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STRONG CONVERGENCE OF A MODIFIED MANN ALGORITHM FOR
MULTIVALUED QUASI-NONEXPANSIVE MAPPINGS AND MONOTONE

MAPPINGS WITH AN APPLICATION

T.M.M. SOW

Department of Mathematics, Gaston Berger University, Saint Louis, Senegal

Abstract. In this paper, we introduce and study a new iterative method which is a combination of a projection
method and a modified Mann method for finding a common element of the set of solutions of variational inequality
problems for a monotone mappings and the set of fixed points of multivalued quasi-nonexpansive mappings in an
infinite dimensional Hilbert space. We prove that the sequences generated by the proposed algorithm converge
strongly to a common element of in the set of common solutions. Finally, we apply our results to the problem
of finding a common solution of fixed points problems involving multivalued quasi-nonexpansive mappings and
optimization problems.
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1. INTRODUCTION

Let H be a real Hilbert space. Let A : H → H be a mapping. The domain of A, D(A), the
image of a subset S of H, A(S), the range of A, R(A) and the graph of A, G(A) are defined as
follows:

D(A) := {x ∈ H : Ax 6= /0}, A(S) := ∪{Ax : x ∈ S},

R(A) := A(H), G(A) := {[x,u] : x ∈ D(A), u ∈ Ax}.
Let K be a nonempty, closed and convex subset of H. An operator A : K → H is said to be
monotone if

〈Ax−Ay,x− y〉H ≥ 0, ∀ x,y ∈ K,

A is said to be k-strongly monotone if there exists k ∈ (0,1) such that

〈Ax−Ay,x− y〉H ≥ k‖x− y‖2, ∀ x,y ∈ K.
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An operator A : K→ H is said to be strongly positive bounded if there exists a constant k > 0
such that

〈Ax,x〉H ≥ k‖x‖2, ∀ x ∈ K.

From the definition of A, we find that a strongly positive bounded linear operator A is a
‖A‖-Lipschitzian and k-strongly monotone operator.

An operator A : K→ H is said α-inverse strongly monotone if there exists a constant α > 0
such that

〈Ax−Ay,x− y〉H ≥ α‖Ax−Ay‖2, ∀ x,y ∈ K.

It is immediate that if A is α-inverse strongly monotone, then A is monotone and Lipschitz
continuous. The problem of finding u ∈ K such that

〈Au,v−u〉 ≥ 0, ∀v ∈ K, (1.1)

is called the classical variational inequality problem. We denote the set of solutions of varia-
tional inequality problem (1.1) by V I(K,A).

The variational inequality problem was formulated in the late 1960’s by Lions and Stampac-
chia [8]. Since then, it has been extensively studied. In numerous models for solving real-life
problems, such as, in signal processing, networking, resource allocation, image recovery, and
so on, the constraints can be expressed as variational inequality problems. Consequently, the
problem of finding solutions of variational inequality problems has become a flourishing area of
contemporary research for researchers working in nonlinear analysis and optimization theory;
see, for example, [3, 10, 11] and the references therein. In most of the early results on iterative
methods for approximating solutions of the variational inequality problem, the map A was often
assumed to be inverse strongly monotone.

A well-known method for solving the variational inequality problem is the projection method
which starts with x1 ∈ K and generates a sequence {xn} as following

xn+1 = PK(xn−λnAxn), n≥ 1, (1.2)

where {λn} is a sequence of positive numbers satisfying appropriate conditions. In the case that
A is α-inverse strongly monotone, Iiduka, Takahashi and Toyoda [7] proved that the sequence
{xn} generated by (1.2) converges weakly to an element of V I(K,A).

Let (X ,d) be a metric space, K a nonempty subset of X and T : K → 2K a multivalued
mapping. An element x ∈ K is called a fixed point of T if x ∈ T x. For single valued mapping,
this reduces to T x = x. The fixed point set of T is denoted by F(T ) := {x ∈D(T ) : x ∈ T x}. Let
D be a nonempty subset of a normed space E. The set D is said to be proximinal (see, e.g., [16])
if, for each x ∈ E, there exists u ∈ D such that

d(x,u) = inf{‖x− y‖ : y ∈ D}= d(x,D),

where d(x,y) = ‖x− y‖ for all x,y ∈ E. Every nonempty, closed and convex subset of a real
Hilbert space is proximinal. Let CB(D), K(D) and P(D) denote the family of nonempty closed
bounded subsets, nonempty compact subsets, and nonempty proximinal bounded subsets of D,
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respectively. The Pompeiu Hausdorff metric on CB(K) is defined by

H(A,B) = max
{

sup
a∈A

d(a,B),sup
b∈B

d(b,A)
}

for all A,B∈CB(K) (see, Berinde [2]). A multi-valued mapping T : D(T )⊆ E→CB(E) is said
to be L- Lipschitzian if there exists L > 0 such that

H(T x,Ty)≤ L‖x− y‖, ∀x,y ∈ D(T ). (1.3)

If L ∈ (0,1), we say that T is a contraction, and T is said to be nonexpansive if L = 1. A
multivalued map T is said to be quasi-nonexpansive if H(T x,T p) ≤ ‖x− p‖ holds for all x ∈
D(T ) and p ∈ F(T ).

It is easy to see that the class of mulivalued quasi-nonexpansive mappings properly includes
that of multivalued nonexpansive maps with fixed points. Many problems arising in different
areas of mathematics such as, optimization, differential equations, mathematical economics,
and game theory can be modeled as fixed point equations of the form x ∈ T x, where T is
a multivalued nonexpansive mapping. There are many effective algorithms for solving fixed
point problems, see, for example, [13–15] and the references therein.

Historically, one of the most investigated methods for approximating fixed points of single-
valued nonexpansive mappings dates back to 1953 and is known as Mann’s method, in light of
Mann [9]. Let C be a nonempty, closed and convex subset of a Banach space X , Mann’s scheme
is defined by {

x0 ∈C,

xn+1 = αnxn +(1−αn)T xn,
(1.4)

where {αn} is a sequence in (0,1). It is known that Mann’s iteration process has only weak
convergence, even in Hilbert space setting. Therefore, many authors try to modify Mann’s
iteration to have strong convergence for various nonlinear operators.

Recently, Zeng and Yao [4] introduced a new extragradient method for finding a common
element of the set of fixed points of a nonexpansive mapping and the set of solutions of a
variational inequality problem. They obtained the following strong convergence theorem.

Theorem 1.1 (Zeng and Yao [4]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C→ H be a monotone k-Lipschitz continuous mapping, and let T : C→ C
be a nonexpansive mapping such that F(T )∩V I(C,A) 6= /0. Let the sequences {xn} , {yn} be
generated by 

x0 ∈ H,

yn = PC(xn−λnAxn),

xn+1 = αnx0 +(1−αn)SPC(xn−λnAyn),

(1.5)

where {λn} and {αn} satisfy the following conditions:
(a) {λnk} ⊂ (0,1−δ ) for some δ ∈ (0,1),

(b) {αn} ⊂ (0,1),
∞

∑
n=0

αn = ∞, lim
n→∞

αn = 0.
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Then the sequences {xn} and {yn} converge strongly to the same point PF(T )∩V I(C,A)(x0)

provided that
lim
n→∞
‖xn+1− xn‖= 0. (1.6)

We remark that the iterative scheme (1.5) is strongly convergent with the aid of assumption
(1.6) on the sequence {xn}.

The above results naturally bring us to the following question.
Question Can we construct an iterative algorithm based on a modified Mann method for finding
a common element of the set of fixed points of multivalued quasi-nonexpansive mapping and
the set of solutions of a variational inequality problem without imposing rigid conditions like
(1.6)?

The main aim of this paper is to give an affirmative answer to the question raised. We in-
troduce and study a new approximation method for finding a common element of the set of
solutions of variational inequality problem for an inverse strongly monotone mappings and the
set of fixed points of multivalued quasi-nonexpansive mappings. We prove the strong conver-
gence of the proposed algorithm without imposing any compactness conditions on either the
operators or the space considered in Hilbert spaces. The results presented in the paper extend
and improve some recent results announced in the current literatures.

2. PRELIMINARIES

Let us recall the following definitions and results, which will be used in the sequel.
Let H be a real Hilbert space. Let {xn} be a sequence in H, and let x ∈H. Weak convergence

of xn to x is denoted by xn ⇀ x and strong convergence by xn→ x. Let K be a nonempty, closed
convex subset of H. The nearest point projection from H to K, denoted by PK , assigns each
x ∈ H to the unique PKx with the property

‖x−PKx‖ ≤ ‖y− x‖

for all y ∈ K. It is well known that PK satisfies

〈x− y,PKx−PKy〉 ≥ ‖PKx−PKy‖2 (2.1)

and
〈PKz− y, z−PKz〉 ≥ 0 (2.2)

for all z ∈ K and y ∈ H.

Remark 2.1. In the context of the variational inequality problem, this implies

u ∈V I(K,A)⇐⇒ u = PK(I−θA)u, θ > 0. (2.3)

Lemma 2.2 (Demiclosedness Principle [6]). Let H be a real Hilbert space, and K a nonempty
closed and convex subset of H. Let T : K → CB(K) be a multivalued nonexpansive mapping
with convex-values. Then I−T is demi-closed at zero.

Lemma 2.3 ( [5]). Let H be a real Hilbert space. Then, for any x,y ∈H, the following inequal-
ities hold: ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, and

‖λx+(1−λ )y‖2 = λ‖x‖2 +(1−λ )‖y‖2− (1−λ )λ‖x− y‖2, λ ∈ (0,1).
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Lemma 2.4 (Xu [19]). Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1−αn)an +αnσn for all n ≥ 0, where {αn} is a sequence in (0,1) and {σn} is a
sequence in R such that

(a)
∞

∑
n=0

αn = ∞, (b) limsup
n→∞

σn ≤ 0 or
∞

∑
n=0
|σnαn|< ∞. Then lim

n→∞
an = 0.

Lemma 2.5. [12] Let {tn} be a sequence of real numbers that does not decrease at infinity in
a sense that there exists a subsequence {tni} of {tn} such that {tni} such that tni ≤ tni+1 for all
i≥ 0. For sufficiently large numbers n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→ ∞ as n→ ∞ and

max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.6. (Rockafellar [17]) Let C be a nonempty closed and convex subset of a real Hilbert
space H and A be a monotone, hemicontinuous map of C into H. Let B⊂H×H be an operator
defined as follows:

Bz =
{

Az+NK(z) si z ∈ K,

/0 si z /∈ K,
(2.4)

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w,z− v〉 ≥ 0 ∀ v ∈ K}.

Then, B is maximal monotone and B−1(0) =V I(C,A).

Lemma 2.7. Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let
A : K→H be an α-inverse strongly monotone mapping. Then, I−θA is nonexpansive mapping
for all x,y ∈ K and θ ∈ [0,2α].

Proof. For all x,y ∈ K, we have

‖(I−θA)x− (I−θA)y‖2 = ‖(x− y)−θ(Ax−Ay)‖2

= ‖x− y‖2−2θ〈Ax−Ay,x− y〉+‖Ax−Ay‖2

≤ ‖x− y‖2 +θ(θ −2α)‖Ax−Ay‖2.

This completes the short proof. �

3. MAIN RESULTS

We now prove the following result.

Theorem 3.1. Let K be a nonempty, closed convex cone of a real Hilbert space H and A : K→H
be an α-inverse strongly monotone operator. Let T : K → CB(K) be a multivalued quasi-
nonexpansive mapping such that G := F(T )∩V I(K,A) 6= /0 and T p = {p} ∀p ∈G. Let {xn} be
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a sequence defined as follows:

x0 ∈ K,

zn = PK(I−θnA)xn,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.1)

where {βn}, {λn}, {θn} and {αn} are sequences in (0,1) satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1 and
∞

∑
n=0

(1−λn)αn = ∞.

Assume that I−T are demiclosed at origin. Then, the sequences {xn} and {zn} generated by
(3.1) converge strongly to x∗ ∈ G, where x∗ = PG(0), with PG the the metric projection from K
onto G.

Proof. First, we prove that the sequence {xn} is bounded. Let p ∈ G. Using (3.1), the fact that
T is quasi-nonexpansive, inequality (3.15) and Lemma 2.7, we have

‖yn− p‖ ≤ βn‖zn− p‖+(1−βn)‖vn− p‖
≤ βn‖zn− p‖+(1−βn)H(T zn,T p)

≤ βn‖zn− p‖+(1−βn)‖zn− p‖
= ‖PK(I−θnA)xn−PK(I−θnA)p‖
≤ ‖xn− p‖.

Hence,

‖yn− p‖ ≤ ‖zn− p‖ ≤ ‖xn− p‖. (3.2)

Using (3.1) and inequality (3.2), we have

‖xn+1− p‖ = ‖αn(λnxn)+(1−αn)yn− p‖
≤ αnλn‖xn− p‖+(1−αn)‖yn− p‖+(1−λn)αn‖p‖
≤ αnλn‖xn− p‖+(1−αn)‖xn− p‖+(1−λn)αn‖p‖
≤ [1− (1−λn)αn]‖xn− p‖+(1−λn)αn‖p‖
≤ max{‖xn− p‖, ‖p‖}.

By induction, it is easy to see that

‖xn− p‖ ≤max{‖x0− p‖, ‖p‖}, n≥ 1.
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Hence {xn} is bounded, so are {zn}, and {T xn}. Let p ∈ G. From (3.1), inequality (3.2) and
Lemma 2.3, we have

‖yn− p‖2 = ‖βnzn +(1−βn)vn− p‖2

= (1−βn)‖vn− p‖2 +βn‖zn− p‖2−βn(1−βn)‖vn− zn‖2

≤ (1−βn)H(T zn,T p)2 +βn‖zn− p‖2−βn(1−βn)‖zn− vn‖2

≤ (1−βn)‖xn− p‖2 +βn‖xn− p‖2−βn(1−βn)‖xn− zn‖2.

Hence,
‖yn− p‖2 ≤ ‖xn− p‖2−βn(1−βn)‖zn− vn‖2. (3.3)

Therefore, by Lemma 2.3 and inequality (3.3), we have

‖xn+1− p‖2 = ‖αn(λnxn)+(1−αn)yn− p‖2

= ‖αnλn
(
xn− p

)
+(1−αn)

(
yn− p

)
− (1−λn)αn p‖2

≤ ‖αn
(
λnxn−λn p

)
+(1−αn)

(
yn− p

)
‖2 +2(1−λn)αn〈p, p− xn+1〉

≤ αnλ
2
n ‖xn− p‖2 +(1−αn)‖yn− p‖2 +2(1−λn)αn〈p, p− xn+1〉

≤ αnλn‖xn− p‖2 +(1−αn)
[
‖xn− p‖2−βn(1−βn)‖zn− vn‖2]

+2(1−λn)αn〈p, p− xn+1〉
≤ [1− (1−λn)αn]‖xn− p‖2− (1−αn)βn(1−βn)‖zn− vn‖2

+2(1−λn)αn〈p, p− xn+1〉.

Therefore,

(1−αn)βn(1−βn)‖zn− vn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2(1−λn)αn〈p, p− xn+1〉. (3.4)

Since {xn} is bounded, there exists a constant B > 0 such that

(1−λn)〈p, p− xn+1〉 ≤ B, for all n≥ 0.

Hence,
(1−αn)βn(1−βn)‖zn− vn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2αnB. (3.5)

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that the sequence {‖xn− p‖} is monotonically decreasing sequence. Then
{‖xn− p‖} is convergent. Clearly, we have

‖xn− p‖2−‖xn+1− p‖2→ 0. (3.6)

It then implies from (3.5) that

lim
n→∞

(1−αn)βn(1−βn)‖zn− vn‖2 = 0. (3.7)

Using the fact that lim
n→∞

infβn(1−βn)> 0, we have

lim
n→∞
‖zn− vn‖= 0. (3.8)
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Hence,

lim
n→∞

d(zn,T zn) = 0. (3.9)

From (3.1), convexity of ‖.‖2 and Lemma 2.7, it follows that

‖xn+1− p‖2 = ‖αn(λnxn)+(1−αn)yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖zn− p‖2

= αn‖(λnxn)− p‖2 +(1−αn)‖PK(I−θnA)xn−PK(I−θnA)p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)
[
‖xn− p‖2 +θn(θn−2α)‖Axn−Ap‖2

]
≤ αn‖(λnxn)− p‖2 +(1−αn)‖xn− p‖2 +(1−αn)a(b−2α)‖Axn−Ap‖2.

Therefore, we have

(1−αn)a(2α−b)‖Axn−Ap‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn‖(λnxn)− p‖2.

Since, αn→ 0 as n→ ∞, inequality (3.6) and {xn} is bounded, we obtain

lim
n→∞
‖Axn−Ap‖2 = 0. (3.10)

By using inequality (2.1) and (3.1), we have

‖zn− p‖2 = ‖PK(I−θnA)xn−PK(I−θnA)p‖2

≤ 〈zn− p,PK(I−θnA)xn−PK(I−θnA)p〉

=
1
2

[
‖(I−θnA)xn− (I−θnA)p‖2 +‖zn− p‖2

− ‖(I−θnA)xn− (I−θnA)p− (zn− p)‖2
]

≤ 1
2

[
‖xn− p‖2 +‖zn− p‖2−‖xn− zn‖2 +2θn〈zn− p,Axn−Ap〉

− θn
2‖Axn−Ap‖2

]
.

So, we obtain

‖zn− p‖2 ≤ ‖xn− p‖2−‖xn− zn‖2 +2θn〈zn− p,Axn−Ap〉−θn
2‖Axn−Ap‖2,

and thus

‖xn+1− p‖2 ≤ αn‖(λnxn)− p‖2 +(1−αn)‖yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖zn− p‖2

≤ αn‖(λnxn)− p‖2 +‖xn− p‖2− (1−αn)‖xn− zn‖2− (1−αn)θn
2‖Axn−Ap‖2

+ 2θn(1−αn)〈zn− p,Axn−Ap〉.

Since, αn→ 0 as n→ ∞, inequalities (3.6) and (3.10), we obtain

lim
n→∞
‖xn− zn‖2 = 0. (3.11)
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Since H is reflexive and {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
{xnk} converges weakly to a in K and

limsup
n→+∞

〈x∗,x∗− xn〉= lim
k→+∞

〈x∗,x∗− xnk〉.

From (3.9) and I−T is demiclosed, we obtain a ∈ F(T ). Let us show a ∈ V I(K,A). Now, let
us introduce the multivalued map B : H→ 2H defined by:

Bz =
{

Az+NK(z), if z ∈ K,

/0, if z /∈ K,
(3.12)

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w,z− v〉 ≥ 0 ∀ v ∈ K}.

From Lemma 2.6, we have that B is maximal monotone and B−1(0) = V I(K,A). Let (u,v) ∈
G(A). Since v−Au ∈ NK(u) and zn ∈ K, we have

〈u− zn,v−Au〉 ≥ 0.

On other hand, from zn = PK(I−θnA)xn, we have 〈u− zn,zn− (I−θnA)xn〉 ≥ 0. Hence,

〈u− zn,
zn− xn

θn
+Axn〉 ≥ 0.

Therefore,

〈u− znk ,v〉 ≥ 〈u− znk ,Au〉

≥ 〈u− znk ,Au〉−〈u− znk ,
znk− xnk

θnk

+Axnk〉

≥ 〈u− znk ,Au−Aznk〉+ 〈u− znk ,Aznk−Axnk〉−〈u− znk ,
znk− xnk

θnk

〉

≥ 〈u− znk ,Aznk−Axnk〉−〈u− znk ,
znk− xnk

θnk

〉.

By using the fact that A is
1
α

Lipschitz, we have

〈u− znk ,v〉 ≥ −M
(‖znk− xnk‖

α
+
‖znk− xnk‖

a

)
,

where M is a positive constant such that supk≥1{‖u− znk‖} ≤M. Since znk ⇀ a, it follows from
(3.11) that 〈u− a,v〉 ≥ 0 as k→ ∞. Since B is maximal monotone, we have a ∈ B−1(0) and
a ∈V I(K,A). Therofore, a ∈ G. On other hand, using the fact that x∗ = PG(0), we have

limsup
n→+∞

〈x∗,x∗− xn〉 = lim
k→+∞

〈x∗,x∗− xnk〉

= 〈x∗,x∗−a)〉 ≤ 0.
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Finally, we show that xn→ x∗. From (3.1), we get that

‖xn+1− x∗‖2 = 〈xn+1− x∗,xn+1− x∗〉
= αnλn〈xn− x∗,xn+1− x∗〉+(1−λn)αn〈x∗,x∗− xn+1〉
+ (1−αn)〈yn− x∗,xn+1− x∗〉
≤ αnλn‖xn− x∗‖‖xn+1− x∗‖+(1−λn)αn〈x∗,x∗− xn+1〉
+ (1−αn)‖xn− x∗‖‖xn+1− x∗‖
≤ [1− (1−λn)αn]‖xn− x∗‖‖xn+1− x∗‖+(1−λn)αn〈x∗,x∗− xn+1〉

≤ 1− (1−λn)αn

2
(‖xn− x∗‖2 +‖xn+1− x∗‖2)+(1−λn)αn〈x∗,x∗− xn+1〉,

which implies that

‖xn+1− x∗‖2 ≤ [1− (1−λn)αn]‖xn− x∗‖+2(1−λn)αn〈x∗,x∗− xn+1〉.

We can check that all the assumptions of Lemma 2.4 are satisfied. Therefore, xn→ x∗.
Case 2. Assume that the sequence {‖xn− x∗‖} is not monotonically decreasing sequence.

Let Bn = ‖xn−x∗‖ and τ : N→N be a mapping for all n≥ n0 (for some n0 large enough) by
τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}. We have that τ is a non-decreasing sequence such that
τ(n)→ ∞ as n→ ∞ and Bτ(n) ≤ Bτ(n)+1 for n≥ n0. From (3.5), we have

(1−ατ(n))βτ(n)(1−βτ(n))‖zτ(n)− vτ(n)‖2 ≤ 2ατ(n)B→ 0 as n→ ∞.

Furthermore, we have
‖zτ(n)− vτ(n)‖→ 0 as n→ ∞.

Hence,

lim
n→∞

d
(

zτ(n),T zτ(n)

)
= 0. (3.13)

By same argument as in Case 1, we can show that xτ(n) converges weakly in H and limsup
n→+∞

〈x∗,x∗−

xτ(n)〉 ≤ 0. We have for all n≥ n0,

0≤ ‖xτ(n)+1− x∗‖2−‖xτ(n)− x∗‖2 ≤
(

1−λτ(n)

)
ατ(n)[−‖xτ(n)− x∗‖2 +2〈x∗,x∗− xτ(n)+1〉],

which implies that
‖xτ(n)− x∗‖2 ≤ 2〈x∗,x∗− xτ(n)+1〉.

Then,
lim
n→∞
‖xτ(n)− x∗‖2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.5, we conclude that

0≤ Bn ≤max{Bτ(n), Bτ(n)+1}= Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof. �
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We now apply Theorem 3.1 for finding a common element of the fixed point problem involv-
ing multivalued nonexpansive and the set of solutions of variational inequality problem without
the demiclosedness assumption.

Theorem 3.2. Let K be a nonempty, closed convex cone of a real Hilbert space H and A : K→H
be an α-inverse strongly monotone operator. Let T : K→CB(K) be a multivalued nonexpansive
mapping with convex-values such that G := F(T )∩V I(K,A) 6= /0 and T p = {p} ∀p ∈ G. Let
{xn} be a sequence defined as follows:

x0 ∈ K,

zn = PK(I−θnA)xn,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.14)

where {βn}, {λn}, {θn} and {αn} are sequences in (0,1) satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1 and
∞

∑
n=0

(1−λn)αn = ∞.

Then, the sequences {xn} and {zn} generated by (3.14) converge strongly to x∗ ∈ G, where
x∗ = PG(0), with PG the the metric projection from K onto G.

Proof. Since every multivalued nonexpansive mapping is multivalued quasi-nonexpansive, we
can obtain from Lemma 2.2 and Theorem 3.1 the desired theorem immediately. �

Remark 3.3. We assume that K is a cone. But, in some cases, for example, if K is the closed
unit ball, we can weaken this assumption to the following: λx ∈ K for all λ ∈ (0,1) and x ∈ K.

Therefore, our results can be used to approximate a common element of the set of fixed points
of multivalued quasi-nonexpansive mapping and the set of solutions of a variational inequality
problem from the closed unit ball to itself.

Corollary 3.4. Let H be a real Hilbert space and B be the closed unit ball of H. Let A : B→
H be an α-inverse strongly monotone operator. Let T : B→ CB(B) be a multivalued quasi-
nonexpansive mapping such that G := F(T )∩V I(K,A) 6= /0 and T p = {p} ∀p ∈G. Let {xn} be
a sequence defined as follows

x0 ∈ B,

zn = PK(I−θnA)xn,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.15)
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where {βn}, {λn}, {θn} and {αn} be sequences in (0,1) satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1 and
∞

∑
n=0

(1−λn)αn = ∞.

Assume that I−T are demiclosed at origin. Then, the sequences {xn} and {zn} generated by
(3.15) converge strongly to x∗ ∈ G, where x∗ = PG(0), with PG the the metric projection from K
onto G.

4. THE APPLICATION

In this section, we apply our main results for finding a common element of fixed points
problems involving multivalued quasi-nonexpansive mappings and optimization problems.

Problem 4.1. Let K be a nonempty, closed convex cone of a real Hilbert space H. We consider
the following minimization problem :

min
x∈K

f (x), (4.1)

where f be a continuously Fréchet differentiable, convex functional on K.

We denote the set of solutions of Problem (4.1) by Ω1.

Problem 4.2. Let K be a nonempty, closed convex cone of a real Hilbert space H. We consider
the following fixed point problem :

find x ∈ K such that x ∈ T x, (4.2)

where T : K→CB(K) be a multivalued quasi-nonexpansive mapping.

We denote the set of solutions of Problem (4.2) by Ω2.

Lemma 4.3. (Baillon and Haddad [1]) Let H be a real Hilbert space, f a continuously Fréchet
differentiable, convex functional on H and ∇ f the gradient of f . If ∇ f is 1

α
-Lipschitz continuous,

then ∇ f is α-inverse strongly monotone.

Remark 4.4. A necessary condition of optimality for a point x∗ ∈ K to be a solution of the
minimization problem (4.1) is that x∗ solves the following variational inequality problem:

〈∇ f (x∗), p− x∗〉 ≥ 0

for all p ∈ K.

Consequently, the following theorem can be obtained.

Theorem 4.5. Let K be a nonempty, closed convex cone of a real Hilbert space H and f : K→R
a continuously Fréchet differentiable, convex functional on K and ∇ f is 1

α
-Lipschitz continuous.

Let T : K→CB(K) be a multivalued quasi-nonexpansive mapping such that G := Ω1∩Ω2 6= /0
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and T p = {p} ∀p ∈ G. Let {xn} be a sequence defined as follows:

x0 ∈ K,

zn = PK(I−θn∇ f )xn,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(4.3)

where {βn}, {λn}, {θn} and {αn} be sequences in (0,1) satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1 and
∞

∑
n=0

(1−λn)αn = ∞.

Assume that I−T are demiclosed at origin. Then, the sequences {xn} and {zn} generated by
(4.3) converge strongly to common solution of Problem (4.1) and Problem (4.2).

Proof. Using properties of f , it follows by Lemma 4.3 ∇ f is α-inverse strongly monotone on
K onto H. Using Remark 4.4 the proof follows Theorem (3.1). �

Remark 4.6. By using relationship between inverse strongly monotone operators and strictly
pseudo-contractive operators and results of Takahashi [18]. Our results can be applied to the
cases : (1) Fixed points of strictly pseudo-contractive operators. (2) Solutions of complemen-
tarity problem.
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