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Abstract. In this paper, an iterative algorithm to approximate a common solution of a finite family of minimization
problems and fixed point problems of a finite family of demicontractive mappings in Hadamard manifolds is
proposed. Under suitable conditions, some convergence theorems of the sequence generated by the algorithm to
the common solution of the two problems in Hardmard manifolds are proved.
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1. INTRODUCTION

In 1970, Martinet [14] proposed and analyzed the proximal point algorithms (PPA) as a tool
to solve the convex minimization problem. Later on, Rockafellar [18] modified the PPA and
studied the convergence analysis of the PPA in Hilbert spaces. In this connection, see also the
early papers by [6, 16].

Recently, many convergence results by the proximal point algorithm have been extended
from the classical linear spaces to the setting of manifolds; see, e.g., [1, 2, 3, 4, 7, 8, 9, 10, 11,
13, 15, 20, 21, 22] and the references therein.

In 2002, Ferreira and Oliveira [11] considered the proximal point method to solve convex
optimization problem in the setting of Hadamard manifolds. While, Li et al. [13] extended
the proximal point method for finding a solution of the following problem x∗ ∈ B−1(0), in the
setting of Hadamard manifolds.

In 2020, Ansari and Babu [1] extended the proximal point method for solving the following
inclusion problem x∗ ∈ (A + B)−1(0) in the setting of Hadamard manifolds with A being a
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continuous monotone vector field and B being a maximal monotone vector field defined on a
closed bounded geodesic convex subset of a Hadamard manifold.

Recently, Chang et al. [8] proposed a new algorithm and proved that the sequence generalized
by the algorithm converges strongly to a common element of the set of fixed points of a quasi-
pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone
inclusion problems on Hadamard manifolds. At the same time, Chang et al. [10] considered the
inertial proximal point algorithm for finding a zero point of variational inclusions on Hadamard
manifolds.

Inspired and motivated by these results, the purpose of this article is to propose an efficient
iterative algorithm. Under suitable conditions, we prove that the sequence generated by our
algorithm can approximate an element x∗ such that

x∗ ∈
m⋂

i=1

{argmin
y∈C

fi(y)}
⋂ m⋂

i=1

Fix(Ti),

where fi, i = 1,2, · · · ,m is a finite family of proper geodesic convex and lower semi-continuous
functions and Ti, i = 1,2, · · · ,m is a finite family of demicontractive mappings in Hadamard
manifolds.

2. PRELIMINARIES

In this section, we recall some notations, terminologies, and basic results from Riemannian
manifold which can be found in any textbook on Riemannian geometry (see, for example, [20]).

Let M be a finite dimensional differentiable manifold, and let TpM be the tangent space of M
at p ∈M. We denote by T M =

⋃
p∈M TpM the tangent bundle of M. An inner product 〈·, ·〉p on

TpM is called a Riemannian metric on TpM. A tensor field 〈·, ·〉 is said to be a Riemannian metric
on M if, for every p ∈M, the tensor 〈·, ·〉p is a Riemannian metric on TpM. The corresponding
norm to the inner product 〈·, ·〉p on TpM is denoted by || · ||p. We omit the subscript p if there is
no confusion occurs.

A differentiable manifold M endowed with a Riemannian metric 〈·, ·〉 is called a Riemannian
manifold. The length of a piecewise smooth curve γ : [0,1]→M joining p to q (i.e., γ(0) = p
and γ(1) = q) is defined as L(γ) =

∫ 1
0 ||γ ′(t)||dt. The Riemannian distance d(p,q) is the minimal

length over the set of all such curves joining p to q, which induces the original topology on M.
A Riemannian manifold M is complete if, for any p ∈M, all geodesics emanating from p are

defined for all t ∈R. A geodesic joining p to q in M is said to be a minimal geodesic if its length
is equal to d(p,q). A Riemannian manifold M equipped with Riemannian distance d is a metric
space (M,d). By Hopf-Rinow Theorem [20] if M is complete then any pair of points in M can
be joined by a minimal geodesic. Moreover, (M,d) is a complete metric space and bounded
closed subsets are compact. If M is a complete Riemannian manifold, then the exponential map
expp : TpM→M at p ∈M is defined by exppv = γv(1, p) for all v ∈ TpM, where γv(·, p) is the
geodesic starting from p with velocity v, that is, γv(0, p) = p and γ

′
v(0, p) = v. It is known that

expptv = γv(t, p) for each real number t. It is easy to see that expp0 = γv(0, p) = p, where 0
is the zero tangent vector. Note that the exponential map expp is differentiable on TpM for any
p ∈M. A complete simply connected Riemannian manifold of non-positive sectional curvature
is called a Hadamard Manifold.
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Let M be a Hadamard manifold. Then, for any two points x,y ∈ M, there exists a unique
normalized geodesic γ : [0,1]→ M joining x = γ(0) to y = γ(1) which is in fact a minimal
geodesic denoted by γ(t) = expxtexp−1

x y, ∀t ∈ [0,1], and, for any sequence {xn} ⊂ M with
xn→ x0 ∈M, exp−1

xn
y→ exp−1

x0
y and exp−1

y xn→ exp−1
y x0 for any y ∈M; see [3].

The following inequalities can be proved easily.

Lemma 2.1. Let M be a finite dimensional Hadamard manifold.

(i) Let γ : [0,1]→M be a geodesic joining x to y. Then

d(γ(t1),γ(t2)) = |t1− t2|d(x,y), ∀t1, t2 ∈ [0,1];

(From now on d(x,y) denotes the Riemannian distance).

(ii) for any x,y,z,u,w ∈M and t ∈ [0,1], the following inequalities hold:

d(expxtexp−1
x y, z)≤ (1− t)d(x,z)+ td(y,z);

d2(expxtexp−1
x y, z)≤ (1− t)d2(x,z)+ td2(y,z)− t(1− t)d2(x,y), (2.1)

and
d(expxtexp−1

x y, expu(texp−1
u w)≤ (1− t)d(x,u) + td(y,w).

Let M be a Hadamard manifold. A subset C ⊂ M is said to be geodesic convex if, for any
two points x and y in C, the geodesic joining x to y is contained in C. In the sequel, unless
otherwise specified, we always assume that M is a finite dimensional Hadamard manifold, C is
a nonempty, closed, and geodesic convex set in M, and Fix(S) is the fixed point set of a mapping
S.

A function f :C→ (−∞,∞] is said to be geodesic convex if, for any geodesic γ(λ )(0≤ λ ≤ 1)
joining x,y ∈C, the function f ◦ γ is convex, i.e.,

f (γ(λ ))≤ λ f (γ(0))+(1−λ ) f (γ(1)) = λ f (x)+(1−λ ) f (y).

Let X be a complete metric space and Q ⊂ X be a nonempty set. A sequence {xn} ⊂ X is
called Fejér monotone with respect to Q if for any y ∈ Q and n≥ 0, d(xn+1,y)≤ d(xn,y).

Lemma 2.2. [3, 22] Let X be a complete metric space, and let Q ⊂ X be a nonempty set. If
{xn} ⊂ X is Fejér monotone with respect to Q, then {xn} is bounded. Moreover, if a cluster
point x of {xn} belongs to Q, then {xn} converges to x.

Definition 2.3. A mapping S : C→C is said to be

(1) contractive if there exists a constant k ∈ (0,1) such that

d(Sx,Sy)≤ kd(x,y), ∀x,y ∈C.

If k = 1, then S is said to be nonexpansive;

(2) quasinonexpansive if Fix(S) 6= /0 and

d(Sx, p)≤ d(x, p),∀p ∈ Fix(S), x ∈C;

(3) firmly nonexpansive [2] if, for all x,y ∈C, the function φ : [0,1]→ [0,∞] defined by

φ(t) := d(expxtexp−1
x Sx,expytexp−1

y Sy), ∀t ∈ [0,1]

is nonincreasing.
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(4) k-demicontractive [8] if Fix(T ) 6= /0 and there exists a constant k ∈ [0;1) such that

d2(Sx, p)≤ d2(x, p)+ kd2(x,Sx), ∀x ∈ X , p ∈ Fix(S);

Let S : C→C be a mapping. Then the following statements are equivalent; see [2].

(i) S is firmly nonexpansive;

(ii) for any x,y ∈C and t ∈ [0,1], d(S(x),S(y))≤ d(expxtexp−1
x Sx,expytexp−1

y Sy);

(iii) for any x,y ∈C, 〈exp−1
S(x)S(y),exp−1

S(x)x〉+ 〈exp−1
S(y)S(x),exp−1

S(y)y〉 ≤ 0.

Lemma 2.4. [8] If S : C→C is a firmly nonexpansive mapping and Fix(S) 6= /0, then, for any
x ∈C and p ∈ Fix(S), the following conclusion holds:

d2(Sx, p)≤ d2(x, p)−d2(Sx,x) (2.2)

More information on firmly nonexpansive mappings can be found, for example, in [5, 19].

Remark 2.5. From Definition 2.3 and Lemma 2.4, it is easy to see that if Fix(S) 6= /0, then the
following implications hold:

S is f irmly nonexpansive =⇒ S is nonexpansive

=⇒S is quasinonexpansive =⇒ S is demicontractive,

but the converse is not true. Moreover, the class of demicontractive mappings have more pow-
erful applications in solving mean geodesic problems; see, e.g., [12, 17].

Now we collect some basic concepts related to theory of geodesic convex optimization in
Hadamard manifolds.

A function f defined on C is said to be lower semi-continuous (lsc) at a point x ∈C if f (x)≤
liminfn→∞ f (xn) for each sequence xn→ x. A function f is said to be lower semi-continuous on
C if it is lsc at any point in C. A geodesic convex minimization problem together with the fixed
point problem of a k-demicontractive mapping is defined as follows:

f ind x ∈C such that f (x) = min
y∈C

f (y), and x = T x.

The solution set of the geodesic convex minimization problem is denoted by

argmin
y∈C

f (y) = {x ∈C : f (x) = min
y∈C

f (y)}

Lemma 2.6. [3] Let f : C→ (−∞,∞] be a proper geodesic convex and lower semi-continuous
function. For any λ > 0, define the Moreau-Yosida resolvent of f in Hadamard manifold M as

J f
λ
(x) = argmin

y∈C
[ f (y)+

1
2λ

d2(y,x)], ∀x ∈C.

Then (i) the set Fix(J f
λ
) of fixed points of the resolvent of f coincides with the set argminy∈C f (y)

of minimizers of f , and, for any λ > 0, the resolvent J f
λ

of f is a firmly nonexpansive mapping.
Hence it is nonexpansive;

(ii) In addition, if Fix(J f
λ
) 6= /0, then we have from (2.2) that

d2(J f
λ

x, p)≤ d2(x, p)−d2(J f
λ

x,x), ∀x ∈C, p ∈ Fix(J f
λ
).
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Recall that a mapping S : C→C is said to be demiclosed at 0 if for any bounded sequence
{xn} ⊂C with xn→ x∗ ∈C and d(xn,Sxn)→ 0, then x∗ ∈ Fix(S)). One remarks that it is easy
to see that each nonexpansive mapping from C to C is demiclosed at 0.

Lemma 2.7. Let C be a nonempty closed and convex subset of a Hadamard manifold M.

(1) If T : C → C is a k-demicontractive mappings with 0 ≤ k ≤ δ < 1, then the mapping
K : C→C defined by, K(x) := expx(1− δ )exp−1

x T x, ∀x ∈C is a quasinonexpansive mapping
and Fix(K) = Fix(T ).

(2) In addition, if T is demiclosed at 0, then K is also demiclosed at 0.

Proof. (1) It is easy to prove that Fix(T ) = Fix(K). By the assumption, T is a k-demicontractive
mappings. Hence Fix(T ) 6= /0, and Fix(K) 6= /0. Now we prove that K : C → C is a quasi-
nonexpansive mapping. Indeed, for any p ∈ Fix(K) and x ∈C, it follows from (2.1) that

d2(Kx, p)≤ δd2(p,x)+(1−δ )d2(T x, p)−δ (1−δ )d2(x,T x)

≤ δd2(p,x)+(1−δ ){d2(x, p)+ kd2(x,T x)}−δ (1−δ )d2(x,T x)

≤ d2(p,x) (due to k ≤ δ ),

i.e., K : C→C is a quasinonexpansive mapping.

(2) Now we prove that the mapping K is demiclosed at zero.

In fact, for any bounded sequence {xn} in C such that limxn = p and limn→∞ d(xn,Kxn) = 0,
we have

d(xn,Kxn) = d(xn,expxn(1−δ )exp−1
xn

T xn) = (1−δ )d(xn,T xn)→ 0.

Since T is demiclosed at zero. Thus T p = p. Since Fix(T ) = Fix(K), this implies that K p = p.
Hence K is demiclosed at zero. The conclusion is proved. �

Lemma 2.8. [4] Let M be a Hadamard manifold and f : M→ (−∞,+∞] be a proper geodesic
convex and lsc function. Then, the following inequality holds:

d(J f
λ
(x),J f

µ(x)≤
|λ −µ|

λ
d(u,J f

λ
(x)), ∀λ > 0, µ > 0.

3. MAIN RESULTS

Throughout this section, we assume that
(1) M is a finite dimensional Hadamard manifold, and C is a nonempty closed and geodesic

convex subset of M.
(2) fi : C→ R, i = 1,2, · · · ,m is a proper geodesic convex and lower semi-continuous func-

tion. For given sequence {λn}, λn ≥ λ > 0, define the Moreau-Yosida resolvent of fi in C
by

J fi
λn
(x) = argmin

y∈C
( fi(y)+

1
2λn

d2(y,x)), i == 1,2, · · · ,m;

Denote by
Si

λn
:= J fi

λn
◦ J fi−1

λn
◦ · · · ◦ J f2

λn
◦ J f1

λn
, i = 1,2, · · · ,m;

(3) Ti : C → C, i = 1,2, · · · ,m is a k-demicontractive mapping with 0 ≤ k ≤ δ < 1, i =
1,2, · · · ,m, and Ti is demiclosed at zero;
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Denote by
Ki(x) := expx(1−δ )exp−1

x Tix, x ∈C, i = 1,2, · · · ,m.

We are now in a position to give the following main result of this article.

Theorem 3.1. Let M, C, { fi}m
i=1, {Ti}m

i=1, {J
fi
λn
}m

i=1, {Si
λn
}m

i=1, {Ki}m
i=1 be the same as above.

For any given x0 ∈C, let {xn}, {un}, and {y(i)n }, i = 1,2, · · · ,m−1 be the sequences generated
by 

(a) un = Sm
λn
(xn),

(b) y(1)n = expunβ
(1)
n exp−1

un
K1un,

(c) y(i)n = expunβ
(i)
n exp−1

un
Kiy

(i−1)
n , i = 2,3, · · · ,m−1,

(d) xn+1 = expunαnexp−1
un

Kmy(m−1)
n ,

n≥ 0, (3.1)

where {αn} and {β (i)
n }, i = 1,2, · · · ,m−1, are sequences in (0,1). If the set

Ω :=
m⋂

i=1

{argmin
y∈C

fi(y)}
⋂ m⋂

i=1

Fix(Ti) 6= /0,

and there exists a,b ∈ (0,1) such that

(A) 0 < a≤ αn,β
(i)
n < b < 1, ∀n≥ 0 and i = 1,2, · · · ,m−1,

then there exists x∗ ∈ Ω such that {xn} converges to x∗ which is a common minimization of
{ fi}m

i=1, as well as it also a common fixed point of {Ti}m
i=1 in C.

Proof. (I) From Lemma 2.6 and Lemma 2.7, we know that

(1) if p∈Ω, then p∈
⋂m

i=i Fix(Ti), p is a common minimizer of { fi}m
i=1, and p∈

⋂m
i=1 Fix(J fi

λn
);

(2) for each i = 1,2, · · · ,m, Fix(Ki) = Fix(Ti), Ki is a quasinonexpansive mapping, and
demiclosed at zero. Moreover, Fix(Ti) is a closed convex subset of C.

(II) Prove that {xn} is Fejér monotone with respect to Ω.

In fact, for each i = 1,2, · · · ,m, J fi
λn

is nonexpansive. Thus Sm
λ

is also nonexpansive. Letting
p ∈Ω, we have

d(un, p) = d(Sm
λn
(xn),Sm

λn
(p))≤ d(xn,q). (3.2)

By Lemma 2.7, for each i = 1, , · · · ,m, Ki is quasinonexpansive. From (3.1), (3.2) and Lemma
2.1, we have

d(y(1)n , p)≤ (1−β
(1)
n )d(un, p)+β

(1)
n d(K1un, p)

≤ (1−β
(1)
n )d(un, p)+β

(1)
n d(un, p)

= d(un, p)≤ d(xn, p),

which in turn implies that

d(y(2)n , p)≤ (1−β
(2)
n )d(un, p)+β

(2)
n d(K2y(1)n , p)

≤ (1−β
(2)
n )d(un, p)+β

(2)
n d(y(1)n , p)

≤ d(un, p)≤ d(xn, p).
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Similarly, for each i = 3, · · · ,m−1 we can prove that

d(y(i)n , p)≤ (1−β
(i)
n )d(un, p)+β

(i)
n d(Kiy

(i−1)
n , p)

≤ (1−β
(i)
n )d(un, p)+β

(i)
n d(y(i−1)

n , p)

= d(un, p)≤ d(xn, p).

On the other hand, it follows from (3.1), (3.2), and Lemma 2.1 that

d(xn+1, p)≤ (1−αn)d(un, p)+αnd(Kmy(m−1)
n , p)}

≤ (1−αn)d(un, p)+αnd(y(m−1)
n , p)

≤ d(un, p)≤ d(xn, p), ∀n≥ 0.

(3.3)

This shows that {d(xn, p)} is decreasing and bounded below, and then the limit limn→∞ d(xn, p)
exists for each p ∈Ω. This indicates that {xn} is Fejér monotone with respect to Ω. Hence the
sequence {xn} is bounded, so are {un} and {y(i)n }, i = 1,2, · · · ,m−1.

(III) Prove that
lim
n→∞

d(xn,un) = lim
n→∞

d(xn,Sm
λn

xn) = 0. (3.4)

In fact, it follows from (3.3) and Lemma 2.6 (ii) that, for any given p ∈Ω,

d2(un,Sm−1
λn

xn)≤ d2(Sm−1
λn

xn, p)−d2(un, p)

≤ d2(xn, p)−d2(un, p)

≤ d2(xn, p)−d2(xn+1, p).

Thus limn→∞ d(un,Sm−1
λn

xn) = 0. Similarly, by using the same method, we can prove that

lim
n→∞

d(Sm−i
λn

xn,S
m−(i+1)
λn

xn) = 0, i = 0,1,2, · · ·m−1.

Hence,
d(un,xn) = d(Sm

λn
xn,xn)

≤ d(Sm
λn

xn,Sm−1
λn

xn)+d(Sm−1
λn

xn,Sm−2
λn

xn)

+ · · ·+d(S2
λn

xn,S1
λn

xn)+d(S1
λn

xn,xn)→ 0 (n→ ∞).

The conclusion (3.4) is proved.
(IV) Prove that 

(a) lim
n→∞

d(un,K1un) = 0;

(b) lim
n→∞

d(y(i−1)
n ,Kiy

(i−1)
n ) = 0, i = 2,3, · · · ,m;

(c) lim
n→∞

d(Sm
λn
(xn),xn) = 0.

(3.5)

Indeed, it follows from (2.1), (3.1), and condition (A) that

d2(y(1)n , p)≤ (1−β
(1)
n )d2(un, p)+β

(1)
n d2(K1un, p)−β

(1)
n (1−β

(1)
n )d2(un,K1un)

≤ (1−β
(1)
n )d2(un, p)+β

(1)
n d2(un, p)−β

(1)
n (1−β

(1)
n )d2(un,K1un)

= d2(un, p)−β
(1)
n (1−β

(1)
n )d2(un,K1un)

≤ d2(un, p)−a(1−b)d2(un,K1un).
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This together with (2.1) and (3.1) yields

d2(y(2)n , p)≤ (1−β
(2)
n )d2(un, p)+β

(2)
n d2(K2y(1)n , p)−β

(2)
n (1−β

(2)
n )d2(un,K2y(1)n )

≤ (1−β
(2)
n )d2(un, p)+β

(2)
n d2(y(1)n , p)−β

(2)
n (1−β

(2)
n )d2(un,K2y(1)n )

≤ (1−β
(2)
n )d2(un, p)+β

(2)
n {d2(un, p)−a(1−b)d2(un,K1un)}

−β
(2)
n (1−β

(2)
n )d2(un,K2y(1)n )

≤ d2(un, p)−a2(1−b)d2(un,K1un)−β
(2)
n (1−β

(2)
n )d2(un,K2y(1)n )

≤ d2(un, p)−a2(1−b)d2(un,K1un)−a(1−b)d2(un,K2y(1)n ).

Similarly, by using the same method, we can prove that, for each i = 3,4, · · · ,m−1,

d2(y(i−1)
n , p)≤ (1−β

(i−1)
n )d2(un, p)+β

(i−1)
n d2(Ki−1y(i−2)

n , p)

−β
(i−1)
n (1−β

(i−1)
n )d2(un,Ki−1y(i−2)

n )

≤ (1−β
(i−1)
n )d2(un, p)+β

(i−1)
n d2(y(i−2)

n , p)

−β
(i−1)
n (1−β

(i−1)
n )d2(un,Ki−1y(i−2)

n )

≤ d2(un, p)−a(i−1)(1−b)d2(un,K1un)

−ai−2(1−b)d2(un,K2y(1)n )−ai−3(1−b)d2(un,K3y(2)n )−·· ·

−a1(1−b)d2(un,K(i−1)y
(i−2)
n ),

and

d2(y(i)n , p)≤ (1−β
(i)
n )d2(un, p)+β

(i)
n d2(Kiy

(i−1)
n , p)−β

(i)
n (1−β

(i)
n )d2(un,Kiy

(i−1)
n )

≤ (1−β
(i)
n )d2(un, p)+β

(i)
n d2(y(i−1)

n , p)−β
(i)
n (1−β

(i)
n )d2(un,Kiy

(i−1)
n )

≤ (1−β
(i)
n )d2(un, p)+β

(i)
n {d2(un, p)−a(i−1)(1−b)d2(un,K1un)

−ai−2(1−b)d2(un,K2y(1)n )−ai−3(1−b)d2(un,K3y(2)n )−·· ·

−a2(1−b)d2(un,K(i−1)y
(i−2)
n )}−a(1−b)d2(un,Kiy

(i−1)
n )

≤ d2(un, p)−a(i)(1−b)d2(un,K1un)−ai−1(1−b)d2(un,K2y(1)n )

−ai−2(1−b)d2(un,K3y(2)n )−·· ·−a2(1−b)d2(un,K(i−1)y
(i−2)
n )

−a(1−b)d2(un,Kiy
(i−1)
n )
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On the other hand, one obtains from (2.1) and (3.1) that

d2(xn+1, p)≤ (1−αn)d2(un, p)+αnd2(Kmy(m−1)
n , p)−αn(1−αn)d2(un,Kmy(m−1)

n )

≤ (1−αn)d2(un, p)+αnd2(y(m−1)
n , p)−αn(1−αn)d2(un,Kmy(m−1)

n )

≤ (1−αn)d2(un, p)+αn{d2(un, p)−a(m−1)(1−b)d2(un,K1un)

−am−2(1−b)d2(un,K2y(1)n )

−am−3(1−b)d2(un,K3y(2)n )−·· ·−a2(1−b)d2(un,K(m−2)y
(m−3)
n )

−a(1−b)d2(un,Kmy(m−2)
n )}−αn(1−αn)d2(un,Kmy(m−1)

n )

≤ d2(un, p)−a(m)(1−b)d2(un,K1un)−am−1(1−b)d2(un,K2y(1)n )

−am−2(1−b)d2(un,K3y(2)n )−·· ·−a3(1−b)d2(un,K(m−2)y
(m−3)
n )

−a2(1−b)d2(un,Km−1y(m−2)
n )}−a(1−b)d2(un,Kmy(m−1)

n ).

This implies that

a(m)(1−b)d2(un,K1un)+am−1(1−b)d2(un,K2y(1)n )+am−2(1−b)d2(un,K3y(2)n )

+ · · ·+a3(1−b)d2(un,K(m−2)y
(m−3)
n )+a2(1−b)d2(un,Kmy(m−2)

n )

+a(1−b)d2(un,Kmy(m−1)
n )

≤ d2(un, p)−d2(xn+1, p)≤ d2(xn, p)−d2(xn+1, p)→ 0 (as n→ ∞),

which further yields that

lim
n→∞

d2(un,K1un) = 0; lim
n→∞

d2(un,Kiy
(i−1)
n ) = 0, i = 2,3, · · · ,m. (3.6)

In view of (3.1), (3.6), and Lemma 2.1, for each i = 2,3, · · · ,m−1, we have that

d(y(1)n ,un) = d(expunβ
(1)
n exp−1

un
K1un,un)≤ β

(1)
n d(K1un,un)≤ ad(K1un,un)→ 0;

d(y(i)n ,un) = d(expunβ
(i)
n exp−1

un
Kiy

(i−1)
n ,un)≤ β

(i)
n d(Kiy

(i−1)
n ,un)≤ ad(Kiy

(i−1)
n ,un)→ 0.

(3.7)
Thus it follows from (3.4), (3.6), and (3.7) that

(a) lim
n→∞

d(un,K1un) = 0;

(b) lim
n→∞

d(y(i−1)
n ,Kiy

(i−1)
n ) = 0, i = 2,3, · · · ,m;

(c) lim
n→∞

d(Sm
λn
(xn),xn) = 0.

The conclusion (3.5) is proved.
(V) Prove that

lim
n→∞

d(xn,Sm
λ
(xn)) = 0, λn ≥ λ . (3.8)
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In fact, by the assumption that λn ≥ λ > 0. Thanks to Lemma 2.8, we obtain from (3.5) (c)
that

d(xn,Sm
λ
(xn))≤ d(xn,Sm

λn
(xn))+d(Sm

λn
(xn),Sm

λ
(xn))

= (1+
λn−λ

λn
)d(xn,Sm

λn
(xn))

≤ 2d(xn,Sm
λn

xn)→ 0 (as n→ ∞).

The conclusion (3.8) is proved.
(VI) Finally, we prove that {xn} converges to some point in Ω

In fact, in (II) we have proved that {xn} is a bounded sequence in C, and it is also Fejér
monotone with respect to Ω. By Lemma 2.2, in order to prove {xn} converges to some point in
Ω, it suffices to prove that there exists a cluster point of {xn} belongs to Ω. Indeed, let x∗ be a
cluster point of {xn}. Then there exists a subsequence {xn j} of {xn} such that lim j→∞ xn j = x∗.

By (3.4) and (3.7), d(xn,un)→ 0, and d(y(i)n ,un)→ 0, i = 1,2, · · · ,m− 1. These imply that
lim j→∞ un j = x∗ and lim j→∞ y(i)n j = x∗, i = 1,2, · · · ,m−1.

On the other hand, by (3.7), d(un j ,K1un j)→ 0, d(y(i)n j ,Kiy
(i)
n j )→ 0, and d(Sm

λ
(xn j),xn j)→ 0

as j→ ∞. Since Sm
λ

is a nonexpansive mapping, it is demiclosed at zero. Also in (I) we have
proved that Ki, i = 1,2, · · · ,m all are demiclosed at zero, which implies that

x∗ ∈
m⋂

i=1

Fix(Ki)
⋂

Fix(Sm
λ
).

In order to prove that x∗ ∈ Ω, it should be proved that Fix(Sm
λ
) =

⋂m
i=1 Fix(J fi

λ
). It is obvious

that
⋂m

i=1 Fix(J fi
λ
)j Fix(Sm

λ
).

Next we prove that Fix(Sm
λ
) ⊂

⋂m
i=1 Fix(J fi

λ
). Let q ∈ Fix(Sm

λ
) and p ∈

⋂m
i=1 Fix(J fi

λ
). It fol-

lows that
d(q, p) = d(Sm

λ
q, p) = d(J fm

λ
Sm−1

λ
q,J fm

λ
p)≤ d(Sm−1

λ
q, p)

≤ d(Sm−2
λ

q, p)≤ ·· · ≤ d(S1
λ

q, p) = d(J f1
λ

q, p)≤ d(q, p),

which implies that

d(q, p) = d(Sm
λ

q, p) = d(Sm−1
λ

q, p) = d(Sm−2
λ

q, p) = · · ·= d(S1
λ

q, p) = d(J f1
λ

q, p).

It follows from (2.2) that, for each i = 1,2, · · · ,m,

d(Si
λ

q, p)+d(Si
λ

q,Si−1
λ

q)≤ d(Si−1
λ

q, p) = d(q, p).

Since d(Si
λ

q, p) = d(q, p), this implies that, for each i = 1,2, · · · ,m,

d(Si
λ

q,Si−1
λ

q) = 0, i.e., Si−1
λ

q ∈ Fix(J fi
λ
)q. (3.9)

Taking i= 1 in (3.9), we have q= J f1
λ
(q). Taking i= 2 in (3.19), we have that q= J f1

λ
(q) = J f2

λ
q.

Taking i = 1,2, · · · ,m in (3.9), we can prove that

q = J f1
λ
(q) = J f2

λ
q = · · ·= J fm−1

λ
q = J fm

λ
q, i.e., q ∈

m⋂
i=1

Fix(J fi
λ
).

This completes the proof. �
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4. CONCLUSION

In this paper, an iterative algorithm was introduced for finding a common solution of a finite
family of minimization problems and the fixed point problems of a finite family of demicon-
tractive mappings in Hadamard manifolds. Under suitable conditions, a convergence theorem
of the sequence generated by our algorithm was established in Hardmard manifolds. Since the
demicontractive maping is more general than nonexpansive mappings, and quasinonexpansive
mappings, it has more powerful applications in solving mean ergodic problems. Thus the prob-
lem studied in our paper is quite general. It includes many kinds of problems, such as convex
optimization problems, fixed point problems, variational inclusion problems, and variational
inequality problems as its special cases.
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