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Abstract. We consider an extended version of the consumer problem. The problem is formulated as a nonconvex
optimization problem with two bilinear constraints. We propose two brand-and-bound algorithms for finding
a global solution of the problem. The first algorithm uses the convex envelope for the bilinear functions for
bounding, and a rectangular bisection for branching, whereas the second one employs a decoupling relaxation
companied with an adaptive simplicial bisection. Some numerical experiments and results on randomly generated
data are reported.
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Rectangular bisection.

1. INTRODUCTION AND THE PROBLEM SETTING

Nowadays, optimization in the manufacturing and consumer sectors is a topic of great in-
terest. However, the optimization operation can only be done when the goods together with
their prices and utilities are quantified by the functional relationships. They (producers and
consumers) want to choose a packages of goods to producing (or consumption) under the con-
ditions allowed, such that the benefit are greatest possible. In consumption economics, the
following two classical problems are of common interest. The first one is maximizing utility
subject to consumer budget constraint (see Intriligator [4], p. 149), and the second one is mini-
mizing consumer’s expenditure for the utility of a specified level (see Nichoson and Snyder [8],
p. 132 ). Quatitative properties of the problem of maximizing utility subject to consumer budget
constraint have been studied by Takayama [10] (pp. 241-242, 253-255], Penot [9], Hadjisavvas
and Penot [1], and many other authors. In this paper, we consider the consumer problem in re-
spect of extension the classical consumer problem onto new version and propose some solution
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methods for the suggested problem. For more detail and your convenience to read, we restate
the classical problem as follows.

Let us consider a market containing a packages of N types of goods 1,2, ...,N. Denote by
dT = (d1, ...,dN) ≥ 0 the price vector and xT = (x1, ...,xN) ≥ 0 the quantity vector of types of
goods. Moreover, assume that the utility of a package of goods x is quantified by U(x), where
U : RN → R is a given function (utility function). The feasible domain of x in usually is a
convex polyhedral set in RN

+, denoted by X . When the price vector d is known, with an amount
of budget no more a given M > 0, the classical consumer problem is as follows.

Find x ∈ RN such that

maxxU(x)

s.t.


x ∈ X
Āx≤ b̄
〈d,x〉 ≤M,

(CCP)

where the constraint Āx≤ b̄, Ā is a q×N matrix and b̄∈Rq represents the structure or the density
of types of goods, and it is usually defined by the consumers. Usually, the utility function is
concave continuous function such as the Coob-Douglas function [10]. Thus, with a given price
d, the classic consumer problem (CCP) is an optimization problem of maximizing a concave
function over a convex polyhedral set, which can be solved efficiently by available algorithms.

Derived from the practice that the prices of goods were decided by the markets of the goods.
More specifically, with the popular group of goods, which were consumed over the perfectly
competitive markets, the prices were decided by both consumers and producers via the law of
supply and demand. However, with the special group of goods, which were consumed on the
oligopolistic markets, the prices were decided by the producers. From this practice, in this pa-
per, we extend the classical consumer problem in a way that takes into account the requirements
of both producers and consumers. Precisely, whereas the consumers want to choose the amount
of the goods x such that maximizing the utility, the producers want to choose the level of the
prices of some given goods such that the total of revenues obtained from the package of goods
x is no less than given L > 0. For easily of presentation, we divide a package of N = n+m
types of the goods into two groups. The first group is denoted by xT = (x1, ...,xn) with the
level of prices, respectively, are given cT = (c1, ...,cn), whereas the second group, denoted by
yT = (y1, ...,ym) with the level of prices pT = (p1, ..., pm), respectively, are unknowns. In order
to show the capacity of the producers, we denote by b̃T = (b̃1, ..., b̃r), b̃i > 0, i = 1, ...,r the vec-
tor of the endowment of resources, ãi j the amount of the i−th resource for producing one unit
of the j−th commodity, and let Ã = (ãi j)r×(n+m). Moreover, denote by Ã1, Ã2, respectively, the
matrices obtained from top n columns and remaining m columns of Ã. Then the requirements
of the producers can be written as follows.

Find (x,y) ∈ Rn+m, p ∈ Rm such that
〈c,x〉+ 〈p,y〉 ≥ L,
Ã1x+ Ã2y ≤ b̃,
p,x,y ≥ 0.

Combining the requirements of both producers and consumers, we suggest an extended version
of the consumer problem as follows.
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Find (x,y) ∈ Rn+m and p ∈ Rm such that

maxx,y,pU(x,y)

s.t.


x ∈ X ,y ∈ Y0, p ∈ P0
Ā1x+ Ā2y ≤ b̄,
Ã1x+ Ã2y ≤ b̃,
〈c,x〉+ 〈p,y〉 ≤ M,
〈c,x〉+ 〈p,y〉 ≥ L,

(ECP0)

where Ā1 and Ā2 are the matrices obtained from top n columns and remaining m columns of
the matrix Ā, respectively. Obviously, 0 < L < M is a necessary condition for this problem
has a solution and it is suitable on the practice. For easy on presentation, we define a convex
polyhedral by setting

D := {(x,y) ∈ Rn+m : Ā1x+ Ā2y≤ b̄, Ã1x+ Ã2y≤ b̃},

and f (x,y) :=−U(x,y). Then the extended consumer problem (ECP0) is rewritten as the form

f∗ := minx,y,p f (x,y)

s.t.


x ∈ X ,y ∈ Y0,(x,y) ∈ D, p ∈ P0,
〈c,x〉+ 〈p,y〉−M ≤ 0,
〈−c,x〉+ 〈−p,y〉+L ≤ 0.

(ECP1)

2. A RECTANGULAR BISECTION B-B ALGORITHM

Firstly, we recall from [2] that the convex envelope of a function ψ on a convex set C is the
convex function on C denoted by coCψ such that coCϕ(x) ≤ ψ(x) for every x ∈C. If ζ is any
convex function on C satisfying ζ (x) ≤ ψ(x) for every x ∈ C, then ζ (x) ≤ coCψ(x) for every
x ∈ C. It is well known [2] that the convex envelope function of a concave function is affine,
and that if C =C1× . . .×CN is compact and ψ is separable, i.e., ψ(x1, . . . ,xN) = ∑

N
j=1 ψ j(x j),

then coψ(x) = ∑
N
j=1 coψ j(x j), where coψ j is the convex envelope function of ψ j over C j for

every j.
As usual, we assume that the utility function U is continuous concave on Rn+m. Then f is

continuous convex on Rn+m. Since X , Y0, D are convex, Problem (ECP1 ) is a convex program
with two additional bilinear constraints that makes the problem difficult. First we consider the
case when the feasible domain of the price p is box P0 (often in practical models). In order to
employ the separability of the inner product and the rectangular structure of Y0 and P0, by using
the elementary equality (a− b)2 = a2− 2ab+ b2 ( a,b ∈ R, we can write Problem (ECP1) in
the form

α(P0,Y0) := minx,y,p f (x,y)

s.t.


x ∈ X ,y ∈ Y0,(x,y) ∈ D, p ∈ P0
〈c,x〉+ 1

2 ∑
m
j=1(p j + y j)

2− p2
j − y2

j −M ≤ 0,
〈−c,x〉+ 1

2 ∑
m
j=1(p j− y j)

2− p2
j − y2

j +L ≤ 0.

(ECP)

The separability of the last two constraints and rectangular structure of Y0 and P0 in Problem
(ECP) suggest a branch-and-bound algorithm with rectangular bisection for solving it.

We will use the following adaptive rectangular bisection for a branch-and-bound algorithm
to be described below.
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An adaptive rectangular bisection (Rule 1). Let I be a given q- dimensional box given
as I := I1× ...× Iq, and ψ j be the concave functions over I j, j = 1, ...,q. Denote by coI jψ j the
convex envelope function of ψ j over I j. For each xI ∈ I, denote by jmax(I) the index that belongs
to the set

argmax1≤ j≤q{ψ j(xI
j)− coI jψ j(xI

j)}.
Then, we bisect I into two boxes via the middle point of edge jmax(I). We call this middle point
the bisection point and jmax(I) the bisection index.

For this bisection, we have the following lemma. Its proof can be found, e.g. in [5, 6]

Lemma 2.1. Let {Ik} be an infinite sequence of subboxes generated by the adaptive rectangular
bisection Rule 1 such that Ik+1 ⊂ Ik for every k. Let bk be the bisection point and jk be the
bisection index for Ik. Then

lim
k→∞

(ψ jk(b
k)− coIk

jk
ψ jk(b

k)) = 0.

Consequently, {Ik} tends to a singleton provided that ψ jk is concave, but not affine on I jk for
every jk.

By using rectangular bisection (Rule 1), the bounding branching operations now be done as
follows.

Bounding by the convex envelope. Let Y ⊆Y0, and P⊆ P0 be rectangles. Consider Problem
(ECP) with Y0 and P0 are replaced by Y and P respectively. Let B := P×Y and define the
relaxed problem

β (B) := minx,y,p f (x,y)

s.t.


x ∈ X ,(x,y) ∈ D,(p,y) ∈ B
〈c,x〉+ 1

2 ∑
m
j=1(p j + y j)

2 + coh(−p2
j)+ coh(−y2

j)−M ≤ 0,
〈−c,x〉+ 1

2 ∑
m
j=1(p j− y j)

2 + coh(−p2
j)+ coh(−y2

j)+L ≤ 0.

(RECP)

Clearly, β (B) is a lower bound for α(B). Let (xB,yB, pB) be the obtained solution to (RECP).
We use Rule 1 to bisect B. Let σ(BY ) and σ(BP) be bisection- indeces for P and Y respectively.
We first calculate

σ(BY ) := max1≤ j≤q{hY
q (y

B
q )− coBY

q
hY

q (y
B
q )},

σ(BP) := max1≤l≤m{hP
l (pB

l )− coBP
l
hP

l (pB
l )},

and suppose that the maximums σ(BY ), σ(BP) attained at the indexes denote by qmax(BY ) and
lmax(BP), respectively. Then the bisection index jmax(B) of the box B defined as

jmax(B) :=
{

qmax(BY ) if σ(BY )≥ σ(BP)

m+ lmax(BP) if otherwise,

and the bisection point zB is the middle point of the edge jmax(B) of the box B. For the proof of
the convergence of the algorithm to be convenient, we denote zB by uBY

if jmax(B) ≤ m, and by
vBP

if otherwise.
The algorithm now can be described as follows. For simplicity of notation, let

h(y, p) :=− ∑
j=1,m

(y2
j + p2

j).
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Algorithm 2.2. Initial Step. Choose a tolerance ε ≥ 0, take the initial boxes Y0, P0, and B0 :=
Y0× P0, and set Γ0 := {B0}. Calculate the envelope function coB0h, and solve the relaxed
convex programming problem to obtain the lower bound β0 := β (B0) and an optimal solution
(x0,y0, p0). If |h(y0, p0)− coB0h(y0, p0)| ≤ ε, let (x̄0, ȳ0, p̄0) := (x0,y0, p0) and terminate the
algorithm with an ε− optimal solution (x̄0, ȳ0, p̄0) of Problem (ECP1).

Iteration k (k = 0,1, ...). At each iteration k, we have Γk containing a finite number of subboxes
of B0. For each subbox B ∈ Γk, an optimal solution (xB,yB, pB) of the relaxed problem has been
computed. If the condition

|h(yB, pB)− coBh(yB, pB)| ≤ ε (2.1)

is satisfied, we let (x̄B, ȳB, p̄B) := (xB,yB, pB), an ε- feasible solution of Problem (ECP1), and
let α(B) = f (x̄B, ȳB). If the condition (2.1) is not satisfied, then let α(B) = +∞.

Step 1. If Γk = /0, terminate. Otherwise, choose Bk ∈ Γk such that

βk := β (Bk) = min{β (B) : B ∈ Γk}.

Rename the objects according to the box Bk:

(xk,yk, pk) := (xBk
,yBk

, pBk
) − optimal solution of the relaxed problem defined by Bk,

ik := jmax(Bk) − bisection index of Bk,

qk := qmax(BY k)
− bisection index of BY k

,

lk := lmax(BY k)
− bisection index of BPk

,

zk := zBk − bisection point of Bk,

uk := zBk − bisection point of BY k
,

vk := zBk − bisection point of BPk
,

and

(x̄k, ȳk, p̄k) := (x̄Bk
, ȳBk

, p̄Bk
)

if (2.1) is satisfied for (xBk
,yBk

, pBk
).

Step 2. Bisect Bk into two subboxes Bk+ and Bk− by using Rule 1.

Step 3. Calculate the lower bound, upper bound, ε− feasible solution for Problem (ECP1), and
then define the bisection index and bisection point for each newly generated subbox Bk+ and
Bk− .

Step 4. Update the currently best upper bound αk+1 := min{αk,α(Bk+),α(Bk−)}. If αk+1 <
+∞, denote by (x̄k+1, ȳk+1, p̄k+1) the best currently feasible ε−solution if αk+1 = f (x̄k+1, ȳk+1).

Step 5. Set

Γk+1/2 := (Γk \Bk)∪{Bk+,Bk−},

and update

Γk+1 := {B ∈ Γk+1/2 : β (B)< αk+1}.

Let k := k+1 and go to Step 1.
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Theorem 2.3. (i) If the algorithm terminates at iteration k, then (x̄k, ȳk, p̄k) is an ε−optimal
solution of Problem (ECP1).
(ii) Otherwise, if the algorithm never terminates, then any cluster point of the sequence {(xk,yk, pk)}
is an ε golbal optimal solution of Problem (ECP1). Furthermore, βk↗ f∗.

Proof. (i) It is obvious from the definitions.
(ii) By taking a subsequence if necessary, without loss of generality, we assume that

lim
k→∞

(xk,yk, pk) = (x∗,y∗, p∗).

By the branching operation, there exists a subsequence {Bk j} of the sequence {Bk} such that
Bk j+1 ⊂ Bk j for every j. By Lemma 2.1, one has

lim
j→∞

[hik j
(zk j)− co

B
k j
ik j

hik j
(zk j)] = 0, (2.2)

and Bk j
ik j

tends to singleton as j→ ∞. This result and (2.2) imply that

lim
j→∞

[hik j
([yk j , pk j ]ik j

)− co
B

k j
ik j

hik j
([yk j , pk j ]ik j

)] = 0. (2.3)

Furthermore, by the rule for selecting the bisection index ik j , from (2.3), it follows that

lim
j→∞

[hr([yk j , pk j ]r)− co
B

k j
r

hr([yk j , pk j ]r)] = 0 ∀1≤ r ≤ 2m. (2.4)

From (2.4) and h(yk, pk) = ∑
2m
r=1 hr([yk, pk]r), we have

lim
j→∞

[h(yk j , pk j)− coBk j h(y
k j , pk j)] = 0. (2.5)

On the other hand, since (xk j ,yk j , pk j) is an optimal solution to problem for estimating the
value β (Bk j), for every j, we have{

xk j ∈ X ,(xk j ,yk j) ∈ D,(yk j , pk j) ∈ Bk j

g1(xk j ,yk j , pk j)+h(yk j , pk j)− (h(yk j , pk j)− coBk j h(y
k j , pk j)≤ 0. (2.6)

Passing the limit as j→ ∞, combining (2.5) with (2.6), and using the closedness of the sets
X ,D,Y,P, we can write {

x∗ ∈ X ,(x∗,y∗) ∈ D,(y∗, p∗) ∈ Y ×P,
g1(x∗,y∗, p∗)+h(y∗, p∗)≤ 0.

which shows that (x∗,y∗, p∗) is a feasible solution of Problem (ECP1).
Moreover, from the definition of the bounding operation, it follows that

β (Bk j) = f (xk j ,yk j)≤ f∗ ≤ f (x∗,y∗). (2.7)

Passing the limit as j→ ∞, by continuity of f , we obtain

lim
j→∞

f (xk j ,yk j) = f (x∗,y∗)≤ f∗ ≤ f (x∗,y∗). (2.8)

Thus f (x∗,y∗) = f∗ and (x∗,y∗, p∗) is an optimal solution of the Problem (ECP1). Finally, since
the sequence {βk} is increasing, by combining with (2.7) and (2.8), we obtain

lim
k→∞

βk = lim
j→∞

βk j = f (x∗,y∗) = f∗.
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The proof is completed. �

3. A DECOUPLING BARANCH-AND-BOUND ALGORITHM

Under the assumption that the utility function U is concave and continuous on Rn+m, the
function f is convex and continuous on Rn+m. However, the extended consumer problem
(ECP) is still a convex-concave (non convex) optimization problem with two bilinear con-
straints. There are some algoithms for solving global solution of convex-concave programming
problems [3, 5, 6, 7]. However, to our knowledge, an algorithm for finding a global solution of
the problem of minimizing a convex function with two bilinear constraints is yet absent in the
literature.

In the case that P0 is a simplex (often in practical consumer models) rather than a rectangle,
since a n-dimensional simplex has n+ 1- vertices whereas a n− dimensional rectange has 2n-
vertices, a decoupling algorithm for convex-concave problem (ECP) seems a suitable choice.
Bounding operation by a coupling technique for globally minimizing a convex-concave function
was introduced in [5].

Before describing a new algorithm to solve the extended consumer problem (ECP), we now
emphasize some properties of Problem (ECP).

Let C,X , and Y be convex closed nonempty sets in the spaces Rn+m, Rn, and Rm, respectively.
A given function f : Rn×Rm→ R is said to be convex-concave (saddle) on X ×Y if, for each
fixed y ∈ Y , the function f (.,y) is convex on X , and for each fixed x ∈ X , the function f (x, .) is
concave on Y . A general convex - concave programming problem can be stated as follows

minx,y g(x,y)

s.t.
{

(x,y) ∈C,x ∈ X ,y ∈ Y,
h j(x,y)≤ 0, j = 1, ..., l,

(CCP)

where at least one, either g or h j, j = 1, ..., l is convex-concave. Some algorithms have been
proposed for some special cases for Problem (CCP), see, e.g., [3, 5]

One of special case Problem (CCP), when C = Rm+n, the objective function g does not de-
pend on variable y and there is only one constraint function h(x,y), which is the problem

minx g(x)

s.t.
{

x ∈ X ,y ∈ Y,
h(x,y)≤ 0.

(CCP1)

Let us define the function θ by taking, for each v ∈ Y

θ(v) := minx g(x)

s.t.
{

x ∈ X ,
h(x,v)≤ 0.

(3.1)

Then the problem for computing θ(v) is a convex program, for which we have the following
lemma.

Lemma 3.1. Assume that the Problem (CCP1) has an optimal solution, and let V (Y ) denote
the set of vertices of the polyhedral convex set Y . If (x∗,y∗) is an optimal solution to Problem
(CCP1), then

f∗ = f (x∗) := min{θ(v) : v ∈V (Y )}.
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Proof. As usual, we set θ(v) = +∞ if the set {x ∈ X : h(x,v)≤ 0} is empty. Since (x∗,y∗) is an
optimal solution to Problem (CCP1), we obtain from the definition that y∗ ∈Y and h(x∗,v∗)≤ 0,
which implies that min{h(x∗,v) : v ∈ Y} ≤ 0. From the concavity of the function h(x∗, .) over
Y , it follows that there exists a vertex v̄ ∈V (S) such that h(x∗, v̄)≤ 0, which implies that (x∗, v̄)
is also an optimal solution to Problem (CCP1) and f (x∗) = θ(v̄). Let v̂ be any vertex of Y such
that θ(v̂)<+∞ and x̂ be an optimal solution of the problem defining the value θ(v̂). Obviously,
(x̂, v̂) is also a feasible solution to Problem (CCP1). Moreover one has

θ(v̂) = f (x̂)≥ f (x∗) = θ(v∗).

Thus

θ(v∗)≤ θ(v) ∀v ∈V (Y ).

�

The following example shows that the assertion of Lemma 3.1 does not longer hold true when
Problem (CCP1) has two convex-concave constraints. Let us consider the problem

minx,y{g(x) := x1−10x2}

s.t.



x1 + x2 ≤ 18,
x1 ≤ 10,
x2 ≤ 11,
x1,x2 ≥ 0,
y1 + y2 = 1,
y1,y2 ≥ 0,
x1y1 + x2y2−10 ≤ 0,
−x1y1− x2y2 +8 ≤ 0.

(3.2)

In this problem, the last two constraints are bilinear, whereas X = [0,10]× [0,11] is a box in
R2, Y = {(y1,y2) ∈R2 : y1+y2 = 1,y1 ≥ 0,y2 ≥ 0} is a normal simplex in R2 with two vertices
(1,0) and (0,5). Moreover, from the definition of the function θ in (3.1), by solving the linear
program, we obtain θ(1,0) = −102 and θ(0,1) = −100, whereas, at (0.5,0.5) ∈ Y , we have
θ(0.5,0.5) = −103. These results show that Problem (3.2) has an optimal solution, however
there is no any optimal solution (x,y) such that v ∈V (Y ).

As we have known, the main difficulty for finding an optimal solution of the extended con-
sumer problem (ECP) is caused by the two bilinear constraints

〈c,x〉+ 〈p,y〉 ≤ M,
−〈c,x〉−〈p,y〉 ≤ −L.

A class of branch-and-bound algorithms were proposed in [3] for minimizing a quasiconvex-
concave function subject to convex and one quasiconvex-concave inequality constraints. It
should be noticed, since the extended consumer problem (ECP) has two convex-concave con-
straints, that the algorithms proposed in [3] fail to apply. In this section, also by using the
technique of decoupling relaxation, we propose a new branch-and-bound for approximating an
globally optimal solution of the extended consumer problem (ECP). Precisely, we assume that
the feasible domain of the price p is a normal simplex of m−1 dimension in Rm and is denoted



BRANCH-AND-BOUND ALGORITHMS FOR SOLVING A MODIFIED CONSUMER PROBLEM 9

by S, namely,

S = {pT = (p1, ..., pm) ∈ Rm :
m

∑
i=1

pi = 1, pi ≥ 0, i = 1, ...,m}.

This assumption is appropriate when the prices pi, i = 1, ...,m, amounts budget M and L are
expressed by the relative numbers. With this assumption, for convenience of following, we
rewrite the Problem (ECP) as follows

f∗ := minx,y,p f (x,y)

s.t.


x ∈ X ,y ∈ Y,(x,y) ∈ D, p ∈ S
〈c,x〉+ 〈p,y〉−M ≤ 0,
〈−c,x〉+ 〈−p,y〉+L ≤ 0.

(ECP2)

Let ∆ be a subsimplex of the initial simplex S. Let us consider the extended consumer prob-
lem (ECP2) restricted on ∆ that is defined as

α(∆) := minx,y,p f (x,y)

s.t.


x ∈ X ,y ∈ Y,(x,y) ∈ D, p ∈ ∆

〈c,x〉+ 〈p,y〉−M ≤ 0,
〈−c,x〉+ 〈−p,y〉+L ≤ 0.

(3.3)

Obviously, α(∆) is an upper bound of f∗. In order to obtain a lower bound of α(∆), we decouple
the two bilinear constraints by adding a new variable q and define a relaxed problem as follows

β (∆) := minx,y,p,q f (x,y)

s.t.


x ∈ X ,y ∈ Y,(x,y) ∈ D, p ∈ ∆,q ∈ ∆

〈c,x〉+ 〈p,y〉−M ≤ 0,
〈−c,x〉+ 〈−q,y〉+L ≤ 0.

(3.4)

As usual, we set α(∆) = +∞ and β (∆) = +∞ if the feasible set of this problem is empty. The
following lemma will show a relationship between α(∆) and β (∆).

Lemma 3.2. For each subsimplex ∆⊆ S, one has
(i) if β (∆) = +∞, then the feasible set of Problem (3.3) is empty. Otherwise, we have β (∆) ≤
α(∆);
(ii) if (x̄, ȳ, p̄, q̄) is an optimal solution of the relaxed problem (3.4) satisfying p̄= q̄, then (x̄, ȳ, p̄)
is an optimal solution to Problem (3.3), and α(∆) = β (∆).

Proof. (i) It is obvious, by if (x,y, p) is a feasible solution to problem (3.3), then (x,y, p, p) is a
feasible solution to the relaxed problem (3.4).
(ii) From the assumption of the theorem and the assertion (i), it follows that (x̄, ȳ, p̄) is a feasible
solution of Problem (3.3). On the other hand, for every feasible solution (x̂, ŷ, p̂) of Problem
(3.3), the point (x̂, ŷ, p̂, p̂) is a feasible solution of Problem (3.4) satisfying f (x̄, ȳ) ≤ f (x̂, ŷ),
which means that (x̄, ȳ, p̄) is an optimal solution to Problem (3.3) and α(∆) = β (∆). The proof
is completed. �

Obviously, the relaxed problem (3.4) is still a nonconvex optimization problem with two
bilinear constraints. However, by its objective function, f does not depend on the two variables
p,q, and by the special structure of the two bilinear constraints, solving this problem can be
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attributed by solving a finite number the convex optimization problems, one for each vertex of
the simplex. Indeed, we first define the function ϕ : S×S→ R by taking

ϕ(u,v) := minx,y f (x,y)

s.t.


x ∈ X ,y ∈ Y,(x,y) ∈ D,
〈c,x〉+ 〈u,y〉−M ≤ 0,
−〈c,x〉−〈v,y〉+L ≤ 0.

(3.5)

Then we have the following lemma.

Lemma 3.3. Let ∆ be a subsimplex of the initial simplex S and assume that the relaxed prob-
lem (3.4) has an optimal solution. Then β (∆) = min{ϕ(u,v) : u,v ∈ V (∆)}. Moreover, let
β (∆) = ϕ(û, v̂), and denote by (x̂, ŷ) the optimal solution of Problem (3.5) of estimating the
value ϕ(û, v̂). Then (x̂, ŷ, û, v̂) is an optimal solution to Problem (3.4).

Proof. Denote by V (∆) the set of the vertices of the simplex ∆. We first show that there exists an
optimal solution (x,y, p,q) of Problem (3.4) such that p,q ∈V (∆). Indeed, denote by (x̄, ȳ, p̄, q̄)
the optimal solution of Problem (3.4), from the definition, one has{

〈c, x̄〉+ 〈p̄, ȳ〉−M ≤ 0,
−〈c, x̄〉−〈q̄, ȳ〉+L ≤ 0.

(3.6)

This results in {
min{〈c, x̄〉+ 〈p, ȳ〉−M : p ∈ ∆} ≤ 0,
min{−〈c, x̄〉−〈q, ȳ〉+L : q ∈ ∆} ≤ 0.

(3.7)

By the properties of the linear programming, there exist two vertices p̂, q̂ ∈V (∆) such that{
〈c, x̄〉+ 〈p̂, ȳ〉−M ≤ 0,
−〈c, x̄〉−〈q̂, ȳ〉+L ≤ 0.

(3.8)

Thus (x̄, ȳ, p̂, q̂) is also an optimal solution to the relaxed problem (3.4) of estimating the value
β (∆). On the other hand, for every feasible solution (x,y) of the problem (3.5) of estimating
the value ϕ(û, v̂), the point (x,y, û, v̂) is a feasible solution of problem (3.4), which implies that
β (∆) = f (x̄, ȳ)≤ f (x,y). Thus (x̄, ȳ) is an optimal solution to the problem (3.5) satisfying

β (∆) = f (x̄, ȳ) = ϕ(û, v̂).

Now, take an any pair of two vertices ũ, ṽ∈V (∆), and assume that (x̃, ỹ) is an optimal solution
to Problem (3.5). It follows from the definition that (x̃, ỹ, ũ, ṽ) is a feasible solution of Problem
(3.4), and

ϕ(û, v̂) = β (∆) = f (x̄, ȳ)≤ f (x̃, ỹ) = ϕ(ũ, ṽ).
Finally, we obtain

β (∆) = ϕ(û, v̂)≤ ϕ(u,v) ∀u,v ∈V (∆).

The remaining assertion of the lemma is obvious. The proof is completed. �

Note that, for each vertex u ∈V (∆), for which ϕ(u,u)<+∞, let denote by (x,y) the optimal
solution of the relaxed problem (3.5). Then (x,y,u,u) is a feasible solution of the extended
consumer problem (ECP2). Obviously, if there exists an optimal solution (x,y, p) of Problem
(ECP2) such that p ∈ ∆, then β (∆) is a lower bound for f∗. In order to reduce the difference
between β (∆) and f∗, we realize a branching operation using the following simplex subdivision.
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An adaptive simplex subdivision - Rule 2
The adaptive simplex subdivision rule is often used in branch-and-bound algorithms for solv-

ing non-convex optimization problems; see, e.g., [11]. Precisely, let ∆ be a m−simplex in Rn,
take any point x̄ ∈ ∆, and assume that v̄ is an vertex of ∆ such that x̄ 6= v̄. Denote by η̄ the
midpoint of the line segment [x̄, v̄]. By this rule, the simplex ∆ is divided into m subsimplices,
which have the same vertex η̄ . In particular, if x̄ is also a vertex of ∆, then ∆ is bisected into
two subsimplices. We call {x̄, η̄ , v̄} a trio of division points. For this simplex subdivision, we
have the following lemma. Its proof can be found in [11].

Lemma 3.4. Let {∆k}+∞

0 be an infinite sequence of simplices generated by the adaptive simplex
subdivision Rule 2 such that ∆k+1 ⊂ ∆k for all k. Let {x̄k, η̄k, v̄k} be the trio of division points
for the simplex ∆k. Then limk→∞ ‖x̄k− v̄k‖ = 0. Consequently, three sequences {x̄k},{η̄k} and
{v̄k} tend to the same point x̂ ∈ ∆0.

The algorithm now can be described as follows.

Algorithm 3.5. Initial iteration. Choose a tolerance ε ≥ 0 and take Σ0 := {∆0 = S}. Calculate
the lower bound

β0 = β (∆0) = min{ϕ(u,v) : u,v ∈V (∆0)},
and denote by (x0,y0,u0,v0) the obtained optimal solution of Problem (3.5) of estimating the
value ϕ(u0,v0) = β0. Moreover, if there exists u ∈V (∆0) such that ϕ(u,u)<+∞, then take

α0 := ϕ(u0,u0) = min{ϕ(u,u) : u ∈V (∆0)},

and let α0 be an upper bound of f∗. On the other hand, (x̄0, ȳ0, ū0) is the obtained optimal
solution of Problem (3.5) of estimating the value ϕ(u0,u0) , which is also a feasible solution of
Problem (ECP2). Otherwise, we take the upper bound α0 :=+∞. If |α0−β0| ≤ ε or β0 =+∞,
then regain Σ0 := /0.

Iteration k,k = 0,1, ....
At each iteration k, we have a finite family Σk of subsimplices of S. For each ∆ ∈ Σk with
β (∆)<+∞, we have a vertex pair u∆,v∆ ∈V (∆) such that

β (∆) = ϕ(u∆,v∆) = f (x∆,y∆),

where (x∆,y∆) is an optimal solution of Problem (3.5) of estimating the value ϕ(u∆,v∆). Beside,
if there exists u ∈V (∆) such that ϕ(u,u)<+∞, we have more (x̄∆, ȳ∆, ū∆) with

ϕ(ū∆, ū∆) = min{ϕ(u,u) : u ∈V (∆)},

where (x̄∆, ȳ∆) is an optimal solution of Problem (3.5) of estimating the value ϕ(ū∆, ū∆).
Step 1. If Σk = /0, then terminate. In this case, either (x̄k, ȳk, p̄k) is an optimal ε−solution of

Problem (ECP2), or Problem (ECP2) has no feasible solution. Otherwise, take ∆k ∈ Σk such
that

β (∆k) = min{β (∆) : ∆ ∈ Σk},
and for ease of presenting we rename the iterative points on the simplex ∆k as follows

xk := x∆k ; yk := y∆k ; uk := u∆k ; vk := v∆k ,

and the best feasible solution of the Problem (ECP2) as

x̄k := x̄∆k ; ȳk := ȳ∆k ; ūk := u∆k
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if there exists u ∈V (∆k) such that ϕ(u,u)<+∞.
Step 2. Bisect the simplex ∆k by the Rule 2 with the trio of division points {uk,wk,vk}, where

wk is the middle point of the edge [uk,vk]. We obtain two new subsimplices, that is denoted by
∆k+ and ∆k− , with the sets of vertices, respectively, as

V (∆k+) =V (∆k)\{v∆k
}∪{w∆k

}

and
V (∆k−) =V (∆k)\{u∆k

}∪{w∆k
}.

Step 3. Calculate the lower bounds and update the currently best feasible solutions for each
newly generated subsimplex, that is,

β (∆k+),x∆k+

,y∆k+

,u∆k+

,v∆k+

, x̄∆k+

, ȳ∆k+

, ū∆k+

for ∆
k+,

and

β (∆k−),x∆k−
,y∆k−

,u∆k−
,v∆k−

, x̄∆k−
, ȳ∆k−

, ū∆k−
for ∆

k−.

Step 4. Update the currently best upper bound by taking

αk+1 := min{αk, f (x̄∆k+

, ȳ∆k+

), f (x̄∆k−
, ȳ∆k−

)},

and (x̄k+1, ȳk+1), is the currently best feasible solution of Problem (ECP2).
Step 5. Set

Σk+1/2 :=
(
Σk \{∆k}

)
∪{∆k+,∆k−}

and update
Σk+1 := {∆ ∈ Σk+1/2 : β (∆)< αk+1}.

Let k := k+1 and go to Step 1.

Remark 3.6. (i) When the simplex ∆k is bisected into two subsimplices ∆k+ and ∆K− , on each
newly generated simplex there is only one new vertex arisen,and the others are all old. There-
fore, in order to estimate the bounds and the iterative points for these new subsimplices, we just
have to solve 2m− 1 convex optimization problems (3.5). This greatly reduces the computa-
tional cost of the algorithm.

(ii) Thanks to the special structure of the feasible set in Problem (ECP2) restricted on the
simplex ∆, that is, {

〈c,x〉+ 〈p,y〉 ≤ M,
〈c,x〉+ 〈p,y〉 ≥ L,

we can reduce the number of convex programs, which have to be solved for each simplex ∆.
For each vertex u ∈V (∆), we solve two linear programs

M̄(u) := max{〈c,x〉+ 〈u,y〉 : (x,y) ∈ D},
L̄(u) := min{〈c,x〉+ 〈u,y〉 : (x,y) ∈ D}.

Then we divide the vertex set V (∆) into three groups as

V 1(∆) := {u ∈V (∆) : M̄(u)< L or L̄(u)> M};
V 2(∆) := {u ∈V (∆) : L≤ L̄(u)≤ M̄(u)≤M};
V 3(∆) := V (∆)\

(
V 1(∆)∪V 2(∆)

)
.
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Obviously, for every u,v ∈V 1(∆), we have ϕ(u,v) = +∞, whereas for every u,v ∈V 2(∆),

ϕ(u,v) = min{ f (x,y) : (x,y) ∈ D}.
Thus we just have to solve the convex problems (3.5) for estimating the values ϕ(u,v) with
u,v ∈V 3(∆).

Theorem 3.7. Suppose that f is a continuous function over X ×Y and Problem (ECP2) has
an optimal solution. If the algorithm terminates at iteration k, then (x̄k, ȳk, p̄k) is an ε− global
optimal solution to Problem (ECP2). Otherwise, if the algorithm does not terminate after a
finite number of iterations, then every cluster point of the sequence {(xk,yk,uk)} is an optimal
solution to Problem (ECP2). Furthermore, βk↗ f∗.

Proof. The first assertion is obvious. Otherwise, let (x∗,y∗,u∗) be any cluster point of the se-
quence {xk,yk,uk}. Take a subsequence if necessary, without lost of the generality, we may
assume that

lim
k→∞

(xk,yk,uk) = (x∗,y∗,u∗). (3.9)

By the rule of simlex-subdivision (Rule 2) and the bounding operation, there exists a sequence
of nested simpleciees {∆k j} of the sequence {∆k} such that ∆k j+1 ⊂ ∆k j and β (∆k j+1)≤ β (∆k j).
For each subsimplex ∆k j , we have f (xk j ,yk j) = ϕ(uk j .vk j) = β (∆k j) and the trio of division
points {uk j ,wk j ,vk j}. From Lemma 3.4, one has

lim
j→∞
‖uk j − vk j‖= 0. (3.10)

Combining (3.9) with (3.10), it results

lim
j→∞

uk j = lim
j→∞

vk j = u∗. (3.11)

On the other hand, from the definition of Problem (3.5) of estimating the value ϕ(uk j ,vk j), it
follows that 

(xk j ,yk j) ∈ D;uk j ,vk j ∈ S ∀ j,
〈c,xk j〉+ 〈uk j ,yk j〉−M ≤ 0,
−〈c,xk j〉−〈vk j ,yk j〉+L ≤ 0.

(3.12)

Passing the limit as j→ ∞ and using (3.9), (3.11), and the closedness of the sets D and S we
obtain 

(x∗,y∗) ∈ D,u∗ ∈ S,
〈c,x∗〉+ 〈u∗,y∗〉−M ≤ 0,
−〈c,x∗〉−〈u∗,y∗〉+L ≤ 0,

(3.13)

which shows that (x∗,y∗,u∗) is a feasible solution to Problem (ECP2) and

f (x∗,y∗)≥ f∗. (3.14)

Moreover, from the bounding operation, one has

βk j = ϕ(uk j ,vk j) = f (xk j ,yk j)≤ f∗ ∀ j. (3.15)

By using the continuity of f , (3.9), and (3.15), and passing the limit as j→ ∞, we obtain

lim
j→∞

βk j = lim
j→∞

f (xk j ,yk j) = f (x∗,y∗)≤ f∗. (3.16)

Combining (3.13) with (3.16), we see that (x∗,y∗,u∗) is an optimal solution to Problem (ECP2).
Finally, since the sequence {βk} is nondecreasing, by (3.16), we have βk↗ f∗ as k→ ∞. �
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4. COMPUTATIONAL RESULTS AND EXPERIENCE

We tested two proposed algorithms in MATLAB and executed on a PC Core 2Duo 2*2.0
GHz, RAM 2GB. We tested the program on different groups of problems, each of them contains
ten problems of the same sizes, but having randomly generated input data.

With the Algorithm 2.2, for solving the Problem (ECP1) and for each problem, we take
D = Rn+m; X = [lX ,uX ] to be a box in Rn, whereas Y = [lY ,uY ] and P0 = [lP,uP] are boxes in
Rm. The lower bounds of the boxes X ,Y,P0 are fixed with lX = 0, lY = 0, lP = 0, whereas the
upper bounds uX ,uY ,uP contain the numbers that are randomly generated in the interval [1,5].
The components of the vector of price c of n -first types of goods are randomly generated in the
interval [1,2]. We take the utility function U(x,y) to be a negative semidefinit quadratic form in
Rn+m. Thus the objective function of Problem (ECP1) is a convex one given as

f (x,y) = (x,y)T Q(x,y)+dT x+ eT y,

where Q is a diagonal matrix of (n+m)−dimension with the components qii, i = 1, ...,m+ n
being randomly generated in the interval [0,0.5], and the components of the two vectors d ∈Rn

and e ∈ Rm are randomly generated in the interval [−2,2]. Finally, in order to guarantee that
the problem to be solved has a feasible solution, we take M = 2(m+n) and L = M− t, where
t is randomly generated in the interval [5,15]. In addition, we limit the maximum number of
iterations for solving each problem to be 2000. The obtained results are reported in Table 4.1
below, where we use the following headings:

• N: number of the tested problem;
• n: number of the goods whose prices are defined (the number of the convex variables);
• m: number of the goods whose prices are unknowns, (2m is the number of the concave

variables);
• Average time: the average time (in second) needed to solve one problem;
• Average iter.: the average number of iterations for one problem;
• N*: number of the problems for which a global solution was obtained.

N n m Average iter. Average time N*
10 2 2 22 12.35 10
10 10 2 459 276.02 10
10 100 2 479 287.54 10
10 2 5 296 164.28 10
10 2 8 1484 791.02 9
10 2 10 1793 893.19 3

Table 4.1
The results in Table 4.1 show that the algorithm is efficient when the number of goods whose
prices have not been determined does not exceed 8, or the number of concave variables does
not exceed 16, while the number of goods whose prices have been determined may be large (up
to hundreds).

With the Algorithm 3.5, for solving the Problem (ECP2), in order to consider the relationship
between the efficiency of the algorithm with the number of concave variables in Problem (ECP),
for each problem, we assume that the prices of all types of goods are unknown. With this
assumption, the constraint set D in Problem (ECP2) can be written as Ay ≤ b. We fix the
number of rows of A by 5, whereas the components ai j (i = 1, ...,5; j = 1, ...,m) are randomly
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generated in the interval [−2,2]. In addition, in order to guarantee that Problem (3.4) has a
feasible solution, the components of the matrix A and the vector b are randomly generated in
the interval [M + l,2(M +L)], where M is randomly generated in the interval [10,15], and L is
randomly generated in the interval [7,13]. The constraint set S of prices is a normal simplex
in Rm given by S := {p ∈ Rm

+ : ∑
m
i=1 pi = 1}. Finally, we take the utility function U(y) to be

a negative semidefinit quadratic form in Rm. Thus the objective function of Problem (ECP2)
is convex quadratic of the form f (y) = yT Qy+ cT y, where Q = (qi j)m×m is a diagonal matrix
with qii being randomly generated in the interval [0,0.1], and c ∈ Rm with the components
being randomly generated in the interval [−20,2]. The obtained results are reported in Table
4.2 below, with the same headings are in Table 4.1

N m Average iter. Average time N*
10 2 2 0.36 10
10 5 3 0.76 10
10 10 6 7.91 10
10 20 12 73.43 10
10 30 11 157.24 10
10 50 38 1812.99 10

Table 4.2
The results in Table 4.2 show that the second algorithm can solve the problems with the number
of concave variables up to dozens.

5. CONCLUSION

An extended version of the classical customer problem was considered in this paper. The
problem was formulated as a global optimization with two bilinear constraints. Two algorithms
were proposed for globally solving the problem. The first algorithm used the convex envelope
for bounding and a rectangular subdivision for the branching to handle the rectangular feasi-
ble domain. The second algorithm employed decoupling and simplicial operations to handle
the two convex-concave constraints and the simplicial structure of the prices. Some computa-
tional results for many randomly generated problems were presented to show the efficiency and
behavior of the proposed algorithms.
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