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NEW EXACT SOLUTIONS OF FRACTIONAL BOUSSINESQ-LIKE EQUATIONS
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Abstract. Based on the improved sub-equation method, new exact solutions to a class of fractional
Boussinesq-like equations in the sense of modified Riemann-Liouville derivative are obtained. The exact
solutions include traveling wave solutions, soliton solutions and complex solutions.
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1. INTRODUCTION

Fractional derivatives and integrals for functions are considered to be a generalization of the
derivative and integral of traditional integer order. They are important in the real world. For
example, fractional derivatives and integrals for functions are extensively used in the fields of
mathematics, pharmacology, biotechnology, materials science and electrodynamics, in particu-
lar, in the fields of fluid mechanics; see, e.g., [1, 2]. There many nonlinear phenomena, which
can be described by fractional mathematics and equations. Therefore, it is important to develop
new methods to solve fractional equations. For many years, researchers have focused on finding
new methods to solve fractional differential equations, and they have found a number of new
methods, which are very effective to solve fractional equation questions; see, e.g., [3, 4, 5, 6].
For example, the exponential rational function method [7] was used to obtain the new exact
solutions of mathematical, physical and engineering problems. The first integral method was
used in Boussinesq-like equations [8]. For other methods, we refer to Ansatz method, mod-
ified Kudryashov method, generalized Kudryashov method, generalized Mittag-Leffler func-
tion method, Jacobi elliptic equation method, fractional series expansion method, Chebyshev
wavelet method, Taylor expansion method, discontinuous Galerkin method, boundary parti-
cle method, collocation method, monotone iterative method, homotopy perturbation method,
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modified simple equation method, and local discontinuous Galerkin method. Among all these
methods, the improved sub-equation method has more advantages than the numerical, approxi-
mate analytical and semi numerical methods. By using the improved sub-equation method, we
can obtain exact solutions for a wide range of nonlinear problems of fractional and integer order
equations. The Boussinesq type equation (Boussinesq type equation) is often used to simulate
the movement of water waves on shallow water coasts or ports. The Boussinesq-Like equations
usually model a physical problem as a long wave equation. They are applied in nonlinear water
model of wave and ocean engineering.

There are four different types of Boussinesq-Like equations [9, 10, 11]. They are the frac-
tional variable-coefficient Boussinesq-Like equation (1.1), the fractional Boussinesq-Like equa-
tion with spatio-temporal dispersion (1.2), (1.3) and the fractional Boussinesq-Like equation
with linear instability (1.4)

D2%u—D?Pu+0D?P (1) + D _u=0, (1.1)
D2%u— Dy — DP(612DPu) — D24 Py =0, (1.2)
D2%u—D%Fy— pP(6u?DPu)y— D%3Pu =0, (1.3)
and
D2%u—DP(6u*DPu) — D¥_u =0, (1.4)

where 0 < o, B < 1, D%(u) represents ¢ order modified Riemann-Liouville fractional deriva-

tion of the function, which depends on the depth of the fluid and the velocity of the long wave,
2 2 4

D} = DE(Dftu), Dk u = D (DYu), DI (u?) = DY (D (u?)), Db = DF (DL (DX (DR w))),

Dﬁglﬂﬁ u = D¥(D¥ (DE (ch3 u))). In this paper, by using the improved sub-equation method, we

obtain some new exact solutions for these four different types of Boussinesq-Like equations.

2. THE IMPROVED SUB-EQUATION METHOD

2.1. The modified Riemann-Liouville derivative. Recently, Jumarie [12] proposed a mod-
ification of the Riemann-Liouville definition to deal with non-differentiable functions. The
modified Riemann-Liouville derivative satisfies the chain rule, and the derivative of order o for
a function f (x) is defined as

'n J6-0 @ -s0ldE a<o
DIF)Y it %f( _E) Y [FE) - FO)dE,  O<a<]
\ |:f(a—n)(x)i|(n), n<o<n+l,n>1

where the function f (x) is continuous and derivable, n € Z.
Some useful properties of the modified Riemann-Liouville derivative are presented as follows

Fy+1) 4y«
I(y+1—-a) ’
DY [f(x)g(x)] = g(X)D“f( )+ f(x)D{g(x),
DY f[g(x)] = f¢ [8(x)] Dg(x) = Dg f [8(x)] (g1)*,
where 0 < a <1,y>0.

D%x¥ =
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2.2. Improved sub-equation method for fractional differential equations. Consider the fol-
lowing fractional partial differential equation

P(qu%@Dmegu,u)::o @.1)

where x,y,t are independent variables, 0 < o, 3,7 < 1, u = u (x,y,t) represents an unknown
function and polynomial P includes u,u?,--- and their partial fractional derivatives, and D% ()
represents the modified Riemann-Liouville fractional order derivation.

First, we use the appropriate fractional complex transformation

u(x,y,t) = u(§), (2.2)
& =2E(xy1), (2.3)
and
xP 1
gzknﬁ+n_lna+n 24

Equation (2.1) is transformed by (2.2)-(2.4) into the linear ordinary differential equation (ODE)
as follows F (u,u’,u” ,u",...) = 0.
Next, we suppose that the solution of the equation is in the following form

m m
u(&) =Y aq@ +Y po* (2.5)
k=0 k=1
In this process, constants ai,bi(k € N) will be determined. m is a positive integer and it is
obtained by using the homogeneous balance of the highest order derivative and the nonlinear
term. Function @ = ®(&) is the solution of Riccati equation

P'(&) =r+pP(&) +qP*(£). (2.6)

Next, we use equations (2.5) and (2.6) to obtain a new equation in terms of ®. The new
equation is arranged as a power of ®X(k € Z), and next set all the coefficients of ®* to zero.

Now, we are in a position to solve the algebraic equation. Substitute the ay,bi(k € N) to
equation (2.5). We use the improved sub-equation method and the chain rule of the modified
Riemann-Liouville derivative to obtain the following particular solution.

The solutions of the Riccati equation (2.6) are the follows.

1. If p, r and g # 0, then 2.6) has the following solutions
=—7+ %tan(’% +0),
=—L écot(% +0O),

(&)
§)=-£-2
(&)
(&)

VP —4gr,  p*—dqr>0
in/—p*+4qgr, p*—4qr<0
2. If p#0, r+# 0 and g = 0, then 2.6) has the following solution

—cers - L.
D() =Ce? p

where A = and C is constant.
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3. If p=0, r+#0and g # 0, then 2.6) has the following solution

-
®(6) = |/ (72 )
4.1f p#0, r =0 and g # 0, then 2.6) has the following solution

o p
)= e

3. APPLICATIONS

In this section, we describe the applications of the improved sub-equation method to frac-
tional Boussinesq-Like equations.

3.1. Fractional variable-coefficient Boussinesq-like equation. Fractional variable-coefficient
Boussinesq-Like equation of the form (1.1) is converted into the following ODE by the formula
(2.2)to (2.4)

12y — 12y + sz(uz)” + (x)k4u(4) —-0.

We integrate the equation twice (nelecting constant of integration) and obtain

(I —k*)u+ 0k*u* + wk*u" = 0. (3.1)
The solution of equation (3.1) is as (2.5)
b b
u(ﬁ):ao—I—al(I)—i-azCI)z-i-é +322' (3.2)

We substitute equation (3.2) together with its derivatives into equation (3.1). The algebraic
equation is arranged according to the powers of the function ®*. Thus, we obtain the following
coefficients of @

DV : ay prok* + 2a,r? 0k* 4 by pgok* + 2brq* wk* + 0k*ag? +20k*a by +20k*arb;
— k2 ag+ Pa,

@' : wk*a; p? +20k*a1gr+ 6ayprok* +20k*aga; +20k*aby — kay + 1%ay,

P2 . 3a1pqwk4 + 4a)k4a2p2 + 8wk* a)qr+ 20k*agas + 0k*a > — k*ay + %ay,

@3 2wk*a;g* + 10ay pgok* +20k*a;as,

&t : 6wk* arg® + 0k*ar?,

&1 wk*by p? 4 20k*b rp + 6bypqwk* +20k>agby +20k*a by — kb + 12y,

&2 : 3b, prok* +40k*byp* + 8wk* byrg + 20k>agb, + 0k*b1> — kK2 by + 12Dy,

O3 : 2b1 2 wk* + 10by prok* +20k%bsby,

O : 6byr? wk* 4 0k%by>.

Letting the coefficients of @ be zero, we have that ag, aj, by, p, q, 1, k, | can be solved and
the solutions of equation (1.1) can be obtained.

272
L ag=dao, ay =0,a,=0,b; = £XA3C p, = 607K 4 —j | =] p=F¥39 =T r=

>
r, where 6 = I* —2ag0k*> — k>, 1 = 12+a09k2—k2,6'={ o<

iv/—o,0<0’

@ — V2on—+o, 2on+0c >0
iv—20on—-o0,20n+0c<0
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It follows that

up g (x,1) = 29"73&3 +‘—| (g/‘glﬁé +0)) ' - 23)122@5— z‘(z)(‘b tan(g/‘zﬁi +0)) 72,

1200) = 7 (0 10 cor (YO8 4 )1 - 20T (764 100 o (VRIS )2

up 3(x,1) = 29’}5(1 —%tanh(%—l—C))_l—z;’—gz(:Fé%— o h(6\/|_TI§Z+C)) ,

and

() = 291(27(1 |6)|cth(6\/|_|]fz+C))_1—22)—122(:F6+T)w&|)coth(6\/|z?§2+C))_2
2. ap=ag, a1 =0,a,=0,b; = £ 223 p) = 6O j—f =] p=F¥39 5= WO

©? iv—0,0<0”’

o4 VN 20n+to=>0
| ivV=Nn,20m+0<0

>
r, where o= 3k? — 312 — 2q00k%, 1 = 20000 & _ { Vo020

Hence,
& 3idd 2200 3idd
up(x,1) = :F2aoc_7(i5 +i®tan(% +0) - %T(:FG — iow® tan( \/;;2 : +C))72,
¢ 3id 2’ w6 3id
up2(x,1) = :F2a06(i% — i@cot(% +o)) -2 S (F6+ im@cot(% +C))72,
G 30 2200 30
up3(x,1) = :F26105(i”5 — (Dtanh(% +0)) - %T($6 + w&)tanh(% +C))72,
and
G 30 2200 3@
up 4(x,t) = :F2a06(i5 — (Z)coth(\/;kzé +0)) - % 5 ($6+w(1)c0th(\/6_k2§ +C))7?
2_12 4 ~1272 74
3. ag =l ar = 0,m =~ by =0,y = 2D = 1,p=0,g=
I o
7= "Tewkiq”
2_p2 4 ~1212 74
4 ag =Yy = 0,00 = — %L by = 0,by = 2L ki =1, p=0,q=
>
q,r = 115@/{4 .Leto = —kz—l ,and 6 = { i\/\/—g_c;cc_<00 . It follows that
K12 3(k*—1%) ¢ 3(k* —1?) ¢
1) = t C))?+—=——(t +C
and
3(k2—1%)  3(k*—1?) GE 3(k> —1%) 6¢&
- )+t +C
() = =g+ = g (an(g5 + O+ =g (tan( + )
5. ag= —BOPHEL [ _opal S0P 0 by 0k =k I=1,p=p,q=

) e
DT = T a0ktq
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6. ap = WP LT ) — _S0pak ) _SOFK by =0k =k, I=1,p=p,q=
q,r = %. Let G:% —p?,and 6 = { l\/\/—;666><0() . It follows that

s, 1 (x,1) = —2OKPEL S0P (4 Gtan(%F +C)) — 322 (—p+ G tan(%E +C))2,

s o (x, 1) = — 2L HEL  30PE () G oot(% +C)) — 28 (—p— Geo(F +C))?,

us3(x,1) = —3(”"45;‘,:2]‘2_12 — 3“’ng (—p— zétanh(% +C))— 325 (—p— zGtanh(T‘g +0))?,

s a(x,1) = —3KPHEL_30p% (i coth(1SE +C)) — 39K (—p —iG coth(15E +C))2,

g (x,1) = 2O 30 (1, L tan(9E +C)) — 32 (—p+ G tan(SE +C))2,

g 25, 1) = 2L L) 3008 () Gcot( % +-C)) - 0y seo(% 4C)

ue3(x,t) = 3(7wk;1;2];k2712) — 3wgk2( —p— thanh(% +C))— %(—p — thanh(% +0))?,

g .4(x,1) = 2EOEPHE) 300 (i coth(195 +C)) — 39K (—p — 6 coth (5 +C))2,

which & = ]Zixil) F(Zil) , Orwk £ 0. We obtain eighteen forms of solutions in this section,

and all of them are exact traveling wave solutions and complex solutions. The multiple soliton
solutions include u; 3,u; 4,i = 1,2,5,6.

3.2. The first fractional Boussinesq-Like equation with spatio-temporal dispersion. The
first fractional Boussinesq-Like equation with spatio-temporal dispersion of form (1.2) is con-
verted into the following ODE by the formula (2.2) to (2.4)

Pu" — k(" + 120 + 6u2u") — K2 12u™ = 0. (3.3)
The solution of equation (3.3) is the form (2.5). We obtain the solution of equation (3.3) as
b
u(g):a0+a1q>+é. (3.4)

We substitute equation (3.4) together with its necessary derivatives into equation (3.3). The
equation is arranged according to the powers of the function ®*. Thus, we obtain the following
coefficients of ®F
@Y —a KPP pPr—8aik* 1P pgr? — bk 12 pPq — 8 b1k*1? pgPr — 6ay*a k* pr — 6ay’b1k* pg
— 12apa2k*r* — 12a0b12k2q2 — 6a12b1k2pr — 6a1b12k2pq — alkzpr + allzpr — blkzpq
+ bllzp(L
®! . —a1k212p4 —22 alkzlzpzqr — 16a1k212q2r2 —6 a02a1k2p2 — 12a02a1k2qr
—36aga k> pr — 12a3k*r? — 6a1>b1k*p? — 12a,%b1k>qr — a1 k> p* — 2a1k>qr + a1 1% p?
+ 2a|lqu",
@2 : —15a1k*1>p>q — 60 a1 k> 12q*r — 18ag’ar1k* pg — 24 agai*k? p* — 48 aga>k*qr
—30a°k>pr —18a12b1k* pg — 3a1 k> pg + 31%a1 pq,
D3 —50a1k*12p*q* — 40 a1 k* 12 gPr — 12a0%a1k*q* — 60 agai*k* pg — 18 a1 k*p?

—36a13k*qr — 12a1*b1 k> ¢* — 2a1k*q* + 21%a, 42,
4 . —60k%1%a; pg® — 36apai*k>q> — 42a,°k? pq,
P —24k212a1q4 — 24k2a13q2,
O —b K212 p* — 22 b1 K21 pPgr — 16b1K* 12 g7 r* — 6 ag?b1k*p? — 12 ay? bik*qr
—36agb; 2k pg — 6a1 b1 2k p? — 12a1b12k2qr — 12b3 k3¢ — b1 k2 p? — 2b k2 qr + b 2 p?
‘|‘2b112qr7
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D2 —15b1 K212 pPr — 60 b1 K212 pgr® — 18ag?bik*pr — 24 agb1*k% p? — 48 apb, *k3qr
—18a1b1*k2pr —30b,° k2 pg — 3b k2 pr+ 312byrp,
D31 =501 K212 p2r2 — 40 b K12 g — 12a02b1k2r — 60 agb >k pr — 12a; b1 k312
—18b13 k2 p? — 36b13 K2 gr — 2b 1 k2% + 21%b, 12,
D —60k%1%b 1P p — 36a0 b1 *k2r? — 42b K2 pr,
D5 24K 1%yt — 24 K212
Letting the coefficients of ®* be zero, we have that ag, a1, b1, p, g, r, k, is solvable, and the
solutions of equation (1.2) are obtainable.
l.ag=F%, a1 =0,by ==irl,k=k,l=1,p=p,q= %,r: r, where
iPKAp? —2k2 4217
N 21k2 ’

/12_k2 lz_kz
12k2 0 [2k2 207

. 127k2 127k2
l\/ TREZ O T I2R2 <0.

V26¢&
2

and

Qi
Il

It follows that

w1 (x,1) = FL + 6(—p+V26tan( +0))!

2i

V25 o)

V2i6E
2

o (x,r) = ;% +0(—p—/26cot(

w1 3(x,1) zipgic(—p—\/iiétanh( +C))!
l

and

V2i6 _
5 é+c>) !
2R p2—2k2 4212
412gk?

ui 4(x,t) = $2£i + 6(—p — V26 coth(

2. aOZZ':%a a) = xigl,by =0,k=k,l=1,p=p,q=q,r =

[2—k2 1>—k?
12k2 12k2 >O
. 12—k2 12 k2
l\/ TREZ T I2R2 <0.

_'pl n \/izlo-mn(\/icé n
2i 2 2
p—pl _V2il6  \26E
> T 3 cot( > +C
p—pl V26 \2i ¢ .

n h
2 5 tanh(—

= 26 2i6
P 2.pl + \/;ZG coth( \/_;G(é +0).
i

3.a0=F%, a1 =0,b) = +irl,k ==+l ﬁzlﬂ,l:l,p:p,q:o,r:r, 2 > [?p?. Hence,

w31 (x,0) = FL £irl(CeP s — L)yl =+4 +irl(CePS — £y,

, Where

Qi
Il

It follows that

uy 1 (x,t)="7F

upo(x,t)="7F

u3(x,t)="7F

and

u 4(x,t)="7F
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4. a0 =F%, ay = tigl,by =0,k = £I I=1,p=p,q=q,r=0, 2>[>p* On the

2— 12 29
p ilgp
+C -5 :Fz_i:t—q—i-Ce*Pé
5. ap =0, a = +igl,b; = i? K k=kl=1p=0,qg=qr= éq;;fz Vb2~ 4ac, where
_ 72 _ 12 &= _ \/E,GZO
o=Il"—k ,G—{ iV/=0.0 <0. We also have

other hand, we have uy | (x,1) = T4 L igl—

V2i6  V/26& V26 \/26¢
)=+ ¢ C)+ t
us1(x,1) an( T )E= i ol 4Kl]

4k o) -

K2 p2—2k2 4212 U2 212 —12k2 p?
6. aO_:F27a1 ilCll by = iWJ{:kal:lap:p’q:qar:W’

W2 IPRY o { V0,0 >0,
W2 3K 5

where o= . Note that
212k iv/—0,0<0.

T e R R
o) =P P 1 o8 0 PP (T2 o)
u673(x,t)=iplz_l :l:7 h(%%-c)ilzkzpzégliljj%ﬂ(—l’—iétanh($+C))_1
and
e a(5,1) = P12 2 h(lzé C):I:lzkzpzégli];uzlz(—p—iécoth(g+C))1

where & = F(][C}xil) — F(Zil)’ Irkq # 0. We obtain fifteen forms of solutions in this section,

and all of them are exact traveling wave solutions and complex solutions. The soliton solutions
include u; 3,u;4,i=1,2,6.

3.3. The second fractional Boussinesq-like equation with spatio-temporal dispersion. The
second fractional Boussinesq-Like equation with spatio-temporal dispersion of form (1.3) is
converted into the following ODE by the formula (2.2) to (2.4)

P + lku — (12uu? + 66*u" )i + K3 1™ = 0. (3.5)

The solution of equation (3.5) is the form (2.5)

u(ﬁ):ao—kalqﬂ—%. (3.6)

We substitute equation (3.6) together with its necessary derivatives into equation (3.5), and the
equation is arranged according to the powers of the function ®X. Thus, we obtain the following
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coefficients of ®*
@Y : a1 1p3r+8ai kP ipgr? + biiP1p g+ 8 bl pg*r — 6ag>a1k* pr — 6ay*b1 k> pg — 12ag
a2kt — 12a0b12k2q2 - 6a12b1k2pr - 6a1b12k2pq +a klpr+ allzpr—i— biklpg + bllzpq
D' a1 BIp* +22 a1 I p*gr + 16a1k31g7r* — 6 ag®a1k*p? — 12ap*a k> qr — 36aga, *k* pr
p Pq q p q p
— 12a°k?r? — 6a1%b k% p* — 12a1°b1k>qr + a1kl p? + 2aklgr + a1 1% p* + 2a,%qr
@2 : 150131 p3 g+ 60 a1 k3L pg*r — 18ag’a1k? pg — 24 apa*k? p* — 48 apa *k*qr — 30a;>
k>pr —18a1*b1k*pg — 3a\lkpq + 31%a1 pg
305001131 p*g? +40 a1k 1g r — 12a0%a1k*>q* — 60 aga >k pg — 18 ai>k? p* — 36a,k?
gr — 12a,*b1k*¢? + 2lkayg* + 21%a; ¢*
®* 1 60k la) pqg® — 36aga;*k>q* — 42a13k* pq
D :24k31a,q* —24k*a 3 ¢?
O b IBIp* 422 b1 I3 1p2gr + 16b1K316% 12 — 6 ay*bik2p* — 12 ag? bik2qr — 36apb1 >k pg
—6a1b1 k> p? — 12a1b1*k>qr — 12b1°K2q* 4 bkl p? + 2byklgr + by *p* +2bPqr
D 2: 150,131 p3r + 60 b1 k31 pgr® — 18agbik*pr — 24 agh *k*p* — 48 agb > k2qr
— 18a1b1 2k pr —30b1°k* pg + 3by lkpr +31%byrp
D3 5061131 p%r2 +40 b1 K3 1gr — 12a0*b1k*r* — 60 agb 2k2 pr — 12a1 b, k%> — 18b,3 k2
p? —36b,°k2gr +2by1kr? + 212b;
D4 : 60k31b1 3 p — 36agb; 2k3rt — 42b 3K pr
D51 24b1 K31t — 24 K212

Let the coefficients of ®F be zero. Then ag, a1, by, p, q, 1, k, [ are solvable and the solutions
of equation (1.3) can be obtained.

1. ap= i%ﬁ, ay=0,by = £r|Vikk=kl=1,p=p,q= —_p2k3+2k+2l,r = r, where

a3y
22— pPIVIE o { V0,0>0
6=

k+1— p n= )
’ 243 iv/—0,0<0

o=

Hence, we have

upy (x,1) = iiin( +\/§6tan(\/§26§ +C))!
w2 () = ii_in( ﬁ&cot(\/iaé L))
un3(xt) = iﬂi n(- p—\/iiatanh<*/§f‘5 L))
ura(xf) = iiin( p—\/iiécoth(\/iééé +o))!

214 2 2 2
2. ao:i%ﬁ,alzim\/_,bl:o,k:k,lzl,p:p’q:qﬂ,_ —pkq;r]j/;q +2a,? . where

oo k=P s Vo,0>0
kB T T iy/-0,0<0
If g > 0, then
V20ko 26
u21(x,t):i tan(\/_ 5—|-C),
' 2 2
V20ko 20
u272(x,t) =F > CO'[(\/_2 5 +C),
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\/ZZkZGt N V2i6E N

u273(x,t)::|2 2 an ( 3 C),
and
vV 20kio 2i6
upa(x,t) =F 21 coth(\/—; é—i—C).
If g <0, then
\/21 o 20
us(x,1) = +pVIk T tan (\/_2 °10),
ZZkG 20
a6 (x,1) = pVik (f2§+6),
vV 20ki6 2i0
ur7(x,1) = £pVik+ > ad tanh(\/_;jé +0C),
and
V21kiG 2i0
up g(x,1) = £pVik+ > ad coth(\/_;(yé +0C).
2,42 2.2 2
3. ag =225, ay =+ |g| Vik by = £ VP j g 1= p=p g =g =—TECE T
Cog2-3p23 - | V0,020
where o="——7"— ,0'—{ iW=0.0<0 "
If g > 0, then
5 6 12k +21 — p*k> ___ & _
i) = £V (T8 ) £ VKA AZDH (L ian(T2 4 0
2 4k 2
Vike  6& Vik2k+21 — p?k3 . &¢& .
uzo(x,1) = $T cot(T +0)+ 0 (—p— Gcot(T +0))
Vikic zag VIk2k+21 — p?k3 . i6E .
u33(x,1) = F—— tanh(—= +C) £ 0 (=p—iGtanh(—=+C))",
and
VIikiG 5 VIk2k + 21 — pk3 . i6& .
uza(x,t) =F > coth( > +C)+ yTE (—p—lGCOth(T—i—C)) .
If ¢ <0, then
\/_' VIkR2k +21 — p*i3 ___ & _
s 5(5) = (%2 10)2 LK Cproan(EE 40!
4k 2
k6 6 12k +21 — p*k> &
u3,6(x,t):ip\/ﬁ<iLcot(7€+C)i\/_ —Zk3 P (—p—&cot(é#—C))_I
kiG & k2k + 21 — p*i - & _
uz7(x,1) = ip\/_i\/_l h(lzé—kC)i\/_ pYE P (—p—l(itanh(%—kC))1



NEW EXACT SOLUTIONS OF FRACTIONAL BOUSSINESQ-LIKE EQUATIONS 11

and

(—p— i(icoth(% +o)nt.

. = . = 2 2] — 213
us g(x,1) = £pVik+ \/?Gcoth(“;5 +C)i\/l_k ka; rk

4. ayp=0,a; = £|q|Vik,by = Y p — k| =1 p=0,g=q,r = —X5L where 6 =

8k3q 8k3q°
k+l k+1
JEL KL >0
.|kl kL '
i 3 <0

Hence,
o | O . . l /| o .
u47|(x,t) = +j gtal’l( @l&‘f—C):l:lG mcot( @lé —|—C) y
where & = F(]E‘ﬁl) — F(Zil), krq # 0, Ik > 0. We obtain twenty-one forms of solutions in this

section, all of them are exact traveling wave solutions and complex solutions. The soliton
solutions include uy j,uz j,u3 j,j = 3,4,7,8.

3.4. Fractional Boussinesq-Like equations with linear instability. The fractional Boussinesq-
Like equation with linear instability of form (1.4) is converted into the following ODE

Pu" + tk — k(120 + 6u2u") — kK*u®) = 0. (3.7)

We obtain the solution of equation (3.7) as

b
u(é):ao-l-alcb-ké

Thus we obtain the following coefficients of &

0 a iPpr+ 8a1k3lpqr2 + b1k3lp3q +8 b1k3lpq2r —6ap’a1k*pr— 6a02b1k2pq —12apa;?
- K2r? — 12agb1 k2% — 6a12b1 k2 pr — 6a1 b1 2k pg + a1kl pr + a1 2 pr+ b1 kipg + b112pg

®! . a1k3lp4 +22 a1k3lp2qr+ 16a1k3lq2r2 -6 a02a1k2p2 — 12a02a1k2qr — 36a0a12k2pr
— 12a3k%r? — 6a1%b 1 k> p* — 12a,°b1k*qr + a ki p* + 2aklgr + a1 1% p* + 2a, % qr

@2 : 150131 p3 g+ 60 a1 K> Lpg*r — 18aga1k? pq — 24 apa,*k? p* — 48 agai > k*qr — 30a >k pr
— 18a1°b1k*pq — 3ailkpg + 31%ai pq

@3 : 504,31 p*g* +40 a1kl r — 12ap%a1k>q* — 60 agai>k* pg — 18 a>k? p* — 36a°k>gr
— 12a%b1k*q* + 2lkagq® + 21%a1 4>

®* 1 60k’ la; pqg® — 36aga kg — 42a°k? pq

D3 :24k31a,q* —24k*a 3 ¢?

O b IIp* 422 b1 112 gr + 16b1K316% 12 — 6 ay*bik2p* — 12 ag? bik2qr — 36apb1 >k pg
—6a1b1 k> p? — 12a1b1*k2qr — 12b13k2q* + bkl p? +2byklgr + by P p? +2b,%gr

D 2: 150,131 p3r + 60 b1 k31 pgr® — 18agbik*pr — 24 agh *k*p* — 48 agb, 2 k*qr — 18a1b1%k

O3 506131 p% 2 + 40 b1 K lgr’ — 12a0%b1k*r* — 60 agb 2k2pr — 12a1b, 2k r* — 18b, 3 k2 p?
—36b13K2qr + 2By ki + 2120112 pr— 30b, 3k pg + 3by lkpr + 312by rp

D4 60k31b 3 p — 36a9 b 2k*rr — 42b 3K pr

D31 24b1 K31 — 24 K212

Let the coefficients of ®F be zero. Then ag, a1, by, p, q, 1, k, [ are solvable and the solutions
of equation (1.4) can be obtainable.
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1. ap= :F%, ar=0,by =xirk,k=k,l=1,p=p,q= %W,r: r, where
ikt p? 42kl + 212
N 2k3 '
. 4 2 2
2.ao::|:%,a1:j:zqk,b1 0,k=k,l=1,p=p,gq=q,r %.
4,2 2 4.2 2
3. a0 =¥, a1 = tigk,by = £ = k1 = 1,p = p,q = q,r = —FLLZ
3K PPkl - _J vn,m=0 o VKl +12, kl+1*>0
Ifn >0,ki+1>>0, then
kp V20  \20E
u],](xﬂt) :le :l: ( + k2 tan( 2k2 C)) ’
kp V2@ V2@0E
u2(x.0) = Fop £ 0(—p— 52 cot(Vo 5= +0) 7
kp V2id \/_10)5
kp V2i® V2idE
u174(x,t):qigzl:6(—p— 2 coth( Y5 +0)7 L,
V2i® 2®
uzjl(x,t) =4 K tan( Zkzé C),
V2id 2@
uzjz(x,l‘) =F T cot( Zkzg +0),
V2@ V2idE
u273(x,t) =+ % tanh ( e C),
V2@ V2idE
u2,4(x,t) =+ % coth ( 2 C),
i && k*p? + 2kl + 212 G ¢ .
t)=1+—t C)) =+ t C
us.1(x,t) % an(2k2—|— ) pE p—i—k an(2k2—|— )
i &6¢& k*p? 4 2kl + 217 G O
= C))+ — t +C
132 (%) ¢2kcot(2k2+ ) R p—iz etz +0) 7,
Gi& k*p? + 2kl + 217 i i .
=+ C))+ — — tanh C
uz 3(x,1) :I:Zkta h(2k2—|— ) o p— 7 tan (2k2+ ),
and
(er) = .0 th( Gi& +C))i_k4p2+2kl+2lz choth( iG Loy
u34(1) = 5 cothln 4ik3 P )
4. ag=FE\ /51, a1 =0,by =+irkk=k, 1 =1,p=+Y=2L=K 4 =0, r=r, P+k <0.
Note that
1 [—12—kl | VAT ETTIN N
u471(x,t):iE > +irk(Ce™ @ —;) .

5.a0=FV"LM, ay = +igk,by =0,k =k, [ =1,p=+Y=L=M =g r=0, P+k <0.
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On the other hand, we have
—212 -2kl n igV/—21% — 2kl

u5,1(x7t) =+ ki mg .
k(—g+Ce™ & %)

6. ao =0, a1 = *igk,by = £4 8 k= k1 = 1,p = 0,g = g,r = ", where o=10g1,
5— Vo,60>0

T ivV/=0,0<0

Note that 5 o

U1 (x,1) = :I:kotan(p +C)+ o Cot(F +0),

where & = ke Lo , krg # 0, lk > 0. We obtain fifteen forms of solutions in this

: T(B+1)  T(a+l)’
section, all of them are exact traveling wave solutions and complex solutions. The soliton
solutions include uy j,uz j,u3 j,j = 3,4..

4. FIGURES OF THE SOLUTIONS

In this section, we show some typical visualize solutions as follows.

FIGURE 1. usy of FIGURE 2.  us) of
equation (1.1) equation (1.1)

Figure 1 and Figure 2 present the exact traveling wave solutions us 1,us > of fractional variable-
coefficient Boussinesq-like equation. The uniform assignment of the variable of solutions
us,us2 is k=2l =w=mn=a =P = 1,c = p =0. The interval of solutions us 1,us >
designated as x € [0,10], ¢ € [0,10]. From the function of us,us, , we get that the solu-
tions us 1,us are periodic functions. Substituting the given value into usi,us» , we get

sy = —3— %{tan [%(%)} }2, Usy = —3+ 2{cot [ﬁ(%)] }2 . The period of the func-

4ﬁn 2\/§

tions us 1, us » with respect to the variable x is fx — 7, then us | — oo, and r — 4‘[ g

us ) — oo If x € [0, % m], then us 1,us > decrease as the increases of x. If ¢ € |0, % ], then
us 1 and us 5 increase as the increases of 7. Here, we let the other variable to zero avoid difficult
computation.
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FIGURE 3. upy of FIGURE 4. upp of
equation (1.3) equation (1.3)

FIGURE 5. up1 of FIGURE 6. upp of
equation (1.3) equation (1.3)
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FIGURE 7. uzy of FIGURE 8. uzp of
equation (1.3) equation (1.3)

Figures 3-8 present the exact traveling wave solutions from u; 1,u; (i = 1,2,3) of the sec-
ond fractional Boussinesg-like equation with spatio-temporal dispersion. The uniform assign-
ment of the variable of solutions u; j,u;2(i=1,2,3)isk=1l=p=oa=f=1,c=0. The
interval of solutions u; 1,u;2(i = 1,2,3) designated as x € [0,10], 7 € [0,10]. From the func-
tion of u; 1,u;2(i = 1,2, 3), we get that the solutions are periodic functions. Substituting the

3 1
, Ul = 5+
2{—1+ﬁtan{\@(;(g))” 2

. The period of the functions uy 1,u; > with respect to the variable x
)}

given value into u; 1,u;2(i = 1,2,3), we get uj | = %—k

2{—1—\500?[@(?2’)

is /2. When x — gn,t — gn ui1,ur2 — % When x € [0, 4%], ui1,u; 2 decrease as the

increases of x. When ¢ € [0, \/Tiﬂ] , u1,1,u1 2 Increase as the increases of ¢ . Here, we let the
other variable to zero avoid difficult computation.

FIGURE 9. us3z of FIGURE 10. us4 of
equation (1.1) equation (1.1)
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Figure 9 and Figure 10 present the multiple soliton solutions from us 3,us 4 of the fractional
variable-coefficient Boussinesq-like equation. The uniform assignment of the variable of so-
lutions us3,us4isl=2,k=w=n=0a = = 1,c = p = 0. the interval designated as x €

2
[0,10],¢ € [0, 10]. Substitute the given value into us 3,us 4 , we get us3 = —3 + 3 {tanh [\/Tg(xrg)t )] } )

2
us g4 = —% + %{COth [@(i&zzz)t)} } . When x — oot — o0 us3,us4 — 3 ,When x — 0, — 0
us4 — oo. When x € [0,+00) , us 3 increases as the increases of x . and us 4 decreases as the
increases of x. Here, we let the other variable to zero avoid difficult computation. The solutions

of us 3,us 4 are original symmetry.

FIGURE 11. up7 of FIGURE 12. upg of
equation (1.3) equation (1.3)

Figure 11 and Figure 12 present the multiple soliton solutions from u; 3,u5 4 of the second
fractional Boussinesq-Like equation with spatio-temporal dispersion, The uniform assignment
of the variable of solutions u3,uz4 isk=I[1=o = =1,p=2,c =0. Substitute the given
value into us 3,up 4, We get uy 3 = —tanh(?(—’zt)) L Upa = —coth(li‘(—’zt)) . When x — oo, — o0
up3,up4 — |1]. ,When x — 0, — 0 up 4 — oo. \When x € [0,+o0) , up 3 decreases as the
increases of x and u, g increases as the increases of x . Here, we let the other variable to zero
avoid difficult computation. The solutions of u5 3,u; 4 are original symmetry.

5. CONCLUDING REMARK

By using the improved sub-equation method, which is based on a complex transform u(x,y,7) =
u(&),& = &(x,y,t), and the chain rule, we converted the nonlinear fractional differential equa-
tions with the modified Riemann-Liouville derivative into Riccati equations. Solving the cor-
respondence Riccati equations, we can find the exact analytical solutions, including wave solu-
tions, soliton solutions and complex solutions, of some Boussinesq-Like equations.

The improved sub-equation method overcomes the weakness of numerical, approximate an-
alytical and semi numerical methods. It can be applicable to long wave equations such as the
generalized regularized long wave equation, time fractional dispersive long-wave equation and
the dispersive long wave equation.
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