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Abstract. Psoriasis is characterized by an overgrowth of keratinocytes (skin cells) resulted from chaotic signaling
in the immune system and irregular release of cytokines. Anti-inflammatory cytokines, such as IL−21 and IFN−γ

released by the T h1-cells and activated killer cells (NK-cells) play a central role in pathogenesis of this disease.
So, in this paper, we propose two systems of nonlinear differential equations: one system describes the growth
of immune cells (T -helper cells of type I and II, as well as activated NK-cells) along with keratinocytes; another
system sets the dynamics of cytokines (IL− 21 and IFN− γ). Since these systems use different time scales, we
transform them into one system of differential equations, including the immune T h1- and T h2-cells, activated NK-
cells, and epidermal keratinocytes. Within this description of the dynamics of psoriasis, we study the effect of
combined bio-therapy, including the action of the IL−21 inhibitor together with anti-IFN− γ therapy. To do this,
we introduce two bounded control functions into the system and formulate on a given time interval, the problem of
minimizing the total cost of the applied immune therapy and its impact on the proliferation of activated NK-cells
and keratinocytes at the end of the treatment time. Analysis of such a problem is carried out using the Pontryagin
maximum principle. As a result of this analysis, the properties of optimal controls and their possible types are
established. It is shown that each such control is either a bang-bang function over the entire time interval, or in
addition to non-singular bang-bang sections, it can have a singular regimen. Possible types of singular regimens
are studied; for them, the necessary optimality conditions are checked, the singular regimens’s formulas are found,
so as the ways the singular regimens concatenate with non-singular (bang-bang) sections. Some numerically
computed optimal controls are given alone with a discussion of the numerical difficulties in detection of singular
regimens.
Keywords. Lie brackets; Nonlinear control system; Pontryagin maximum principle; Switching function; Singular
regimen.
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1. INTRODUCTION

Psoriasis is an urgent medical and social problem due to the growth in recent decades of its
indicators and the increase in the number of patients. This is a health problem that is resistant
to various methods of treatment, reducing the quality of life of patients, social adaptation and
professional activity. Psoriasis occupies one of the leading places in terms of incidence among
chronic inflammatory skin diseases. Psoriasis patients experience social isolation, emotional,
home and work problems, associated both with the disease itself and with the ongoing treat-
ment. Psoriasis brings physical and moral disharmony into the lives of patients due to the need
for additional organization of dietary nutrition, the rejection of cosmetics, restrictions in the
choice of vacation places and interpersonal contacts. Despite a large number of studies on the
research of psoriasis, the cause of the disease remains not fully understood, and the risks of
an unfavorable course are unpredictable. This situation requires new research in the field of
studying risk factors, developing modern approaches to optimizing medical care for patients
with psoriasis. And here mathematical modeling plays an important role, since mathematical
models make it possible to effectively describe the behavior of various populations of cells up
to disease, during its course and treatment, without requiring the use of complex and expensive
equipment and observations. Among the various models, we will especially single out models
that are described by systems of differential equations. In turn, controlled mathematical mod-
els built on the basis of such systems are used to model the regimen of taking drugs and their
dosage, compare the effects of various drugs on affected areas of the skin, and develop the most
effective treatment methods. Within a specific model, optimal control theory is applied to find
the best treatment strategies for psoriasis. Here we do not give a review of works related both
to the mathematical modeling of psoriasis and the analysis of existing models of this disease,
and to the search for effective strategies for its treatment based on the optimal control theory,
because such a detailed review was given in [16]. The controlled mathematical models used
in [16] were described on a fixed time interval (the period of psoriasis treatment) by the systems
of nonlinear differential equations that are linear in control, or in controls (if there are several of
them). The objective functions necessarily contain terms that reflect the total cost of the treat-
ment used. This cost of psoriasis treatment is expressed as an integral over a fixed time interval
from some given function depending on the square of the control or on the squares of the con-
trols. After applying the Pontryagin maximum principle as a necessary optimality condition,
the considered problem of optimal control is reduced to a two-point boundary value problem
for the maximum principle, which is then solved numerically using the standard mathematical
software. Such support is widely represented, for example, in software environments MAPLE
and MATLAB. Widespread use of quadratic terms in the objective functions to estimate the to-
tal cost of psoriasis treatment is due to the fact that the right parts in the systems of differential
equations in boundary value problems for the maximum principle are Lipschitz functions phase
and adjoint variables. In addition, the optimal control or optimal controls also has the Lipschitz
property. Note that solving the considered optimal control problems also performed well in
the BOCOP and GPOPS software environments, in which, after discretization in time, the opti-
mal control problem under study is approximated by finite-dimensional problems of nonlinear
optimization of large dimension.

In optimal control problems for mathematical models not related to psoriasis ([15]), the total
cost of treatment can also be expressed as an integral over a fixed period of time from some



INVESTIGATION OF SINGULAR REGIMENS 3

given function that depends on the control or on controls (if there are several of them), or it
may be completely absent. At the same time, the models are still described by systems of non-
linear differential equations that are linear in control or in controls. Then, after applying the
Pontryagin maximum principle to such problems, the corresponding optimal controls can either
be bang-bang functions over the entire given time interval, or, in addition to bang-bang (non-
singular) sections, they can also have sections with singular regimens (singular sections) on
which these controls were not determined uniquely from the maximum principle ([14]). After
the existence of singular regimens has been established, the corresponding necessary conditions
for their optimality have been verified, connections between singular and non-singular sections
have been determined, and finding specific optimal solutions in optimal control problems is still
carried out only numerically, for example, using the BOCOP and GPOPS software environ-
ments. Note, that the use of softwares based on the approximate solution of two-point boundary
value problems for the maximum principle is incorrect and unstable, since there is no important
Lipschitz property that guarantees the convergence of numerical procedures.

For optimal control problem with scalar control, the analysis of singular regimens is based
on successive differentiation of the corresponding switching function, which specifies the type
of the optimal control according to the maximum principle. This differentiation is carried out
until the corresponding derivative of even order has a nonzero term containing control. If such
a term appears in the second-order derivative, then the singular regimen is of the first order. If
it occurs at the derivative of the fourth order, then the singular regimen has the second order.
Finally, when such a term appears in the sixth-order derivative, we are talking about a singular
third-order regimen ([15, 14, 20]).

The papers [5, 6, 9, 10] considered the mathematical model psoriasis that describes, using a
system of three differential equations, the relationship between populations of T -lymphocytes,
keratinocytes, and dendritic cells, play an important role in occurrence, course, and treatment
of psoriasis. This model contains a control function that sets the dose of a drug that suppresses
the interaction between T -lymphocytes and keratinocytes. In these papers, for such a controlled
model, using the Pontryagin maximum principle the problem of minimizing the concentration
of keratinocytes at the end moment of a given time interval, which is the period of treatment
of psoriasis, is studied. They show analytically and numerically that the corresponding opti-
mal control can be both a bang-bang function over the entire time interval, and have singular
sections with singular regimens of the second and third orders. Also in the considered model,
another control function can be introduced that determines the dose of the drug, suppressing
interaction between T -lymphocytes and dendritic cells. Study for such control model of a sim-
ilar minimization problem due to the Pontryagin maximum principle shows the possibility of
the corresponding optimal control having a singular regimen of the first order ([7]). Finally, the
situation when in the model under consideration there are simultaneously both of the control
functions described above, was studied in detail in [4].

As noted in [16], psoriasis is a chronic autoimmune disease, pathogenesis (origin and course)
of which is caused as a violation of the balance between individual populations immune cells,
and deregulation of the interaction between the immune system and skin cells. More specifi-
cally, the balance is lost between immune cells such as T h1- and T h2-cells, as well as activated
NK-cells, on the one hand, and keratinocytes, as the most common representatives of the skin,
on the other hand. Interaction between immune cells is carried out using a variety of cytokines
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(information molecules). In psoriasis, key roles belong to IL−21, mediated by T h1-cells, and
to IFN− γ , generated by activated NK-cells. Within this more modern view of the pathogene-
sis psoriasis, in this paper we consider a mathematical model of this disease, whose differential
equations describe the relationship between the indicated populations of immune cells, ker-
atinocytes and cytokines. This model aims to explore the inflammatory effect and ability to
regulate cytokines. Therefore, we introduce control functions into the model, which reflect the
inhibition (suppression) of IL−21 and anti-IFN−γ therapy and are aimed at inhibition of these
cytokines. For such a controlled model, in this paper, we study the minimization problem with
the objective function that does not contain squares of controls and hence, the optimal controls
in such problem may contain singular regimens. Much attention is paid to detailed analysis of
such singular regimens in the paper. By the possible occurrence of singular regimens, our study
differs from the studies for a similar model presented in [19], although is their continuation.
The objective function that we use in this article is also different from the objective function
used in [19].

This paper is organized as follows. Section 2 gives a description of the mathematical model
of psoriasis, which after all the necessary simplifying transformations is described on a given
time interval by a system of four nonlinear differential equations with corresponding initial con-
ditions. Section 3 is devoted to the study of such properties of the components of the solution
of the arisen Cauchy problem, as their positivity and boundedness, as well as the continuation
of this solution for the entire given time interval. Section 4, first describes an introduction to
a simplified model of psoriasis of two bounded control functions, reflecting the impact of the
drugs and therapy on the course of the disease. Then, for such a controlled model, the opti-
mal control problem is formulated, which consists in minimizing the integro-terminal objective
function. This function is the weighted sum of the effect of the action from the introduced con-
trols on the required decision components of the model; and the total cost of treatment. Finally,
here we discuss the existence of an optimal solution in the considered minimization problem.
Application of the Pontryagin maximum principle as a necessary condition for optimality is
demonstrated in Section 5. Section 6 has auxiliary character, since it contains transformations,
assumptions and statements, used in the following discussion. Section 7 is central to this paper,
since it contains a detailed analysis of singular regimens that may occur in optimal controls in
the considered minimization problem. In Section 8 we discuss the results of numerical calcula-
tions, which confirm the obtained analytical results, and the difficulties in detection of singular
regimens. The corresponding conclusions are drawn.

2. MODEL OF PSORIASIS DYNAMICS AND ITS MODIFICATIONS

We consider a mathematical model that describes the dynamics of psoriasis, which includes
T -helper cells type I and II (T h1 and T h2), activated killer cells (NK-cells) and keratinocytes
(skin cells). We assume that the densities of T h1- and T h2-cells, activated NK-cells and epider-
mal keratinocytes at any time t ≥ 0 are given by T1(t), T2(t), NA(t), and K(t), respectively. To
describe the equations of changes in the densities of the considered immune cells (T h1- and T h2-
cells, activated NK-cells), we assume that these immune cells are formed at the corresponding
constant rates a1, a2 and b. Also, we use logistic terms to describe the proliferation of immune
cells due to their self-release and other effects of cytokines. At the same time, r1, r2 and r3 rep-
resent the proliferation rates of T h1- and T h2-cells, as well as activated NK-cells, respectively.
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This proliferation continues up to certain maximum levels determined by the corresponding val-
ues of T max

1 , T max
2 and Nmax

A . Further, at the rate of α1, anti-inflammatory cytokines responsible
for T h2-cells, have a negative regulatory effect on the growth of T h1-cells, which is described
by the term α1T1T2 in the first equation of the system (2.1). Anti-inflammatory cytokines se-
creted by T h1-cells exert a negative regulatory effect on the growth of T h2-cells at a rate of α2,
which reflects the term α2T1T2 in the second equation of this system. We also believe that at
the rate of β1, activated NK-cells mediated by IFN− γ have a negative regulatory effect on the
growth of T h2-cells. IL−21, released by T h1-cells, increases the proliferation rate of NK-cells
at the rate of ξ . The natural decay rates of T h1- and T h2-cells, as well as activated NK-cells,
we denote by µ1, µ2 and µ3, respectively. Then the equations for changes in the densities of the
considered immune cells have the following form:

T ′1 = a1 + r1T1

(
1− T1

T max
1

)
−α1T1T2−µ1T1,

T ′2 = a2 + r2T2

(
1− T2

T max
2

)
−α2T1T2−β1IγT2−µ2T2,

N′A = b+ r3NA

(
1− NA

Nmax
A

)
+ξ I21NA−µ3NA.

(2.1)

In connection with the constant migration of cells from the dermal layer of the skin to the
epidermal layer, we assume that the value of c determines the constant growth of keratinocytes.
Under the influence of a large amount of IFN− γ , keratinocytes proliferate at a rate of β2. In
addition, the positive effect of T h1-cells on the proliferation of keratinocytes is determined by
the rate δ1, and T h2-cells inhibit proliferation at a rate of δ2. The decay rate of keratinocytes
is determined by the value of µ4. Then the dynamics of keratinocytes is given by the following
equation:

K′ = c+δ1T1K−δ2T2K +β2IγK−µ4K. (2.2)

Based on the assumptions made above and putting together the equations from (2.1) and (2.2),
we have the following model of psoriasis dynamics:

T ′1 = a1 + r1T1

(
1− T1

T max
1

)
−α1T1T2−µ1T1,

T ′2 = a2 + r2T2

(
1− T2

T max
2

)
−α2T1T2−β1IγT2−µ2T2,

N′A = b+ r3NA

(
1− NA

Nmax
A

)
+ξ I21NA−µ3NA,

K′ = c+δ1T1K−δ2T2K +β2IγK−µ4K.

(2.3)

Next, we introduce into the system (2.3) the families of the considered cytokines. Cytokine
concentrations we denote IL−21 and IFN− γ by I21(t) and Iγ(t), respectively. For simplicity,
let us assume that the corresponding immune cells produce cytokines in response to them with
constant speed, and they naturally decay at a constant speed as well. We believe that the repro-
duction rates of IL−21 and IFN− γ due to T h1-cells and activated NK-cells are expressed by
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the corresponding quantities q1 and q2, and λ1 and λ2 determine the decay rates of the corre-
sponding cytokines. Thus, we have built a system for describing the dynamics of cytokines:{

I′21 = q1T1−λ1I21,

I′γ = q2NA−λ2Iγ ,
(2.4)

which add to the system (2.3).
The dynamics of the development of psoriatic plaques, described by systems (2.3) and (2.4),

uses different time scales. Proliferation of T h1- and T h2-cells, as well as activated NK-cells
and keratinocytes occurs on a time scale from days to weeks, while the reproduction and break-
down of cytokines are carried out on a time scale from seconds to hours. Therefore, our model,
consisting of systems (2.3) and (2.4), is simplified due to the use of quasi-stationary approxi-
mations for the concentrations of the considered cytokines [17]. Taking this into account, we
obtain from system (2.4) the following formulas:

I21 =
q1

λ1
T1 , Iγ =

q2

λ2
NA ,

which we substitute into system (2.3). After that we define the constants:

γ1 =
β1q2

λ2
, γ2 =

ξ q1

λ1
, γ3 =

β2q2

λ2
, (2.5)

we finally obtain the simplified model of psoriasis dynamics:

T ′1 = a1 + r1T1

(
1− T1

T max
1

)
−α1T1T2−µ1T1,

T ′2 = a2 + r2T2

(
1− T2

T max
2

)
−α2T1T2− γ1T2NA−µ2T2,

N′A = b+ r3NA

(
1− NA

Nmax
A

)
+ γ2T1NA−µ3NA,

K′ = c+δ1T1K−δ2T2K + γ3NAK−µ4K.

(2.6)

Note that the combined parameters γ1 and γ3 indicate the influence of the activated NK-cells
on the growth of T h2-cells and keratinocytes, respectively. On the other hand, the combined
parameter γ2 reflects the contribution of T h1-cells to the regulation activated NK-cells.

It is easy to see that system (2.6) is a further development of the ideas previously presented
in papers [19, 17, 18].

In system (2.6), let us now perform the scaling of the phase variables T1, T2, NA, K according
to the formulas:

T̃1 =
T1

T max
1

, T̃2 =
T2

T max
2

, ÑA =
NA

Nmax
A

, K̃ = K.

As the result, we find the system:

T̃ ′1 = ã1 + r̃1T̃1

(
1− T̃1

)
− α̃1T̃1T̃2− µ̃1T̃1,

T̃ ′2 = ã2 + r̃2T̃2

(
1− T̃2

)
− α̃2T̃1T̃2− γ̃1T̃2ÑA− µ̃2T̃2,

Ñ′A = b̃+ r̃3ÑA

(
1− ÑA

)
+ γ̃2T̃1ÑA− µ̃3ÑA,

K̃′ = c̃+ δ̃1T̃1K̃− δ̃2T̃2K̃ + γ̃3ÑAK̃− µ̃4K̃,



INVESTIGATION OF SINGULAR REGIMENS 7

in which
r̃1 = r1, r̃2 = r2, r̃3 = r3,
γ̃1 = γ1Nmax

A , γ̃2 = γ2T max
1 , γ̃3 = γ3Nmax

A ,

ã1 = a1/T max
1 , ã2 = a2/T max

2 , b̃ = b/Nmax
A , c̃ = c,

α̃1 = α1T max
2 , α̃2 = α2T max

1 , δ̃1 = δ1T max
1 , δ̃2 = δ2T max

2 ,
µ̃1 = µ1, µ̃2 = µ2, µ̃3 = µ3, µ̃4 = µ4.

Omitting the tilde sign in this system, we finally obtain the following system of equations de-
scribing dynamics of psoriasis:

T ′1 = a1 + r1T1 (1−T1)−α1T1T2−µ1T1,

T ′2 = a2 + r2T2 (1−T2)−α2T1T2− γ1T2NA−µ2T2,

N′A = b+ r3NA (1−NA)+ γ2T1NA−µ3NA,

K′ = c+δ1T1K−δ2T2K + γ3NAK−µ4K,

(2.7)

which will be the object of our subsequent considerations. Add to system (2.7) the initial
conditions:

T1(0) = T 0
1 , T2(0) = T 0

2 , NA(0) = N0
A, K(0) = K0, (2.8)

where T 0
1 > 0, T 0

2 > 0, N0
A > 0, K0 > 0. We will consider the Cauchy problem (2.7)-(2.8) on the

fixed time interval [0,Θ], which determine the length of the treatment.

3. PROPERTIES OF THE SOLUTION OF THE CAUCHY PROBLEM

Let us establish that the components of the solution to the Cauchy problem (2.7)-(2.8) are
positive and bounded. The following lemma is true.

Lemma 3.1. The components of the solution (T1(t),T2(t),NA(t),K(t)) of the Cauchy prob-
lem (2.7)-(2.8) are defined on the entire interval [0,Θ] and satisfy on this interval the following
inequalities:

0 < T1(t)< T̃ max
1 , 0 < T2(t)< T̃ max

2 ,

0 < NA(t)< Ñmax
A , 0 < K(t)< K̃max,

(3.1)

where

T̃ max
1 = T 0

1 +
4a1 + r1

4µ1
; T̃ max

2 = T 0
2 +

4a2 + r2

4µ2
;

Ñmax
A =



N0
A +

4b+ r3

4
(

µ3− γ2T̃ max
1

) , if µ3− γ2T̃ max
1 > 0,

N0
A +

4b+ r3

4
, if µ3− γ2T̃ max

1 = 0,

N0
Ae|µ3−γ2T̃ max

1 |Θ +
4b+ r3

4
∣∣∣µ3− γ2T̃ max

1

∣∣∣
(

e|µ3−γ2T̃ max
1 |Θ−1

)
,

if µ3− γ2T̃ max
1 < 0;
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K̃max =



K0 +
c

µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

) ,

if µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

)
> 0,

K0 + cΘ, if µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

)
= 0,

K0e|µ4−(δ1T̃ max
1 +γ3Ñmax

A )|Θ

+
c∣∣∣µ4−

(
δ1T̃ max

1 + γ3Ñmax
A

)∣∣∣
(

e|µ4−(δ1T̃ max
1 +γ3Ñmax

A )|Θ−1
)
,

if µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

)
< 0.

Proof. By virtue of the existence and uniqueness theorem [8] the Cauchy problem (2.7)-(2.8)
has a solution (T1(t),T2(t),NA(t),K(t)) that is defined on the interval [0, t0), which is the maxi-
mum interval for the existence of such a solution. Next, we rewrite the equations of system (2.7)
as follows 

T ′1(t) = a1 +
{

r1 (1−T1(t))−α1T2(t)−µ1

}
T1(t)

= a1 + f1(t)T1(t),

T ′2(t) = a2 +
{

r2 (1−T2(t))−α2T1(t)− γ1NA(t)−µ2

}
T2(t)

= a2 + f2(t)T2(t),

N′A(t) = b+
{

r3 (1−NA(t))+ γ2T1(t)−µ3

}
NA(t)

= b+ f3(t)NA(t),

K′(t) = c+
{

δ1T1(t)−δ2T2(t)+ γ3NA(t)−µ4

}
K(t)

= c+ f4(t)K(t),

(3.2)

where functions fi(t), i = 1,2,3,4 define corresponding expressions in the braces. These equa-
tions are linear nonautonomous differential equations of the first order with positive inhomo-
geneities and positive initial conditions (2.8). Integrating each equation of the system (3.2) in
the interval [0, t0), for example by the Lagrange constant variation method [8], we can see that
their solutions T1(t), T2(t), NA(t), K(t) are positive on the entire interval [0, t0). Therefore the
left inequalities in each relationship from (3.1) are justified.

Let us show the validity of the right inequalities in these relationships. Consider the first two
equations of system (2.7). Using the already established positiveness of function T1(t), T2(t)
and NA(t), as well as the fact that the maximum values of the quadratic polynomials riTi(1−Ti)
equal ri/4, i = 1,2, respectively, we obtain differential inequalities:

T ′i <
(

ai +
ri

4

)
−µiTi = µi

(
T̃ max

i −T 0
i

)
−µiTi, i = 1,2.

By integrating these inequalities with the corresponding initial conditions Ti(0) = T 0
i , i = 1,2

on the interval [0, t0) and using the comparison principle [1], we find the inequalities:

0 < Ti(t)< T 0
i e−µit +

(
T̃ max

i −T 0
i

)(
1− e−µit

)
≤ T̃ max

i , i = 1,2,
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from which the validity of the first two relationships of (3.1) follows.
Let us carry out similar reasoning for the third equation of the system (2.7). Using the already

obtained inequality for the function T1(t), we have the differential inequality:

N′A <
(

b+
r3

4

)
−
(

µ3− γ2T̃ max
1

)
NA.

By integrating this inequality with the corresponding initial condition NA(0) = N0
A on the inter-

val [0, t0) and applying the comparison principle, we arrive the inequality:

0 < NA(t)< N0
Ae−(µ3−γ2T̃ max

1 )t +
4b+ r3

4
(

µ3− γ2T̃ max
1

) (1− e−(µ3−γ2T̃ max
1 )t

)
,

from which we obtain from the definition of Ñmax
A the third relationship in (3.1).

Finally, consider the fourth equation of system (2.7). Applying the previously obtained in-
equalities for T1(t) and NA(t), we find the differential inequality:

K′ < c−
(

µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

))
K.

Integrating this inequality with the corresponding initial condition K(0) = K0 on the interval
[0, t0) and using the comparison principle again, we have the inequality:

0 < K(t)< K0e−(µ4−(δ1T̃ max
1 +γ3Ñmax

A ))t

+
c

µ4−
(

δ1T̃ max
1 + γ3Ñmax

A

) (1− e−(µ4−(δ1T̃ max
1 +γ3Ñmax

A ))t
)
,

which, due to the definition of K̃max, leads to the fulfillment fourth relationship in (3.1).
Thus we have established the validity of the inequalities (3.1) on the maximum interval [0, t0)

of the existence of the considered solution (T1(t),T2(t),NA(t),K(t)). When t0 ≤ Θ, this fact
guarantees the extension of such a solution to the entire interval [0,Θ] ([8]) and satisfying the
relations (3.1) on it. The required assertion is justified. �

Let us establish the validity of the following lemma which refines the left constraint on func-
tion K(t).

Lemma 3.2. The component K(t) of the solution (T1(t),T2(t),NA(t),K(t)) of the Cauchy prob-
lem (2.7)-(2.8) on the entire segment [0,Θ] satisfies the inequality:

K(t)> Kmin > 0, (3.3)

where
Kmin = K0e−(δ2T̃ max

2 +µ4)Θ.

Proof. Lemma 3.1 allows to write for the fourth equation of system (2.7) the following differ-
ential inequality:

K′ > c−
(

δ2T̃ max
2 +µ4

)
K,

that is true for all t ∈ [0,Θ]. Integrating this inequality with the corresponding initial condition
K(0) =K0 on the interval [0,Θ] and using the comparison principle from [1] lead us to the chain
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of the relationships:

K(t)> K0e−(δ2T̃ max
2 +µ4)t +

c

δ2T̃ max
2 +µ4

(
1− e−(δ2T̃ max

2 +µ4)t
)

≥ K0e−(δ2T̃ max
2 +µ4)Θ = Kmin,

from which the validity of the inequality (3.3) follows. �

Note that in our study we found both the invariant set of system (2.7) and its equilibria. The
existence of a unique equilibrium state with positive coordinates located in the invariant set is
established, and its stability is also scrutinized. However, in this paper, we do not demonstrate
the results of this study, since here we will specifically focus only on a detailed study of the
optimal control problem for system (2.7)-(2.8).

4. OPTIMAL CONTROL PROBLEM

The Cauchy problem (2.7)-(2.8) considered on a given time interval [0,Θ], is a mathematical
model of the dynamics of psoriasis, which includes T h1- and T h2-cells, activated NK-cells,
and epidermal keratinocytes. Based on this model, we see that psoriasis is an inflammatory
skin disease mediated by T h1-cells and activated NK-cells, where IL−21 and IFN− γ play a
dominant role. Therefore, in the fight against this disease, it is important to suppress the effects
that exert IL− 21 and IFN− γ on various immune cells. Proceeding from this, we introduce
into the system (2.7) two control functions ũ1(t) and ũ2(t) subject to the following restrictions:

0≤ ũ1(t)≤ ũmax
1 < 1, 0≤ ũ2(t)≤ ũmax

2 < 1. (4.1)

The ũ1(t) control reflects the action of the IL− 21 inhibitor, and the control ũ2(t) describes
the effect of treatment against IFN− γ . As a result, on the interval [0,Θ] we have a controlled
system: 

T ′1(t) = a1 + r1T1(t)(1−T1(t))−α1T1(t)T2(t)−µ1T1(t),

T ′2(t) = a2 + r2T2(t)(1−T2(t))−α2T1(t)T2(t)

− γ1 (1− ũ2(t))T2(t)NA(t)−µ2T2(t),

N′A(t) = b+ r3NA(t)(1−NA(t))

+ γ2 (1− ũ1(t))T1(t)NA(t)−µ3NA(t),

K′(t) = c+δ1T1(t)K(t)−δ2T2(t)K(t)

+ γ3 (1− ũ2(t))NA(t)K(t)−µ4K(t),

T1(0) = T 0
1 , T2(0) = T 0

2 , NA(0) = N0
A, K(0) = K0;

T 0
1 > 0, T 0

2 > 0, N0
A > 0, K0 > 0.

(4.2)

For this system, the set of admissible controls Ω̃ consists of all possible pairs of Lebesgue
measurable functions (ũ1(t), ũ2(t)), which for almost all values of t ∈ [0,Θ] satisfy the inequal-
ities (4.1).

Note that for ũ1(t) = 0 and ũ2(t) = 0 the system (4.2) becomes a Cauchy problem (2.7)-(2.8).
Various manifestations of controls ũ1(t) and ũ2(t) in system (4.2) show why the dependence of
the corresponding terms in the equations of this system on controls is so important in studying
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the consequences of the combined action of the IL− 21 inhibitor and anti-IFN − γ therapy.
Also, we do not take into account the side effects of this combined biological treatment.

For the system (4.2) on the set of admissible controls Ω̃, we consider optimal control problem,
which consists in minimizing the integro-terminal objective function:

J̃(ũ1, ũ2) =
(

K(Θ)+σNA(Θ)
)
+

Θ∫
0

(
χ ũ1(t)T1(t)+ν ũ2(t)NA(t)

)
dt, (4.3)

where σ , χ , and ν are positive weight coefficients. In this objective function, the terminal
part describes the effect of the IL− 21 inhibitor and anti-IFN− γ therapy on populations of
epidermal keratinocytes and activated NK-cells in final moment Θ of treatment period [0,Θ].
The integral part specifies the total cost considered combined biological treatment. This cost
depends not only on the price χ of the used inhibitor ũ1(t) and the price ν of the applied therapy
ũ2(t), but also from the corresponding populations of T h1-cells and activated NK-cells exposed
to them. In more detail, such terms in the objective functions are discussed in [3, 13]. Note
also that in the papers [18, 19] the general cost of such biological treatment is determined in a
different way, namely the integral part of the type:

Θ∫
0

(
χ ũ2

1(t)+ν ũ2
2(t)
)

dt.

To simplify the subsequent calculations, in the optimal control problem (4.1)–(4.3), we will
change the controls according to the formulas:

u1 = 1− ũ1, u2 = 1− ũ2.

Thus system (4.2) is transformed into the system:

T ′1(t) = a1 + r1T1(t)(1−T1(t))−α1T1(t)T2(t)−µ1T1(t),

T ′2(t) = a2 + r2T2(t)(1−T2(t))−α2T1(t)T2(t)

− γ1u2(t)T2(t)NA(t)−µ2T2(t),

N′A(t) = b+ r3NA(t)(1−NA(t))

+ γ2u1(t)T1(t)NA(t)−µ3NA(t),

K′(t) = c+δ1T1(t)K(t)−δ2T2(t)K(t)

+ γ3u2(t)NA(t)K(t)−µ4K(t),

T1(0) = T 0
1 , T2(0) = T 0

2 , NA(0) = N0
A, K(0) = K0;

T 0
1 > 0, T 0

2 > 0, N0
A > 0, K0 > 0.

(4.4)

Moreover, the restrictions (4.1) on the controls ũ1(t) and ũ2(t) go into the restrictions:

0 < umin
1 ≤ u1(t)≤ 1, 0 < umin

2 ≤ u2(t)≤ 1, (4.5)

where
umin

1 = 1− ũmax
1 , umin

2 = 1− ũmax
2 .

The set of admissible controls Ω̃ is transformed into the corresponding set Ω consisting of all
possible pairs of Lebesgue measurable functions (u1(t),u2(t)), which for almost all t ∈ [0,Θ]
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satisfy inequalities (4.5). The objective function J̃(ũ1, ũ2) goes into the objective function:

J(u1,u2) =
(

K(Θ)+σNA(Θ)
)
+

Θ∫
0

(
χ (1−u1(t))T1(t)+ν (1−u2(t))NA(t)

)
dt. (4.6)

Thus minimization problem (4.1)–(4.3) is transformed into the minimization problem (4.4)–
(4.6), which we will consider further.

Due to the restrictions (4.5) on the controls u1(t) and u2(t), the differential inequalities ap-
pearing in the justification of Lemmas 3.1 and 3.2, do not change. Therefore, these lemmas
remain valid for the controlled system (4.4) with only minor changes.

Lemma 4.1. For arbitrary admissible controls (u1(t),u2(t)) the absolutely continuous solution
(T1(t),T2(t),NA(t),K(t)) of the system (4.4) is defined on the entire segment [0,Θ], and its
components satisfy the following inequalities on this segment:

0 < T1(t)< T̃ max
1 , 0 < T2(t)< T̃ max

2 ,

0 < NA(t)< Ñmax
A , 0 < Kmin < K(t)< K̃max.

(4.7)

It is easy to see that for the minimization problem (4.4)–(4.6) the assumptions of Corol-
lary 2 to Theorem 4 from Chapter 4 ([11]) are satisfied. Namely, the inequalities (4.7) in the
Lemma 4.1 give a uniform estimate on the interval [0,Θ] of the solution (T1(t),T2(t),NA(t),K(t))
of the system (4.4) corresponding to an arbitrary pair of controls (u1(t),u2(t)) from Ω. More-
over, system (4.4) is linear in the controls u1(t) and u2(t), and the integrand

(χ (1−u1)T1 +ν (1−u2)NA)

in the objective function (4.6) is also linear with respect to ui ∈
[
umin

i ,1
]
, i = 1,2. Therefore,

all these facts guarantee the existence of an optimal solution in the minimization problem under
consideration which consists of a pair of the optimal controls (u∗1(t),u

∗
2(t)) and the correspond-

ing optimal solution (T ∗1 (t),T
∗

2 (t),N
∗
A(t),K

∗(t)) of system (4.4).

5. PONTRYAGIN MAXIMUM PRINCIPLE

To analyze the optimal solution in minimization problem (4.4)–(4.6), we apply the Pontrya-
gin’s maximum principle [12] which is a necessary condition of the optimality for this problem.
To do this, we first write out the corresponding Hamiltonian:

H(T1,T2, NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4)

=−
{

χ (1−u1)T1 +ν (1−u2)NA

}
+
{

a1 + r1T1 (1−T1)−α1T1T2−µ1T1

}
ψ1

+
{

a2 + r2T2 (1−T2)−α2T1T2− γ1u2T2NA−µ2T2

}
ψ2

+
{

b+ r3NA (1−NA)+ γ2u1T1NA−µ3NA

}
ψ3

+
{

c+δ1T1K−δ2T2K + γ3u2NAK−µ4K
}

ψ4,
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where ψi, i = 1,2,3,4 are the adjoint variables. Next we evaluate the partial derivatives of this
Hamiltonian with respect to the phase variables:

H ′T1
(T1, T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4)

= (r1 (1−2T1)−α1T2−µ1)ψ1−α2T2ψ2 + γ2u1NAψ3 +δ1Kψ4−χ (1−u1) ,

H ′T2
(T1, T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4)

=− α1T1ψ1 +(r2 (1−2T2)−α2T1− γ1u2NA−µ2)ψ2−δ2Kψ4,

H ′NA
(T1, T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4)

=− γ1u2T2ψ2 +(r3 (1−2NA)+ γ2u1T1−µ3)ψ3 + γ3u2Kψ4−ν (1−u2) ,

H ′K(T1, T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4)

= (δ1T1−δ2T2 + γ3u2NA−µ4)ψ4

and with respect to controls:

H ′u1
(T1,T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4) = γ2T1NAψ3 +χT1,

H ′u2
(T1,T2,NA,K,u1,u2,ψ1,ψ2,ψ3,ψ4) =−γ1T2NAψ2 + γ3NAKψ4 +νNA.

Then with respect to the Pontryagin maximum principle for a pair of the optimal controls
(u∗1(t),u

∗
2(t)) and corresponding to it optimal solution (T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t)) of system (4.4),
there exists such an adjoint variable ψ∗(t) =

(
ψ∗1 (t),ψ

∗
2 (t),ψ

∗
3 (t),ψ

∗
4 (t)

)
, that the following

statements are valid.
• Function ψ∗(t) is a nontrivial solution of the adjoint system:

ψ
∗
1
′ =−H ′T1

(T ∗1 ,T
∗

2 ,N
∗
A,K

∗,u∗1,u
∗
2,ψ

∗
1 ,ψ

∗
2 ,ψ

∗
3 ,ψ

∗
4 )

=−(r1 (1−2T ∗1 )−α1T ∗2 −µ1)ψ
∗
1 +α2T ∗2 ψ

∗
2 − γ2u∗1N∗Aψ

∗
3

−δ1K∗ψ∗4 +χ (1−u∗1) ,

ψ
∗
2
′ =−H ′T2

(T ∗1 ,T
∗

2 ,N
∗
A,K

∗,u∗1,u
∗
2,ψ

∗
1 ,ψ

∗
2 ,ψ

∗
3 ,ψ

∗
4 )

= α1T ∗1 ψ
∗
1 − (r2 (1−2T ∗2 )−α2T ∗1 − γ1u∗2N∗A−µ2)ψ

∗
2 +δ2K∗ψ∗4 ,

ψ
∗
3
′ =−H ′NA

(T ∗1 ,T
∗

2 ,N
∗
A,K

∗,u∗1,u
∗
2,ψ

∗
1 ,ψ

∗
2 ,ψ

∗
3 ,ψ

∗
4 )

= γ1u∗2T ∗2 ψ
∗
2 − (r3 (1−2N∗A)+ γ2u∗1T ∗1 −µ3)ψ

∗
3 − γ3u∗2K∗ψ∗4 +ν (1−u∗2) ,

ψ
∗
4
′ =−H ′K(T

∗
1 ,T

∗
2 ,N

∗
A,K

∗,u∗1,u
∗
2,ψ

∗
1 ,ψ

∗
2 ,ψ

∗
3 ,ψ

∗
4 )

=−(δ1T ∗1 −δ2T ∗2 + γ3u∗2N∗A−µ4)ψ
∗
4 ,

ψ
∗
1 (Θ) = 0, ψ

∗
2 (Θ) = 0, ψ

∗
3 (Θ) =−σ , ψ

∗
4 (Θ) =−1.

(5.1)

• Optimal controls u∗1(t) and u∗2(t) supply maximum of the Hamiltonian

H(T ∗1 (t),T
∗

2 (t),N
∗
A(t),K

∗(t),u1,u2,ψ
∗
1 (t),ψ

∗
2 (t),ψ

∗
3 (t),ψ

∗
4 (t))

for almost all t ∈ [0,Θ] by the variables ui ∈
[
umin

i ,1
]
, i = 1,2, and so, these controls satisfy the

relationships:

u∗1(t) =


umin

1 , if Φu1(t)< 0,
any u1 ∈

[
umin

1 ,1
]

, if Φu1(t) = 0,
1 , if Φu1(t)> 0,

(5.2)
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u∗2(t) =


umin

2 , if Φu2(t)< 0,
any u2 ∈

[
umin

2 ,1
]

, if Φu2(t) = 0,
1 , if Φu2(t)> 0.

(5.3)

Here functions Φu1(t) and Φu2(t), expressed by formulas:

Φu1(t) = H ′u1
(T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t),u∗1(t),u
∗
2(t),ψ

∗
1 (t),ψ

∗
2 (t),ψ

∗
3 (t),ψ

∗
4 (t))

= γ2T ∗1 (t)N
∗
A(t)ψ

∗
3 (t)+χT ∗1 (t),

Φu2(t) = H ′u2
(T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t),u∗1(t),u
∗
2(t),ψ

∗
1 (t),ψ

∗
2 (t),ψ

∗
3 (t),ψ

∗
4 (t))

=−γ1T ∗2 (t)N
∗
A(t)ψ

∗
2 (t)+ γ3N∗A(t)K

∗(t)ψ∗4 (t)+νN∗A(t),

are the switching functions, because they determine the behavior of the corresponding optimal
controls u∗1(t) and u∗2(t) with respect to (5.2) and (5.3). Due to the established in Lemma 4.1
positiveness of the functions T ∗1 (t) and N∗A(t), the switching functions Φu1(t) and Φu2(t) vanish,
and also take negative and positive values at the same time as the corresponding functions Lu1(t)
and Lu2(t), which are given by the formulas:

Lu1(t) = N∗A(t)ψ
∗
3 (t)+χγ

−1
2 ,

Lu2(t) =−γ1T ∗2 (t)ψ
∗
2 (t)+ γ3K∗(t)ψ∗4 (t)+ν .

(5.4)

Since these functions are more simply arranged, we will consider them further as switching
functions for the corresponding optimal controls u∗1(t) and u∗2(t), and instead of the formu-
las (5.2) and (5.3) we will use the following relations:

u∗1(t) =


umin

1 , if Lu1(t)< 0,
any u1 ∈

[
umin

1 ,1
]

, if Lu1(t) = 0,
1 , if Lu1(t)> 0,

(5.5)

u∗2(t) =


umin

2 , if Lu2(t)< 0,
any u2 ∈

[
umin

2 ,1
]

, if Lu2(t) = 0,
1 , if Lu2(t)> 0.

(5.6)

Let us now analyze together the formulas (5.4) and (5.5), (5.6). Their analysis shows how the
switching functions Lu1(t) and Lu2(t) can behave, and hence the corresponding optimal controls
u∗1(t) and u∗2(t). Since Lu1(t) and Lu2(t) are absolutely continuous functions, the controls u∗1(t)
and u∗2(t) can have a bang-bang form and switch between the corresponding values umin

i and 1,
i = 1,2. This will happen if, when passing time t, at which functions Lu1(t) and Lu2(t) vanish,
the sign change of these functions occurs. Such values t are the moments of switching of the op-
timal controls u∗1(t) and u∗2(t). Besides the bang-bang type sections, the controls u∗1(t) and u∗2(t)
can also contain singular sections that contain singular regimens [14, 15, 20]. This happens
when the corresponding switching functions Lu1(t) and Lu2(t) vanish on some subintervals of
the interval [0,Θ]. The following considerations are devoted to a detailed study of the possible
existence of singular regimens for the optimal controls u∗1(t) and u∗2(t).
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6. USEFUL TRANSFORMATIONS AND IMPORTANT ASSUMPTION

In order to simplify the adjoint system (5.1), as well as the formulas for the switching func-
tions Lu1(t) and Lu2(t), we introduce new adjoint variables by the formulas:

φ
∗
1 (t) = T ∗1 (t)ψ

∗
1 (t), φ

∗
2 (t) = T ∗2 (t)ψ

∗
2 (t),

φ
∗
3 (t) = N∗A(t)ψ

∗
3 (t), φ

∗
4 (t) =−K∗(t)ψ∗4 (t).

Then the switching Lu1(t) and Lu2(t) are transformed to:

Lu1(t) = φ
∗
3 (t)+χγ

−1
2 , Lu2(t) =−γ1φ

∗
2 (t)− γ3φ

∗
4 (t)+ν . (6.1)

Evaluating the derivatives φ∗i
′(t) of the new adjoint variables φ∗i (t) with the use of the corre-

sponding equations of the system (4.4) and the adjoint system (5.1), and also by adding the
corresponding initial conditions, we find new adjoint system:

φ
∗
1
′ =

(
a1

T ∗1
+ r1T ∗1

)
φ
∗
1 +α2T ∗1 φ

∗
2 − γ2u∗1T ∗1 φ

∗
3 +δ1T ∗1 φ

∗
4 +χ (1−u∗1)T ∗1 ,

φ
∗
2
′ = α1T ∗2 φ

∗
1 +

(
a2

T ∗2
+ r2T ∗2

)
φ
∗
2 −δ2T ∗2 φ

∗
4 ,

φ
∗
3
′ = γ1u∗2N∗Aφ

∗
2 +

(
b

N∗A
+ r3N∗A

)
φ
∗
3 + γ3u∗2N∗Aφ

∗
4 +ν (1−u∗2)N∗A,

φ
∗
4
′ =

c
K∗

φ
∗
4 ,

φ
∗
1 (Θ) = 0, φ

∗
2 (Θ) = 0, φ

∗
3 (Θ) =−σN∗A(Θ), φ

∗
4 (Θ) = K∗(Θ).

(6.2)

We now obtain differential equations for the switching functions Lu1(t) and Lu2(t). Using the
definitions of these functions from (6.1), as well as the third equation system (6.2), we first find
the differential equation for the switching function Lu1(t):

L′u1
(t) =

(
b

N∗A(t)
+ r3N∗A(t)

)
Lu1(t)−u∗2(t)N

∗
A(t)Lu2(t)

− γ
−1
2

(
(χr3−νγ2)N∗A(t)+

χb
N∗A(t)

)
.

(6.3)

Using the definition of function Lu2(t) from (6.1), as well as the second and fourth equations of
system (6.2) obtain differential equation for the switching function Lu2(t):

L′u2
(t) =

(
a2

T ∗2 (t)
+ r2T ∗2 (t)

)
Lu2(t)+F(t), (6.4)

where the auxiliary function F(t) is defined by the formula:

F(t) =− α1γ1T ∗2 (t)φ
∗
1 (t)

+

(
γ3

a2

T ∗2 (t)
+(γ1δ2 + γ3r2)T ∗2 (t)− γ3

c
K∗(t)

)
φ
∗
4 (t)−ν

(
a2

T ∗2 (t)
+ r2T ∗2 (t)

)
.



16 E. GRIGORIEVA, E. KHAILOV

Now we find differential equations for the function F(t). First, we will evaluate the derivative
F ′(t) of this function and obtain the formula:

F ′ =− α1γ1T ∗2
′
φ
∗
1 −α1γ1T ∗2 φ

∗
1
′+

(
−

(
γ3

a2(
T ∗2
)2 − (γ1δ2 + γ3r2)

)
T ∗2
′+ γ3

c

(K∗)2 K∗′
)

φ
∗
4

+

(
γ3

a2

T ∗2
+(γ1δ2 + γ3r2)T ∗2 − γ3

c
K∗

)
φ
∗
4
′+ν

(
a2(

T ∗2
)2 − r2

)
T ∗2
′.

Let us substitute into this formula the equations for the functions T ∗2 (t) and K∗(t) from sys-
tem (4.4), as well as equations for the functions φ∗1 (t) and φ∗4 (t) from system (6.2). After
which, in the resulting expression, we give similar terms and select the functions Lu1(t), Lu2(t)
and F(t). As a result, we find the required differential equation:

F ′(t) = P(T ∗1 (t),T
∗

2 (t),N
∗
A(t),u

∗
2(t))F(t)+α1T ∗1 (t)T

∗
2 (t)

(
γ1γ2u∗1(t)Lu1(t)+α2Lu2(t)

)
+Q(T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t),u∗2(t))φ
∗
4 (t)+R(T ∗1 (t),T

∗
2 (t),N

∗
A(t),u

∗
2(t)) ,

(6.5)

where P(T1,T2,NA,u2), Q(T1,T2,NA,K,u2) and R(T1,T2,NA,u2) are defined by the formulas:

P(T1,T2,NA,u2) =

(
a1

T1
+ r1T1

)
+

(
a2

T2
+ r2 (1−T2)−α2T1− γ1u2NA−µ2

)
,

Q(T1,T2,NA,K,u2) =
c
K

(
γ3

a2

T2
+
(
(γ1− γ3)δ2 + γ3r2

)
T2 + γ3δ1T1− γ3µ4

)
− γ3

(
2

a2

T2
− c

K

)(
a2

T2
+ r2 (1−T2)−α2T1−µ2

)
−
(

a1

T1
+ r1T1

)(
γ3

a2

T2
+(γ1δ2 + γ3r2)T2− γ3

c
K

)
−α1 (γ1δ1− γ3α2)T1T2 +u2NA

(
2γ1γ3

a2

T2
+ γ3 (γ3− γ1)

c
K

)
,

R(T1,T2,NA,u2) = 2ν
a2

T2

(
a2

T2
+ r2 (1−T2)−α2T1− γ1u2NA−µ2

)
+ν

(
a1

T1
+ r1T1

)(
a2

T2
+ r2T2

)
−α1 (χγ1 +να2)T1T2.

Also, the lower estimate for the adjoint variable φ∗4 (t) will be important for us. The following
lemma is true.

Lemma 6.1. For function φ∗4 (t) the following inequality is valid:

φ
∗
4 (t)> Kmine−

c
Kmin Θ

, t ∈ [0,Θ]. (6.6)

Proof. Integrating the last differential equation of the system (6.2) with the corresponding initial
condition, we find the formula:

φ
∗
4 (t) = K∗(Θ)e

−c
Θ∫
t

dξ

K∗(ξ )
, t ∈ [0,Θ].

Using the lower bound from Lemma 4.1 for the function K∗(t), we immediately obtain inequal-
ity (6.6). �
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Finally, we formulate the additional assumption under which we will carry out the subsequent
reasoning.

Assumption. Let the following inequalities hold for the parameters of the minimization
problem (4.4)–(4.6):

γ3 > γ1, ν ≤ γ3Kmine−
c

Kmin Θ
. (6.7)

Note that due to the formulas (2.5), the first inequality in (6.7) is equivalent to the inequality
β2 > β1, which, as follows from [19], is satisfied.

This assumption leads to the following lemma.

Lemma 6.2. For all values t ∈ [0,Θ] the inequality is true:(
2γ1γ3

a2

T ∗2 (t)
+ γ3 (γ3− γ1)

c
K∗(t)

)
φ
∗
4 (t)−2νγ1

a2

T ∗2 (t)
> 0. (6.8)

Proof. Let us transform the left side of the inequality (6.8) as follows(
2γ1γ3

a2

T ∗2 (t)
+ γ3 (γ3− γ1)

c
K∗(t)

)
φ
∗
4 (t)−2νγ1

a2

T ∗2 (t)

= 2γ1γ3
a2

T ∗2 (t)

(
φ
∗
4 (t)−νγ

−1
3

)
+ γ3 (γ3− γ1)

c
K∗(t)

φ
∗
4 (t).

Due to the inequalities (6.6) and (6.7), both terms on the right-hand side of the last equality are
positive. This ensures that inequality (6.8) is satisfied. �

7. SINGULAR REGIMENS OF THE OPTIMAL CONTROLS

Let us now study the possible types of singular regimens that may arise for the optimal
controls u∗1(t) and u∗2(t). There are the following three cases.
Case 1. Let there be an interval ∆0 ⊂ [0,Θ] on which the following identities hold simultane-
ously:

Lu1(t)≡ 0, Lu2(t)≡ 0. (7.1)
This means that singular regimens can occur simultaneously for both optimal controls u∗1(t) and
u∗2(t).

From (7.1), the equalities follow:

L′u1
(t) = 0, L′u2

(t) = 0. (7.2)

Both relationships in (7.1) and the first relationship in (7.2) used in equation (6.3) lead us to the
equality:

(χr3−νγ2)(N∗A(t))
2 +χb = 0, t ∈ ∆0. (7.3)

It is easy to see that the following two situations are possible.
If χr3−νγ2 ≥ 0, then equality (7.3) is contradictory. This means there is no singular regimen

under which the identities (7.1) hold.
If χr3−νγ2 < 0, then equation (7.3) implies the formula:

Nsing
A =

√
χb

|χr3−νγ2|
, t ∈ ∆0. (7.4)

This means that in the singular regimen under consideration, if it exists, the density of activated
NK-cells is constant. Note that quantity Nsing

A must satisfy Nsing
A < Ñmax

A , which follows from
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Lemma 4.1. Otherwise, there is no such singular regimen. Substituting the formula (7.4) into
the third equation of system (4.4), we find the relationship:

using
1 (t) =−

b+ r3Nsing
A

(
1−Nsing

A

)
−µ3Nsing

A

γ2T ∗1 (t)N
sing
A

. (7.5)

Moreover, if using
1 (t) satisfies the inclusion using

1 (t) ∈
(
umin

1 ,1
)

on ∆0, then (7.5) determines the
optimal control u∗1(t) on the considered singular regimen. Otherwise, this singular regimen is
absent.

To find a possible form of the optimal control u∗2(t) on the interval ∆0, we use both relation-
ships in (7.1) and the second relationship in (7.2). Substituting them into the equation (6.4),
we find the identity F(t) ≡ 0, which immediately leads us to the equality F ′(t) = 0. Invoking
these relationships together with the relationships (7.1) into the equation (6.5), as well as taking
into account the linearity in the control u2 functions P(T1,T2,NA,u2), Q(T1,T2,NA,K,u2) and
R(T1,T2,NA,u2), we get the formula:

using
2 (t) =−

Ψ0

(
T ∗1 (t),T

∗
2 (t),N

sing
A ,K∗(t),φ∗4 (t)

)
Nsing

A Π
(
T ∗2 (t),K

∗(t),φ∗4 (t)
) , (7.6)

where function Ψ0 (T1,T2,NA,K,φ4) consists of the terms of the functions P(T1,T2,NA,u2),
Q(T1,T2,NA,K,u2)φ4 and R(T1,T2,NA,u2), that do not contain control u2; also here

Π(T2,K,φ4) =

(
2γ1γ3

a2

T2
+ γ3 (γ3− γ1)

c
K

)
φ4−2νγ1

a2

T2
.

Note that, due to Lemma 6.2, the function Π(T ∗2 (t),K
∗(t),φ∗4 (t)) in formula (7.6) is positive on

the interval ∆0. Moreover, if using
2 (t) satisfies on this interval the inclusion using

2 (t) ∈
(
umin

2 ,1
)
,

then formula (7.6) defines the optimal control u∗2(t) on the singular regimen under consideration.
Otherwise there is no such singular regimen.

Let us now check the necessary optimality condition for the singular regimen under which
identities (7.1) are valid. To do this, we will use the Goch condition from [15].

First, we transform problem (4.4)–(4.6). Namely, we introduce a new phase variable M(t)
using the differential equation:

M′(t) = χ (1−u1(t))T1(t)+ν (1−u2(t))NA(t), (7.7)

with the initial condition M(0) = 0. Then the minimization problem (4.4)–(4.6) with integro-
terminal function becomes a minimization problem with a terminal objective function:

J(u1,u2) = K(Θ)+σNA(Θ)+M(Θ). (7.8)

By adding an equation (7.7) with an appropriate initial condition to system (4.4), let us rewrite
the equations of the new system in vector form:

x′(t) = f (x(t))+u1(t)g1(x(t))+u2(t)g2(x(t)),
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where the vector of phase variables x and the vector fields f (x), gi(x), i = 1,2 are defined the
following formulas:

x =


T1
T2
NA
K
M

 , f (x) =


a1 + r1T1 (1−T1)−α1T1T2−µ1T1
a2 + r2T2 (1−T2)−α2T1T2−µ2T2

b+ r3NA (1−NA)−µ3NA
c+δ1T1K−δ2T2K−µ4K

χT1 +νNA

 ,

g1(x) =


0
0

γ2T1NA
0
−χT1

 , g2(x) =


0

−γ1T2NA
0

γ3NAK
−νNA

 .

Compute the commutator [g1,g2] (x) of the vector fields g1(x) and g2(x) ([14]). Assuming
that Dg1(x) and Dg2(x) are the corresponding Jacobi matrices for g1(x) and g2(x), we have the
formula:

[g1,g2] (x) = Dg2(x)g1(x)−Dg1(x)g2(x)

=


0 0 0 0 0
0 −γ1NA −γ1T2 0 0
0 0 0 0 0
0 0 γ3K γ3NA 0
0 0 −ν 0 0




0
0

γ2T1NA
0
−χT1



−


0 0 0 0 0
0 0 0 0 0

γ2NA 0 γ2T1 0 0
0 0 0 0 0
−χ 0 0 0 0




0
−γ1T2NA

0
γ3NAK
−νNA

=


0

−γ1γ2T1T2NA
0

γ2γ3T1NAK
−νγ2T1NA

 .

Then Goch condition is that the scalar product

〈[g1,g2] (x∗(t)),η∗(t)〉 (7.9)

functions [g1,g2] (x∗(t)) and η∗(t) identically vanish on the interval ∆0. Here x∗(t) is a vector
of components of the optimal solution (T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t),M∗(t)) of the system corre-
sponding to the minimization problem with terminal objective function (7.8), and η∗(t) is the
solution corresponding adjoint system arising as a result of applying to this problem the Pon-
tryagin maximum principle. It is easy to see that the first four components of the adjoint variable
η∗(t) form a solution ψ∗(t) of the adjoint system (5.1). Fifth component η∗5 (t) satisfies the dif-
ferential equation η∗5

′ = 0 with initial condition η∗5 (Θ) = −1, and therefore is defined by the
formula η∗5 (t) = −1. Considering all these considerations, we see that the expression (7.9) is
converted to the form:

〈[g1,g2] (x∗(t)),η∗(t)〉=− γ1γ2T ∗1 (t)T
∗

2 (t)N
∗
A(t)ψ

∗
2 (t)

+ γ2γ3T ∗1 (t)N
∗
A(t)K

∗(t)ψ∗4 (t)−νγ2T ∗1 (t)N
∗
A(t).
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Invoking here the new adjoint variables φ∗2 (t) and φ∗4 (t), as well as the switching function Lu2(t)
from (5.4), we conclude that there is a chain of equalities:

〈[g1,g2] (x∗(t)),η∗(t)〉= γ2T ∗1 (t)N
∗
A(t)(−γ1φ

∗
2 (t)− γ3φ

∗
4 (t)+ν) = γ2T ∗1 (t)N

∗
A(t)Lu2(t),

which due to the second relationship (7.1) is identically equal to zero on the interval ∆0. This
means that the necessary condition for the optimality of the singular regimen under considera-
tion (the Goch condition) is satisfied, and therefore such a singular regimen is possible.
Case 2. Let there be an interval ∆1 ⊂ [0,Θ] on which the identity is true:

Lu1(t)≡ 0, (7.10)

and the switching function Lu2(t) does not vanish. This means that only the optimal control
u∗1(t) can have a singular regimen. The control u∗2(t) on the interval ∆1 is a bang-bang function
that takes the values umin

2 and 1. The equality follows from the formula (7.10):

L′u1
(t) = 0. (7.11)

The relationships (7.10) and (7.11) used in the equation (6.3) lead to the expression:

−u∗2(t)N
∗
A(t)Lu2(t)− γ

−1
2

(
(χr3−νγ2)N∗A(t)+

χb
N∗A(t)

)
= 0, t ∈ ∆1. (7.12)

An analysis of this equality shows that it is inconsistent for χr3−νγ2 ≥ 0 and u∗2(t) = 1, t ∈ ∆1.
Hence, under these restrictions, the considered singular regimen is absent. Under other con-
straints, to find a possible type of optimal control u∗1(t) on the interval ∆1, we differentiate the
relationship (7.12). Substituting the third equation of the system (4.4) in the resulting expression
and the equation (6.4), after necessary transformations, we find the relationship:

− γ2u∗1(t)T
∗

1 (t)
[

u∗2(t)N
∗
A(t)Lu2(t)+ γ

−1
2

(
(χr3−νγ2)N∗A(t)−

χb
N∗A(t)

)]
−
(

b
N∗A(t)

+ r3 (1−N∗A(t))−µ3

)
×
[

u∗2(t)N
∗
A(t)Lu2(t)+ γ

−1
2

(
(χr3−νγ2)N∗A(t)−

χb
N∗A(t)

)]
−u∗2(t)N

∗
A(t)

[(
a2

T ∗2 (t)
+ r2T ∗2 (t)

)
Lu2(t)+F(t)

]
= 0, t ∈ ∆1.

Taking into account the formula (7.12) in it, we get the expression:

2χbu∗1(t)
T ∗1 (t)
N∗A(t)

+2γ
−1
2

χb
N∗A(t)

(
b

N∗A(t)
+ r3 (1−N∗A(t))−µ3

)
−u∗2(t)N

∗
A(t)

[(
a2

T ∗2 (t)
+ r2T ∗2 (t)

)
Lu2(t)+F(t)

]
= 0, t ∈ ∆1,

(7.13)

which leads to the formula:

using
1 (t) =−

Ψ1 (T ∗2 (t),N
∗
A(t),Lu2(t),F(t),u∗2(t))

2χbT ∗1 (t)/N∗A(t)
, (7.14)
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where

Ψ1 (T2,NA,Lu2,F,u2) =−2γ
−1
2

χb
NA

(
b

NA
+ r3 (1−NA)−µ3

)
+u2NA

[(
a2

T2
+ r2T2

)
Lu2 +F

]
.

Moreover, if the function using
1 (t) satisfies on the interval ∆1 the inclusion using

1 (t) ∈
(
umin

1 ,1
)
,

then the formula (7.14) defines the optimal control u∗1(t) on the considered singular regimen.
Otherwise, this singular regimen is absent.

Let us now check the necessary condition for the optimality of the singular regimen, under
which identity (7.10) is valid. To do this, we use the Kelly condition from [20]. We will find on
the interval ∆1 derivative

∂

∂u1

(
L′′u1

(t)
)

while simultaneously fulfilling the relationships (7.10)–(7.12). Analyzing expression (7.13), we
conclude that the formula holds:

∂

∂u1

(
L′′u1

(t)
)
= 2χb

T ∗1 (t)
N∗A(t)

> 0, t ∈ ∆1.

This means that the Kelly condition is satisfied and, moreover, in a strengthened form. There-
fore, due to [14, 15], the optimal control u∗1(t) on the interval ∆1 there may be a first-order
singular regimen that concatenates with non-singular bang-bang sections of this control.
Case 3. Let there be an interval ∆2 ⊂ [0,Θ] on which place identity:

Lu2(t)≡ 0, (7.15)

and the switching function Lu1(t) does not vanish identically. This means that the singular
regimen can arise only for the optimal control u∗2(t). Control u∗1(t) on the interval ∆2 is a bang-
bang function and takes the values umin

1 and 1. From formula (7.15) the equality follows:

L′u2
(t) = 0. (7.16)

The relationships (7.14) and (7.15) used in the equation (6.4) lead to identity:

F(t)≡ 0, t ∈ ∆2, (7.17)

from which follows the equality:
F ′(t) = 0, t ∈ ∆2. (7.18)

Using the relationships (7.15), (7.17) and (7.18) in the equation (6.5), we find the expression:
u∗2(t)N

∗
A(t)Π(T ∗2 (t),K

∗(t),φ∗4 (t))+α1γ1γ2u∗1(t)T
∗

1 (t)T
∗

2 (t)Lu1(t)

+Ψ0 (T ∗1 (t),T
∗

2 (t),N
∗
A(t),K

∗(t),φ∗4 (t)) = 0, t ∈ ∆2,
(7.19)

where functions Π(T2,K,φ4) and Ψ0 (T1,T2,NA,K,φ4) were defined under consideration of
Case 1. From relationship (7.19) we obtain the formula:

using
2 (t) =−

Ψ2 (T ∗1 (t),T
∗

2 (t),N
∗
A(t),K

∗(t),Lu1(t),φ
∗
4 (t),u

∗
1(t))

N∗A(t)Π
(
T ∗2 (t),K

∗(t),φ∗4 (t)
) , (7.20)

where
Ψ2 (T ∗1 (t),T

∗
2 (t),N

∗
A(t),K

∗(t),Lu1(t),φ
∗
4 (t),u

∗
1(t))

= α1γ1γ2u∗1(t)T
∗

1 (t)T
∗

2 (t)Lu1(t)+Ψ0 (T ∗1 (t),T
∗

2 (t),N
∗
A(t),K

∗(t),φ∗4 (t)) .
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Note that, by Lemma 6.2, the function Π(T ∗2 (t),K
∗(t),φ∗4 (t)) in formula (7.20), as in Case 1,

is positive on the interval ∆2. Moreover, if the function using
2 (t) satisfies the inclusion using

2 (t) ∈(
umin

2 ,1
)

on this interval, then formula (7.20) defines the optimal control u∗2(t) on the considered
singular regimen. Otherwise, there is no such singular regimen.

Let us now check the necessary optimality condition for the singular regimen under which
the identity (7.15) is true. To do this, we again apply the Kelly condition from [20]. Let’s find
on interval ∆2 the derivative

∂

∂u2

(
L′′u2

(t)
)

while simultaneously fulfilling the relationships (7.15)–(7.18). Analyzing expression (7.19), we
come to the conclusion that the formula takes place:

∂

∂u2

(
L′′u2

(t)
)
= N∗A(t)Π(T ∗2 (t),K

∗(t),φ∗4 (t))> 0, t ∈ ∆2.

Therefore, as in Case 2, the Kelly condition is satisfied and, moreover, in a stronger form.
Hence, again due to [14, 15], the optimal control u∗2(t) on the interval ∆2 can have a singular
first-order regimen, which is concatenated with non-singular bang-bang sections of this control.

Thus, we make the final conclusion that on some interval

• singular regimens may arise for the optimal controls u∗1(t) and u∗2(t) simultaneously;
• a singular regimen can only be in the optimal control u∗1(t), and the control u∗2(t) is a

bang-bang function;
• a singular regimen can only be in the optimal control u∗2(t), and the control u∗1(t) is a

bang-bang function.

8. RESULTS OF NUMERICAL CALCULATIONS AND THEIR DISCUSSION

Here we demonstrate the results of a numerical solution of minimization problem (4.4)–
(4.6). For numerical calculations, we used the following parameters values of system (4.4) and
its initial conditions, the values of constraints on controls from (4.5) and the weight coefficients
of the objective function (4.6):

a1 = 0.0333 a2 = 0.04 b = 0.0333 c = 0.01
µ1 = 0.035 µ2 = 0.01 µ3 = 0.02 µ4 = 0.035
α1 = 0.003 α2 = 0.006 δ1 ∈ [0.12,0.5] δ2 = 0.36
r1 = 0.01 r2 = 0.01 r3 = 0.002
γ1 = 0.000375 γ2 = 0.075 γ3 ∈ [0.15,1.5]
umin

1 = 0.01 umin
2 = 0.01 σ = 1.0 Θ = 30.0

(8.1)

Most of these values are taken from [19]. Numerical calculations were carried out using the
BOCOP environment ([2]). Note that the density of keratinocytes K(t) was also scaled as
K(t)→ K(t)10−2, which actually consisted in the corresponding proportional decrease in the
value of the parameter c. In addition, some of the parameter values in (8.1) were chosen in such
a way as to ensure the existence and stability of the already mentioned equilibrium position of
system (2.7), which consists in the simultaneous fulfillment of the inequalities:

r1r2−α1α2 > 0, (r1r2−α1α2)r3 > α1γ1γ2, (8.2)
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as well as other hypothetical restrictions on the parameter values of this system. Otherwise,
there was an unlimited and uncontrolled increase in the density of keratinocytes K(t), which
had no biological sense. Finally, the initial conditions T 0

1 , T 0
2 , N0

A, K0, as well as the values of
the weight coefficients χ and ν were varied in the range from very small values to unity.

Recall that the controls u1(t) and u2(t) in the minimization problem (4.4)–(4.6) are auxiliary.
They are introduced into the system (4.4) to simplify the subsequent analysis (Section 4). The
corresponding physical (original) controls ũ1(t) and ũ2(t) are related to the controls u1(t) and
u2(t) by the formulas:

ũ1(t) = 1−u1(t), ũ2(t) = 1−u2(t).

Therefore, if the auxiliary optimal control u∗1(t) has a maximum value 1, then the corresponding
physical optimal control ũ∗1(t) takes the minimum value 0 and vice versa. A similar remark is
also valid for the auxiliary optimal control u∗2(t) and for the corresponding physical optimal
control ũ∗2(t).

As a result, numerical calculations have shown that the physical optimal control ũ∗1(t) is a
piecewise constant function with one or two switchings of the forms:

ũ∗1(t) =

{
0 , if 0≤ t ≤ τ∗,

ũmax
1 , if τ∗ < t ≤Θ,

ũ∗1(t) =


0 , if 0≤ t ≤ τ∗1 ,

ũmax
1 , if τ∗1 < t ≤ τ∗2 ,

0 , if τ∗2 < t ≤Θ,

where τ∗ and τ∗i , i = 1,2 are the corresponding switchings. The physical optimal control ũ∗2(t)
is a constant function taking the value ũmax

2 over the entire time interval [0,Θ].
Unfortunately, due to the large number of parameters in system (4.4), as well as due to com-

plex and nonlinear dependencies between these parameters, initial conditions, and weight co-
efficients in relationships (3.3), (6.7), (7.3), and (8.2), we were unable to find the singular reg-
imens in the minimization problem (4.4)–(4.6) numerically. However, the numerical detection
of these singular regimens, as well as the application of our theoretical results to the treatment
of real patients with psoriasis, will be prospects for our future research.
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