u(t)) (1.1)

with the initial condition
x(0) = x0

operate on a time interval T = [0,ϑ ], 0 < ϑ <+∞, where, y∈Rn, x∈RN , u∈Rr, f (t,y,x,u) =
f1(t,y,x)+Bu, f1 is a given function satisfying the Lipschitz condition with constant L, u is a
disturbance, B is a constant matrix of corresponding dimension, and y(·) is a parametric func-
tion. The problem under consideration consists in the following. Some unknown disturbance
u(·) ∈ L2(T ;Rr) acts on system (1.1). At discrete, frequent enough, times

τi ∈ ∆ = {τi}m
i=0 (τ0 = 0,τm = ϑ , τi+1 = τi +δ )

the phase states x(τi) = x(τi;x0,y(·),u(·)), i ∈ [0 : m− 1] of system (1.1) are measured with an
error. The results of these measurements, vectors ξ h

i ∈ RN , satisfy the inequalities

|x(τi)−ξ
h
i |N ≤ h. (1.2)

E-mail address: maksimov@imm.uran.ru.
Received: August 30, 2021; Accepted: September 8, 2022.

c©2022 Communications in Optimization Theory

1



2 V.I. MAKSIMOV

It is assumed that the parametric function is known not exactly. Namely, instead of the function
y(·), we know a function φ ν(·) ∈ L∞(T ;Rn) with the property

|y(t)−φ
ν(t)|n ≤ ν for a.a. t ∈ T. (1.3)

Here, h∈ (0,1) and ν = ν(h) are the levels of the measurement accuracy, the symbol | · |n stands
for the Euclidean norm in the space Rn. It is necessary to design an algorithm for the approx-
imate reconstruction of the unknown disturbance on the basis of inaccurate measurements of
x(τi). In other words, the task is as follows: given the current measurements of x(τi), to design
a feedback algorithm that generates in real time a function uh = uh(·) that approximates the
unknown disturbance (in the L2(T ;Rr)-metric) generating the solution x(·) of system (1.1).

The problem described above belongs to the class of dynamical inverse problems. There are
a lot of monographs and papers devoted to reconstruction problems, including problems for
dynamical systems (see, for example [1, 4, 16]). One of the approaches to solving dynamical
reconstruction problems was developed in [2, 5, 8, 9, 10, 11, 12, 13, 14]. This approach is based
on a combination of the methods of feedback control theory [3] (for example, the method of ex-
tremal shift) and the methods of ill-posed problems [15]. In the case when the disturbance u(·) is
subject to a priori constraints, the problem in question can be solved by means of constructions
from [5, 12]. In the present paper, we consider the case when instantaneous constraints on the
disturbance are absent. Accordingly, u(·) is assumed to be a square integrable function. Other
dynamical reconstruction problems with solution algorithms based on suitable modifications of
the extremal shift method were discussed, for example, in [2, 5, 8, 9, 10, 11, 12, 13, 14]. More
specifically, systems of ordinary differential equations were considered in [2, 5, 8, 10]; systems
with memory in [11]; stochastic differential equations in [14], and systems with distributed
parameters in [9, 13].

2. METHOD FOR SOLVING THE PROBLEM

Let us proceed to describe the method for solving the problem under consideration. As men-
tioned above, it is based on the constructions of feedback control theory. Namely, a dynamical
reconstruction problem is replaced by a problem of feedback control for an appropriate dynam-
ical system.

First, we consider the case of discrete measurements of the states. For any h ∈ (0,1), let us
fix a family ∆h of partitions of the interval T by times τh,i:

∆h = {τh,i}mh
i=0, τh,0 = 0, τh,mh = ϑ , τh,i+1 = τh,i +δ (h), δ (h) ∈ (0,1). (2.1)

Along with system (1.1), we consider the auxiliary system

ẇh(t) = f1(τi,φ
ν(t),ξ h

i )+Buh
i for a.a. t ∈ [τi,τi+1) (τi = τh,i, i ∈ [0 : mh−1]) (2.2)

with the initial state wh(0) = ξ h
0 . The law U(·, ·, ·) : T×RN×RN 7→Rr of forming the control uh

i
is constructed in such a way that, for concordant parameters h and δ , the piece-wise functions

uh(t) = uh
i =U(τi,ξ

h
i ,w

h(τi)) for a.a. t ∈ [τi,τi+1) (i ∈ [0 : mh−1]) (2.3)

approximate the unknown disturbance generating x(·).
In the case of continuous measurements of the states, the auxiliary system has the form

ẇh
1(t) = f1(t,φ ν(t),ξ h(t))+Buh(t), t ∈ T, wh

1(0) = ξ
h(0), (2.4)
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and the control uh(·) is defined by the rule

uh(t) =U(ξ h(t),wh
1(t)), t ∈ T. (2.5)

It should be noted that the same solution of system (1.1) can be produced by multiple distur-
bances. Let U(x(·),y(·)) be the set of all functions from L2(T ;Rr) generating the solution x(·)
of system (1.1), i.e.

U(x(·),y(·)) = {ũ(·) ∈ L2(T ;Rr) : ẋ(t)− f1(t,y(t),x(t)) = Bũ(t) for a.a. t ∈ T}.
Let u∗(·) be an element of the set U(x(·),y(·)) of minimal L2(T ;Rr)-norm, i.e.

u∗(·) = arg min
u(·)∈U(x(·),y(·))

|u(·)|L2(T ;Rr).

Note that the set U(x(·),y(·)) is convex and closed in L2(T ;Rr). Therefore, the element u∗(·)
is unique. According to the approach conventional in the theory of ill-posed problems which is
we reconstruct u∗(·).

In what follows, the constants c j,C j,k j and k( j) used in the paper depend on the structure of
system (1.1) and do not depend on the parameters h, α , δ and ν .

3. SOLVING ALGORITHM IN THE CASE OF CONTINUOUS MEASUREMENTS OF THE

STATES

Consider the case of continuous measurements of x(·). We fix some function α = α(h) :
(0,1)→ (0,1).

Before starting the work of the algorithm, we fix values h ∈ (0,1) and α = α(h). Define the
control uh(·) in system (2.4) according to rule (2.5), in which we set

U(ξ h(t),wh
1(t)) =−α

−1B′(wh
1(t)−ξ

h(t)). (3.1)

Here, the prime denotes transposition. As the input of system (2.4), we take the control uh(·) of
form (2.5), (3.1) for all t ∈ T .

Let
ε(t) = 0,5|wh

1(t)− y(t)|2N .

Lemma 3.1. Let α(h)→ 0, hα−2(h)→ 0 and ν(h)α−1(h)→ 0 as h→ 0. Then there exists a
number h0 ∈ (0,1) such that the inequalities

ε(t)≤ c(0)(α(h)+ν(h)+hα
−1(h)), (3.2)

ϑ∫
0

|uh(s)|2r ds≤ (1hα
−1(h))(1+ c(1)hα

−1(h))
ϑ∫

0

|u∗(s)|2r ds+ c(2)(hα
−2(h)+ν(h)α−1(h))

(3.3)
hold for all h ∈ (0,h0), t ∈ T .

Proof. Note that (see (2.5) and (3.1))

uh(t) = argmin{2(wh
1(t)−ξ

h(t),Bu)+α|u|2r : u ∈ Rr}.
Differentiating the function ε(t), we get

2ε̇(t)+α{|uh(t)|2r −|u∗(t)|2r}= (3.4)

2(wh
1(t)−x(t), f1(t,φ ν(t),ξ h(t))− f1(t,y(t),x(t))+2B(uh(t)−u∗(t))+α{|uh(t)|2r −|u∗(t)|3r}.
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In turn, in virtue of (4.25), (2.5) and (3.1), we obtain the inequality

|uh(t)|r ≤ b∗hα
−1 +b∗α−1(2ε(t))1/2. (3.5)

Here, α = α(h) and b∗ is the Euclidean norm of the matrix B′. Let

γ(t) = 2ε(t)+α

t∫
0

|uh(s)|2r ds.

From (4.25) and (1.3), we derive

2(wh
1(t)− x(t), f1(t,φ ν(t),ξ h(t))− f1(t,y(t),x(t)))≤ 2L{|φ ν(t)− y(t)|n+ (3.6)

|x(t)−ξ
h(t)|N} ≤ 2L{h+ν}|wh

1(t)− x(t)|N = 2L(h+ν)(2ε(t))1/2.

Then, using (4.25) and (3.5), we have

2(wh
1(t)− x(t),B(uh(t)−u∗(t)))+α{|uh(t)|2r −|u∗(t)|2r} ≤ (3.7)

2(wh
1(t)−ξ

h(t),B(uh(t)−u∗(t)))+α{|uh(t)|2r −|u∗(t)|r}+2hb∗{|uh(t)|r + |u∗(t)|r} ≤

2hb∗{|uh(t)|r + |u∗(t)|r} ≤ 2hb∗|u∗(t)|r +2b2
∗h

2
α
−1 +2hb2

∗α
−1(2ε(t))1/2.

In this case, from (3.6) and (3.7), we obtain the estimate

γ̇(t)−α|u∗(t)|2r ≤ 2h(2ε(t))1/2 +2b∗h|u∗(t)|r +2b2
∗h

2
α
−1+ (3.8)

2b2
∗hα

−1(2ε(t))1/2 +2L(h+ν)|u∗(t)|r(2ε(t))1/2.

Using the inequality ab≤ 0,5(a2 +b2), we derive the inequalities

2(h+ν)L(2ε(t))1/2 ≤ 2(h+ν)L2 +(h+ν)ε(t), (3.9)

2b2
∗hα

−1(2ε(t))1/2 ≤ 2b4
∗hα

−1 +hα
−1

ε(t).

Inequalities (3.8) and (3.9) imply

γ̇(t)≤ α|u∗(t)|2r +2b∗h|u∗(t)|r +2b2
∗h

2
α
−1 +(h+ν +hα

−1)ε(t)+2h(L2 +b4
∗α
−1)+2νL2.

(3.10)
Using the inclusion α(h) ∈ (0,1), and the inequality 2ε(t) ≤ γ(t), we derive from (3.10) the
inequality

γ̇(t)≤ α|u∗(t)|2r +2b∗h|u∗(t)|r + c1(ν +hα
−1)+ c2(ν +hα

−1)γ(t)+2νL2. (3.11)

Applying the Gronwall lemma and inequality (3.11), we obtain

γ(t)≤ {c1ϑ(ν +hα
−1)+α

ϑ∫
0

|u∗(s)|2r ds+2νϑL2+ (3.12)

2b∗h
ϑ∫

0

|u∗(s)|rds}exp{c2t(ν +hα
−1)} ≤ c3(α +ν +hα

−1)exp{c2t(ν +hα
−1)}.

Inequality (3.2) follows from inequality (3.12). Let us prove inequality (3.3). In virtue of the
convergence hα−2(h)→ 0 as h→ 0, there exists a number h0 ∈ (0,1) such that the inequalities

exp{c2hϑα
−1(h)} ≤ 1+ c4hα

−1(h), hα
−1(h)≤ α(h)≤ 1 (3.13)
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hold for all h ∈ (0,h0). Note that
ϑ∫

0

|u∗(s)|rds≤ c5. (3.14)

Hence, taking into account (3.13), (3.14), and (3.12), we have

α

t∫
0

|uh(s)|2r ds≤ {c6(h+ν)α−1 +(α +h)
t∫

0

|u∗(s)|2r ds}(1+ c4hα
−1)≤ (3.15)

(h+α(h))(1+ c4hα
−1(h))

t∫
0

|u∗(s)|2r ds+ c7(hα
−1(h)+ν).

Inequality (3.3) follows from inequality (3.15). The lemma is proved. �

From Lemma 3.1 and Theorem 1.2.1. [5, p. 23], we obtain

Theorem 3.2. Let the conditions of Lemma 3.1 be fulfilled. Then the convergence uh(·)→ u∗(·)
in L2(T ;Rr) as h→ 0 takes place.

4. SOLVING ALGORITHM IN THE CASE OF DISCRETE MEASUREMENTS OF THE STATES

Here we describe an algorithm for solving the problem in the case of discrete measurements
of x(·). Consider family ∆h (2.1) and the function α(h) : (0,1)→ (0,1).

Before starting the process, we fix a value h ∈ (0,1), numbers ν = ν(h) and α = α(h) and
partition ∆h = {τh,i}mh

i=0 (2.1). The work of the algorithm is decomposed into m− 1 (m = mh)
identical steps. At the i-th step carried out during the time interval δi = [τi,τi+1), τi = τh,i, the
following actions are fulfilled. First, at the time τi, the vector uh

i is calculated by formula (2.3),
in which

U(τi,ξ
h
i ,w

h(τi)) =−α
−1B′(wh(τi)−ξ

h
i ). (4.1)

Then, for all t ∈ δi, the control uh(t) of form (2.3), (4.1) is taken as the input of system (2.2). As
a result, under the action of such control, system (2.2) passes from the state wh(τi) to the state
wh(τi+1). The work of the algorithm stops at time ϑ .

It turns out that, under appropriate relations between h, δ (h), ν(h), α(h), the function uh(·)
approximates u∗(·). Before proceeding to the proof of this fact, we present two auxiliary lemmas
used below.

Remark 4.1. In the case when the right-hand part of system (1.1) does not depend on the
parametric function y(·), i.e. f = f1(t,x)+Bu, an algorithm for solving of the problem under
discussion is given in [10]. In this paper, we consider the auxiliary system

ẇh(t) = f1(τi,ξ
h
i )+Buh

i + vh
i , t ∈ δi.

The controls uh
i and vh

i are calculated by the formulas

uh
i = α(h)−1B′(ξ h

i −wh(τi)),

vh
i = cδ (h)α−2(h)(ξ h

i −wh(τi)),

where c is a positive constant. It was proved in [10] that, under appropriate relations between
parameters h,α(h) and δ (h), the convergence of uh(·) to u∗(·) in L2(T ;Rr) takes place. In
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the proof of this convergence, the function vh(·) was important. In this paper, in contradiction
with [10], first, we consider a system with a right-hand part f depending on some parametric
function. Second, we prove that it is possible to set vh(t) = vh

i = 0 for a.a. t ∈ [τi,τi+1), i ∈ [0 :
mh−1] in the auxiliary system.

Lemma 4.2. [5, p. 47] Let x1(·) ∈ L∞(T∗;Rn) and y1(·) ∈W (T∗;Rn), T∗ = [a,b], −∞ < a <
b <+∞, be such that ∣∣∣ t∫

a

x1(τ)dτ

∣∣∣
n
≤ ε, |y1(t)|n ≤ K ∀ t ∈ T∗.

Then, for all t ∈ T∗, the inequality∣∣∣ t∫
a

(x1(τ),y1(τ))dτ

∣∣∣≤ ε(K +var(T∗;y1(·)))

is valid.

Lemma 4.3. [6] Let a nonnegative function φ(t), t ∈ T , satisfy the inequalities

φ(τi+1)≤ φ(τi)(1+ pδ )+

τi+1∫
τi

|G(τ)|dτ

for all i ∈ [0 : m− 1], where τi ∈ ∆, δ = τi+1− τi, p = const > 0, G(·) ∈ L∞(T ;R). Then, the
inequalities

φ(τi)≤
(

φ(0)+
τi∫

0

|G(τ)|dτ

)
exp(pτi), i ∈ [0 : m],

take place.

Here, the symbol var(T∗;y1(·)) means the variation of the function y1(·) over the interval T∗,
the symbol (·, ·) means the scalar product in the corresponding finite-dimensional Euclidean
space,the symbol | · | means the modulo of a number, and the symbol W (T∗;Rn) means the set
of functions z(·) : T∗→ Rn of bounded variation.

Lemma 4.4. Let α(h)→ 0 and δ (h)α−2(h)→ 0 as h→ 0. Then there exists a number h1 ∈
(0,1) such that the inequalities

ε∗(t)≤C1ρ1(α,δ ,h,ν), (4.2)

ϑ∫
0

|uh(τ)|2r dτ ≤ (1+C2αδ
−2)

ϑ∫
0

|u(τ)|2r dτ +C3ρ(α,δ ,h,ν)α−1 (4.3)

hold for all h ∈ (0,h1), t ∈ T . Here, α = α(h),δ = δ (h),ν = ν(h),

ε∗(t) = 0,5|wh(t)− x(t)|2N , ρ1(α,δ ,h,ν) = ρ(α,δ ,h,ν)+α +δ +δ
2
ν

2,

ρ(α,δ ,h,ν) = α
2
δ +h2

δ
−1 +h+α

2
ν

2
δ
−1.



RECONSTRUCTION OF DISTURBANCE 7

Proof. Estimate the change of the function ε∗(t), t ∈ T . It is easily seen that the equality

ε∗(t) = 0,5|wh(τi)− x(τi)+

t∫
τi

{ f i(τ)+Bi(τ)}dτ|2N

is true for t ∈ δi = [τi,τi+1), i ∈ [0 : m−1]. Here, m = mh,τi = τh,i,

f i(t) = f1(τi,φ
ν(t),ξ h

i )− f1(t,y(t),x(t)), Bi(t) = B(uh
i −u(t)) for a.a. t ∈ δi.

In this case, the equality

ε∗(t) = ε∗(τi)+
5

∑
j=1

ν
( j)
i (t)

takes place for all t ∈ δi. Here,

ν
(1)
i (t) = (wh(τi)− x(τi),

t∫
τi

f i(τ)dτ), ν
(2)
i (t) = 0,5

∣∣∣∣ t∫
τi

f i(τ)dτ

∣∣∣∣2
N
,

ν
(3)
i (t) = (wh(τi)− x(τi),

t∫
τi

Bi(τ)dτ),

ν
(4)
i (t) =

( t∫
τi

f i(τ)dτ,

t∫
τi

Bi(τ)dτ

)
, ν

(5)
i (t) = 0,5

∣∣∣∣ t∫
τi

Bi(τ)dτ

∣∣∣∣2
N
, t ∈ δi.

Throughout the proof of this lemma, α = α(h), ν = ν(h), δ = δ (h). Note that, for all i (see
(4.1)), the inequalities

|uh
i |r =

∣∣∣∣B′(ξ h
i −wh(τi))

α

∣∣∣∣
r
≤ b∗

α
Qi (4.4)

are true, where Qi = h+(2ε∗(τi))
1/2, b∗ is the Euclidean norm of the matrix Bi. For all t ∈

[τi,τi+1], we derive the estimate

| f i(t)|N ≤ L{δ +h+ν + |y(t)− y(τi)|N} ≤ LQ(i)
t , (4.5)

Q(i)
t = δ +h+ν +

t∫
τi

|ẏ(τ)|N dτ.

In turn, in virtue of (4.5), we obtain the inequality

ν
(1)
i (t)≤ L(2ε∗(τi))

1/2
δQ(i)

t ≤
δ 2

4α2 ε∗(τi)+ k1α
2(Q(i)

t )2, t ∈ δi. (4.6)

Denote Uip(t) =
t∫

τi

|u(τ)|pr dτ, p = 1,2. We have

ν
(2)
i (t)≤ k2δ

2(Q(i)
t )2, t ∈ δi. (4.7)

In addition, one can show that the inequality (see (4.4))

|
t∫

τi

Bi(τ)dτ|N ≤ b∗{Ui1(t)+δ |uh
i |N} ≤ b∗{b∗δα

−1Qi +Ui1(t)}, t ∈ δi (4.8)
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holds. In virtue of (4.4) and (4.8), we deduce that

ν
(3)
i (t)≤

t∫
τi

(wh(τi)−ξ
h
i ,B

i(τ))dτ +hb∗{b∗δα
−1(h+(2ε∗(τi))

1/2)+Ui1(t)} ≤ (4.9)

t∫
τi

(wh(τi)−ξ
h
i ,B

i(τ))dτ + k3{(1+
δ

α
)h2 +hUi1(t)}+

δ 2

4α2 ε∗(τi).

It is easily seen that the inequalities

ν
(4)
i (t)≤ k4{

δ 2

α
Q(i)

t (h+ ε
1/2
∗ (τi))+δQ(i)

t Ui1(t)} ≤ (4.10)

δ 2

4α2 ε∗(τi)+ k5{δ 2(Q(i)
t )2 +

δ 2

α2 h2 +δUi2(t)},

ν
(5)
i (t)≤ 0,5b2

∗

(
Ui1(t)+δb∗

Qi

α

)2

≤ 4b4
∗

δ 2

α2 ε∗(τi)+ k6{h2 δ 2

α2 +δUi2(t)} (4.11)

hold for t ∈ [τi,τi+1]. Note that δ (h)α−2(h)→ 0 as h→ 0. Therefore, by using relations (4.6),
(4.7), (4.9)–(4.11), the inequality

ε∗(t)≤ ε∗(τi)+(1+4b4
∗

δ 2

α2 )ε∗(τi)+ k7{δUi2(t)+(α2 +δ
2)(Q(i)

t )2 +h2 +hUi1(t)} (4.12)

takes place for t ∈ [τi,τi+1). Then, we have

(α2 +δ
2)

m−1

∑
i=0

(Q(i)
τi+1)

2 ≤ k8α
2

m−1

∑
i=0
{h2 +δ

2 +ν
2 +δQi,τi+1} ≤ (4.13)

k9{α2
δ +α

2(h2 +ν
2)δ−1},

where

Qi,t =

t∫
τi

|ẋ(τ)|2N dτ, t ∈ [τi,τi+1].

Let

µ(t) = 2ε∗(t)+α

t∫
0

{|uh(τ)|2r −|u(τ)|2r}dτ.

Due to (4.12), the rule for finding the control uh(·) implies the inequality

µ(t)≤ µ(τi)+1(1+4b4
∗

δ 2

α2 )ε∗(τi)+ k7{δUi2(t)+(α2 +δ
2)(Q(i)

t )2 +h2 +hUi1(t)}. (4.14)

Introduce

γ∗(t) = 2ε∗(t)+α

t∫
0

|uh(τ)|2r dτ.

Using (4.14) and the inequality (1+δα−1)δα−1≤ const for t ∈ [τi,τi+1], we derive the estimate

γ∗(t)≤ {1+4b4
∗

δ 2

α2}γ∗(τi)+(α +k10δ )Ui2(t)+k11{(α2+δ
2)(Q(i)

t )2+h2+hUi1(t)}. (4.15)
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Hence, taking into account (4.13)), (4.15), and Lemma 4.3, we get

γ∗(τi+1)≤ [γ∗(0)+(α + k10δ )U (i+1)+ k12ρ]exp{4b4
∗

δ

α2 τi+1}, i ∈ [0 : m−1]. (4.16)

Here,

ρ = ρ(α,δ ,h,ν), U (i+1) =

τi+1∫
0

|u(τ)|2r dτ.

In virtue of the inequality γ∗(0)≤ h2 (see (1.2) as i = 0), we derive

γ∗(τi)≤ [k13ρ +(α + k10δU (i)]exp{4b4
∗δ

α2 τi}. (4.17)

Note that δ (h)α−2(h)→ 0 as h→ 0. Then there exists a number h∗ ∈ (0,1) such that the
inequality

exp{4b4
∗ϑδα

−2} ≤ 1+ k14δα
−2 (4.18)

takes place for h ∈ (0,h∗). In this case, from (4.18) and (4.17), we obtain the estimate

2ε∗(τi)≤ γ∗(τi)≤ k15ρ +(α + k10δ )(1+ k14δα
−2)U (i). (4.19)

This estimate is valid for all h ∈ (0,h∗), i ∈ [0 : m]. In turn, using (4.19), we deduce that
τi∫

0

|uh(τ)|2r dτ ≤ (1+ k10δα
−1)(1+ k14δα

−2)U (i)+ k15ρα
−1 ≤ (4.20)

(1+ k16
δ

α2 )U
(i)+ k15ρα

−1, i ∈ [0 : m], h ∈ (0,h∗).

Inequality (4.3) follows from (4.20) for i = m. Let us prove inequality (4.2). Note that for all
t ∈ [τi,τi+1] the estimate

(2ε∗(t))1/2 ≤ (2ε∗(τi))
1/2 + It,i + |

t∫
τi

B{uh
i −u(τ)}dτ|N (4.21)

is valid. Here (see (4.5)),

It,i =
t∫

τi

| f1(τ,y(τ),x(τ))− f1(τi,ξ
h
i ,φ

ν(τ))|n dτ ≤ δL{h+δ +ν +

t∫
τi

|ẋ(τ)|N dτ}. (4.22)

Therefore, from (4.21), (4.22), and the inequality

max
i∈[0:m−1]

τi+1∫
τi

|Bu(t)|N dt ≤ k17δ
1/2,

we derive
(2ε∗(t))1/2 ≤ (2ε∗(τi))

1/2 + k18{δν +δ |uh
i |r +δ

1/2}.
Consequently,

2ε∗(t)≤ k19{ε∗(τi)+δ +δ
2|uh

i |2r +δ
2
ν

2}, t ∈ [τi,τi+1]. (4.23)
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Next, using (4.4), we get

δ
2|uh

i |2r ≤ 2b2
∗δ

2
α
−2(h2 +2ε∗(τi))≤ k20(h2 + ε∗(τi)). (4.24)

Then, in virtue of (4.23) and (4.24), we obtain

2ε∗(t)≤ k21{ε∗(τi)+δ +δ
2
ν

2} t ∈ [τi,τi+1]. (4.25)

Hence, taking into account (4.25) and (4.19), we get

2ε∗(t)≤ k22[ρ+δ +δ
2
ν

2+(α+k10δ )(1+k14δα
−2)

t∫
0

|u(τ)|2r dτ]≤ k23ρ1(α,δ ,h,ν), t ∈ T.

Inequality (4.2) follows from the latter inequality. The lemma is proved. �

From Lemma 4.4 and Theorem 1.2.1 [5, p. 23], we obtain

Theorem 4.5. Let the conditions of Lemma 4.2 be fulfilled. Let also ν(h)→ 0,

ρ1(α(h),δ (h),h,ν(h))→ 0, ρ(α(h),δ (h),h,ν(h))α−1(h)→ 0 as h→ 0. (4.26)

Then the convergence uh(·)→ u∗(·) in L2(T ;Rr) as h→ 0 takes place.

Remark 4.6. Conditions (4.26) take place if

δ (h)α−2(h)→ 0, h2(δ (h)α(h))−1→ 0, hα
−1(h)→ 0, α(h)ν2(h)δ−1(h)→ 0 as h→ 0.

5. THE CONVERGENCE RATE OF THE ALGORITHM

Under some additional conditions, one can obtain the convergence rate of the algorithm (see
Lemma 4.3).

Lemma 5.1. Let u(·) be a function of bounded variation. Let also N ≥ r, rankB = r, and
conditions of Lemma 4.2 hold. Then it is possible to find a positive constant C4 such that the
inequality

ϑ∫
0

|uh(τ)−u(τ)|2r dτ ≤C4ρ0(α,δ ,h,ν)+C3ρ(α,δ ,h,ν)α−1

takes place for all h ∈ (0,h1).

Here, the constant C3 is from (4.3),

ρ0(α,δ ,h,ν) = α
1/2 +δ

1/2 +hδ
−1/2 +ανδ

−1/4 +νδ .

Proof. Using the Lipschitz property of the function f1, we conclude that the inequality∣∣∣ t2∫
t1

B{uh(t)−u(t)}dt
∣∣∣
N
=
∣∣∣ t2∫

t1

[ẇh(τ)− ẋ(τ)− f1(τ,ξ
h(τ),φ ν(τ))+ f1(τ,y(τ),x(τ))]dτ

∣∣∣
N
≤

|µh(t2)−µh(t1)|N + k(1){
t2∫

t1

{|ξ h(τ)− x(τ)|N + |φ ν(τ)− y(τ)|n}dτ +δ} ≤

|µh(t2)−µh(t1)|N + k(2)
t2∫

t1

{|µh(τ)|N +h+δ +ν}dτ



RECONSTRUCTION OF DISTURBANCE 11

is fulfilled for any t1, t2 ∈ T , t1 < t2. Here,

µh(t) = wh(t)− y(t), ξ
h(τ) = ξ

h
i for a.a. τ ∈ [τi,τi+1).

In addition, in virtue of Lemma 4.4 (see (4.2)), we have

|µh(t)|N = (2ε∗(t))1/2 ≤C1/2
1 ρ

1/2
1 (α,δ ,h,ν).

This inequality implies∣∣∣ t2∫
t1

{uh(t)−u(t)}dt|r ≤ k(3)
∣∣∣ t2∫

t1

B{uh(t)−u(t)}dt
∣∣∣
N
≤ (5.1)

k(4){ρ1/2
1 (α,δ ,h,ν)+h+δ +ν} ≤ k(5)ρ0(α,δ ,h,ν).

From Lemma 4.4 (see (4.3)), we derive
ϑ∫

0

|uh(τ)−u(τ)|2r dτ =

ϑ∫
0

|uh(τ)|2r dτ−2
ϑ∫

0

(uh(τ),u(τ))dτ +

ϑ∫
0

|u(τ)|2r dτ ≤

+(2+C2αδ
−2)

ϑ∫
0

|u(τ)|2r dτ−2
ϑ∫

0

(uh(τ),u(τ))dτ +C3ρ(α,δ ,h,ν)α−1 =

2
ϑ∫

0

(u(τ)−uh(τ),u(τ))dτ +C2αδ
−2

ϑ∫
0

|u(τ)|2r dτ +C3ρ(α,δ ,h,ν)α−1, t ∈ T.

In virtue of Lemma 4.2 and (5.1), we obtain

sup
t∈T
|

t∫
0

(u(τ)−uh(τ),u(τ))dτ| ≤ k(6)ρ0(α,δ ,h,ν).

Consequently, the inequality
ϑ∫

0

|uh(τ)−u(τ)|2r dτ ≤ 2k(6)ρ0(α,δ ,h,ν)+C3ρ(α,δ ,h,ν)α−1 (5.2)

takes place for all h ∈ (0,1), t ∈ T . The statement of the lemma follows from this inequality.
The lemma is proved. �

It is easily seen that the following lemma takes place.

Lemma 5.2. Let the conditions of Lemma 4.4 be fulfilled. Let also χ ∈ (0,1/2), δ (h) = h,
α(h) = h1/2−χ(h), ν(h) = h1/2. Then there exists a number h2 ∈ (0,h1) such that the inequali-
ties

ρ(α(h),δ (h),h,ν(h))α−1(h)≤C5h1/2−χ ,

ρ1(α(h),δ (h),h,ν(h))≤C6h1/2−χ , ρ0(α(h),δ (h),h,ν(h))≤C7h1/4−χ/2

hold for all h ∈ (0,h2).

Lemmas 5.1 and 5.2 imply
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Corollary 5.3. Let the conditions of Lemma 5.2 be fulfilled. Then the inequality
ϑ∫

0

|uh(t)−u(t)|2r dt ≤C8h1/4−χ/2

takes place.

6. EXAMPLES

Example 6.1. Let y(t) = ż(t) in system (1.1), where a function z(·) is unknown. But some
properties of this function are known: ż(0) = 0, z̈(·) ∈ L2(T ;Rn). At times τi, the values of this
function are measured with an error h, i.e. vectors ψh

i ∈ Rn,

|ψh
i − z(τi)|n ≤ h

are calculated. The problem consists in reconstructing a disturbance, which generates the solu-
tion x(·) of system (1.1), on the base of measurements of z(τi) and x(τi).

To solve this problem, it is possible to apply the algorithm described in Section 5. In this
case, we reconstruct a function u∗(·), an element of the set

U(x(·),z(·)) = {u(·) ∈ L2(T ;Rr) : ẋ(t) = f1(t, ż(t),x(t))+Bu(t) for a.a. t ∈ T}.
with minimal L2(T ;Rr)-norm.

We fix two functions α = α(h) : (0,1)→ (0,1) and α1 = α1(h) : (0,1)→ (0,1). Together
with model (2.2), we introduce an additional auxiliary system of the form

ẇh
1(t) = uh

1(t), t ∈ T.

The initial state of this system is wh
1(0) = 0. The control uh

1(·) is calculated by the rule

uh
1(t) = uh

i =−
wh

1(τi)−ψh
i

α1(h)
, t ∈ [τi,τi+1).

From [7] (see Theorem 5) we derive the inequality

sup
t∈T
|uh

1(t)− ż(t)|n ≤ ν(h), (6.1)

where
ν(h) =C9{α1(h)+(h+δ (h))α−1

1 (h)}.
In this case, it is possible to assume

φ
ν(t) = uh

1(t), t ∈ T.

Let

α(h)→ 0, α1(h)→ 0, h2(δ (h)α(h))−1→ 0, α(h)α2
1 (h)δ

−1(h)→ 0, (6.2)

δ (h)α−2(h)→ 0, hα
−1(h)→ 0, α(h)(h2 +δ

2(h))(α1(h)δ (h))−1→ 0 as h→ 0.
Then, in virtue of Theorem 4.5, the convergence uh(·)→ u∗(·) in L2(T ;Rr) as h→ 0 takes
place. Relations (6.2) are fulfilled if, for example,

δ (h) =C10h, α(h) =C11hµ , (µ = const ∈ (1/2,1)) α1(h) =C12h1/4.

In this case,
ν

2(h)≤C13h1/2, α(h)ν2(h)δ−1(h)≤C14hµ−1/2.



RECONSTRUCTION OF DISTURBANCE 13

Note that the function z(·) is measured at discrete times. But, the role of function φ ν(·) is played
by the function uh

1(·) defined for all t ∈ T by means of the vectors ψh
i .

Example 6.2. Consider the system with time delay

ẋ(t) = f1(t,x(t− τ),x(t))+Bu(t), t ∈ T = [0,ϑ ] (6.3)

with the initial state
x(s) = x0(s) s ∈ [−τ,0].

The state of the system depends on a function u(·) ∈ L2(T ;Rr). Here, x ∈ Rn; ϑ ∈ (0,+∞);
τ = const ∈ (0,+∞) is a time delay; B is constant n× r-matrix; f1 is a given n× n-matrix
satisfying the Lipschitz condition; x0(·) is a given continuous function.

Let u = u(·) be a disturbance generating the solution of system (6.3) denoted by x(·). The
problem is to identify in ”real time” a priory unknown u(·) through results of inaccurate mea-
surements of x(·) at discrete times τi ∈ ∆ = {τ j}m

j=0, τ j+1 = τ j + δ . These results are vectors
ξ h

i ∈ Rn such that
|x(τi)−ξ

h
i |n ≤ h.

To solve this problem, it is also possible to apply the algorithm described in Section 5. Indeed,
let

y(t) = x(t− τ).

It is easily seen that
|x(t)−ξ

h
i |n ≤C15(h+δ

1/2(h))

for t ∈ [τi,τi+1), i ∈ [0 : m− 1], m = mh, τi = τh,i. We assume that the function x0(·) is dif-
ferentiable and ẋ0(·) ∈ L2([−τ,0];Rn). In additional, for simplicity, we assume that numbers
kh = τ/mh are natural. Then, for all s ∈ [−iδ (h),−(i−1)δ (h)), i ∈ [1 : kh], the inequalities

|x0(s)− x0(−iδ )|n ≤C16δ
1/2(h)

hold. If ν(h) = max{C15,C16}(h+δ 1/2(h)) and

φ
ν(t) = x0((i− kh)δ (h), if t ∈ [iδ (h),(i+1)δ (h)), i ∈ [0 : kh−1]

ξ
h
i−kh

, if t ∈ [iδ (h),(i+1)δ (h), i ∈ [kh,mh−1],

then inequalities (1.3) are fulfilled, the auxiliary system has form (2.2), and the control uh(·) is
defined by rule (2.3), (4.1).
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