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AN ALGORITHM BASED ON A SET-VALUED NONEXPANSIVE MAPPING
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Abstract. In this paper, we generalize a recent convergence result of Tam (2018) which was proved for iterates of a
set-valued operator such that its values can be expressed as a finite union of values of single-valued paracontracting
operators. It is shown that this convergence result is true for a general set-valued mapping such that its values are
not necessarily finite unions of values of single-valued operators.
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1. INTRODUCTION

For more than sixty years now, there has been considerable research activity regarding the
fixed point theory of certain classes of nonlinear mappings. See, for example, [3, 5, 6, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27] and references cited therein. This activity
stems from Banach’s classical theorem [1] regarding the existence of a unique fixed point for
a strict contraction. It also concerns the convergence of (inexact) iterates of a nonexpansive
mapping to one of its fixed points. Since that seminal result, many developments have taken
place in this field including, for instance, studies of feasibility, common fixed point problems
and variational inequalities, which find significant applications in engineering, medical and the
natural sciences [4, 7, 23, 24, 26, 27]. In particular, in [25] it was considered a framework for
the analysis of iterative algorithms which can be described in terms of a structured set-valued
operator. More precisely, at each point in the ambient space, it is assumed that the value of the
operator can be expressed as a finite union of values of single-valued paracontracting opera-
tors. For such algorithms a convergence result was proved which generalizes a result obtained
in [2]. The work [25] also contains an application of its main result to sparsity constrained
minimisation.

In the present paper we generalize the main result of [25] for a general set-valued mapping
such that its values are not necessarily finite unions of values of single-valued paracontracting
operators.
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2. PRELIMINARIES AND THE MAIN RESULT

Let Rn be the n-dimensional Euclidean space equipped with an inner product

〈x,y〉=
n

∑
i=1

xiyi, x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ Rn

which induces the Euclidean norm ‖x‖= 〈x,x〉1/2, x∈ Rn and C⊂ Rn be a nonempty closed set.
For each x ∈ Rn and each r > 0 set

B(x,r) = {y ∈ Rn : ‖x− y‖ ≤ r}.

Assume that T : C→ 2C \{ /0} is a mappings with the closed graph

graph(T ) = {(x,y) ∈ Rn×Rn : x ∈C, y ∈ T (x)}

such that T (x) is bounded for every x ∈C.
Define

F(T ) = {x ∈ X : x ∈ T (x)}
and

F̄(T ) = {x ∈ X : T (x) = {x}}.
In this section, we state our main result which is proved under the following assumptions.
We assume that

F̄(T ) 6= /0. (2.1)

For each x ∈ Rn and each nonempty set A⊂ Rn, define

ρ(x,A) = sup{‖x− y‖ : y ∈ A}. (2.2)

Assume that, for each z ∈ F̄(T ), each x ∈ F(T ), and each y ∈C \F(T ),

ρ(z,T (x))≤ ‖z− x‖ (2.3)

and
ρ(z,T (y))< ‖z− y‖. (2.4)

Note that (2.3) and (2.4) are known in the literature as quasi-nonexpansive properties [20].
We also assume that the following upper semicontinuity assumption holds.
(A) For each x ∈C and each ε > 0 there exists δ > 0 such that, for each y ∈ B(x,δ )∩C,

T (y)⊂ ∪{B(ξ ,ε) : ξ ∈ T (x)}.

Theorem 2.1. Assume that {xi}∞
i=0 ⊂C and that

xi+1 ∈ T (xi), i = 0,1, . . . (2.5)

Then the sequence {xi}∞
i=0 is bounded and if a subsequence {xip}∞

i=0 converges, then

lim
p→∞

xip ∈ T ( lim
p→∞

xip).

This result is proved in the next section. It should be mentioned that in [25] a particular case
of Theorem 2.1 was obtained when the value of the operator T is expressed as a finite union of
values of single-valued paracontracting operators.
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3. PROOF OF THEOREM 2.1

By (2.1), there exists z ∈C such that

T (z) = {z}. (3.1)

It follows from (2.3)-(2.5) and (3.1) that, for each integer i≥ 0,

‖z− xi‖ ≥ ‖z− xi+1‖. (3.2)

Thus {xi}∞
i=0 is bounded. Assume that a subsequence {xip}∞

i=0 converges and set

x∗ = lim
p→∞

xip. (3.3)

We show that x∗ ∈ T (x∗). Assume the contrary. Then

x∗ 6∈ F(T ). (3.4)

By (2.4), (3.1), and (3.4), there exists ε > 0 such that

ρ(z,T (x∗))< ‖z− x∗‖−4ε. (3.5)

Assumption (A) implies that there exists δ ∈ (0,ε/2) such that

T (y)⊂ ∪{B(ξ ,ε/2) : ξ ∈ T (x∗)}, y ∈ B(x∗,δ )∩C. (3.6)

In view of (3.3), there exists an integer p0 ≥ 1 such that

‖xip− x∗‖ ≤ δ for all integers p≥ p0. (3.7)

Let p≥ p0 be an integer. By (3.7),
‖xip− x∗‖ ≤ δ . (3.8)

Equations (3.6) and (3.8) imply that

T (xip)⊂ {B(ξ ,ε/2) : ξ ∈ T (x∗)}. (3.9)

It follows from (2.2), (3.5), and (3.9) that
ρ(z,T (xip))≤ ε/2+ρ(z,T (x∗))

≤ ε/2+‖z− x∗‖−4ε.
(3.10)

By (2.2), (2.5), (3.8), and (3.10),

‖xip+1− z‖ ≤ ρ(z,T (xip))≤ ‖z− x∗‖−3ε

≤ ‖z− xip‖+‖xip− x∗‖−3ε

≤ ‖xip− z‖−2ε.

(3.11)

Since ε depends only on z and x∗ (see (3.5)) equations (3.2) and (3.11) imply that, for every
integer m > p0,

‖z− x0‖ ≥ ‖z− x0‖−‖z− xim+1‖

=
im

∑
j=0

(‖z− x j‖−‖z− x j+1‖)

≥
m

∑
p=p0

(‖z− xip‖−‖z− xip+1‖)

≥ 2(m− p0)ε → ∞
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as m→ ∞. The contradiction we have reached completes the proof of this theorem.

4. CONCLUSIONS

In our paper, we establish a convergence of iterates of a set-valued operator acting in a finite-
dimensional Euclidean space. It generalizes its prototype obtained in a particular case when the
values of the set-valued operator can be expressed as a finite union of values of single-valued
paracontracting operators. We believe that this result can be useful in the studies of feasibility
and common fixed point problems and their applications in optimization theory, engineering,
medical and the natural sciences.
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