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ASYMPTOTIC INERTIAL SUBGRADIENT EXTRAGRADIENT APPROACH FOR
PSEUDOMONOTONE VARIATIONAL INEQUALITIES WITH FIXED POINT

CONSTRAINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

LU-CHUAN CENG

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Abstract. In this paper, we introduce asymptotic inertial subgradient extragradient algorithms with a line-search
process for solving a variational inequality problem (VIP) with pseudomonotone and Lipschitz continuous map-
pings and a common fixed-point problem (CFPP) of an asymptotically nonexpansive mapping and a strictly pseu-
docontractive mapping in a real Hilbert space. The proposed algorithms are based on the inertial subgradient
extragradient method with a line-search process, hybrid steepest-descent methods, viscosity approximation meth-
ods, Mann iteration methods and asymptotically nonexpansive mappings. Under mild conditions, we prove strong
convergence of the proposed algorithms.
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1. INTRODUCTION

Let H be a real infinite dimensional Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let C be any convex and closed set in H and PC be the metric projection from space H
onto set C. Let S : C→ H be a nonlinear operator on C. One denotes by Fix(S) the set of all
fixed points of S, i.e., Fix(S) = {x ∈C : x = T x}. A mapping T : C→C is called asymptotically
nonexpansive if ‖T nx−T ny‖ ≤ (θn+1)‖x−y‖, ∀n≥ 1, x,y ∈C, where {θn} is a real sequence
in [0,+∞) with limn→∞ θn = 0. In particular, if θn = 0, then T is nonexpansive. Also, one
recalls that a mapping T : C→C is said to be strictly pseudocontractive if ‖T x−Ty‖2 ≤ ζ‖(I−
T )x− (I − T )y‖2 + ‖x− y‖2 ∀x,y ∈ C, where ζ is in [0,1). If ζ = 0, then T is reduced to
a nonexpansive mapping. Let A : H → H be a mapping. The classical variational inequality
problem (VIP) is to find x∗ ∈C such that

〈Ax∗,x− x∗〉 ≥ 0, ∀x ∈C. (1.1)
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The solution set of the VIP is denoted by VI(C,A). At present, one of the most effective methods
for solving the VIP is the extragradient method introduced by Korpelevich [24] in 1976. For
any initial x0 ∈C, the sequence {xn} is generated by{

yn = PC(xn− τAxn),

xn+1 = PC(xn− τAyn) ∀n≥ 0,
(1.2)

with τ ∈ (0, 1
L). If VI(C,A) 6= /0, then the sequence {xn} generated by process (1.2) converges

weakly to an element in VI(C,A). The literature on the VIP is vast and Korpelevich’s extragra-
dient method has received great attention given by many authors, who improved it in various
ways; see e.g., [1-16, 18-23, 25-29, 31-36] and references therein, to name but a few.

Let A,B : C→ H be two inverse-strongly monotone mappings and T : C→C be a ζ -strictly
pseudocontractive mapping. In 2010, Yao et al. [2] introduced an iterative method based on
the extragradient method for finding an element in the common solution set Ω of variational
inequalities for A and B and the fixed point problem of T , that is, for any initial x0 ∈ C, the
sequence {xn} is generated by

zn = PC(xn−µBxn),

yn = αn f (xn)+(1−αn)PC(zn−λAzn),

xn+1 = βnxn + γnPC(zn−λAzn)+δnTyn ∀n≥ 0,
(1.3)

where f : C → C be a δ -contraction with δ ∈ [0, 1
2), and {αn},{βn},{γn},{δn} are four se-

quences in [0,1] such that
(i) βn + γn +δn = 1 and (γn +δn)ζ ≤ γn < (1−2δ )δn ∀n≥ 0;
(ii) limn→∞ αn = 0 and ∑

∞
n=0 αn = ∞;

(iii) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1 and liminfn→∞ δn > 0;
(iv) limn→∞(

γn+1
1−βn+1

− γn
1−βn

) = 0.
They proved the strong convergence of {xn} to an element x∗ ∈Ω, which solves the VIP: 〈(I−
f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

On the other hand, let A,B : C→H be two inverse-strongly monotone mappings and T : C→
C be an asymptotically nonexpansive mapping with a sequence {θn}. Very recently, using a
modified extragradient method, Cai et al. [38] introduced a viscosity implicit rule for finding
an element in the common solution set Ω of variational inequalities for A and B and the fixed
point problem of T , that is, for any initial x1 ∈C, the sequence {xn} is generated by

un = snxn +(1− sn)yn,

zn = PC(un−µBun),

yn = PC(zn−λAzn),

xn+1 = PC[αn f (xn)+(I−αnρF)T nyn],

(1.4)

where f : C→C be a δ -contraction with δ ∈ [0,1), and {αn},{sn} are sequences in (0,1] such
that

(i) limn→∞ αn = 0, ∑
∞
n=1 αn = ∞ and ∑

∞
n=1 |αn+1−αn|< ∞;

(ii) limn→∞
θn
αn

= 0;
(iii) 0 < ε ≤ sn ≤ 1 and ∑

∞
n=1 |sn+1− sn|< ∞;
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(iv) ∑
∞
n=1 ‖T n+1yn−T nyn‖< ∞.

They proved the strong convergence of {xn} to an element x∗ ∈Ω, which solves the VIP: 〈(ρF−
f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

In the extragradient method, one needs to compute two projections onto C for each iteration.
Without question, the projection onto a closed convex set C is closely related to a minimum dis-
tance problem. If C is a general closed and convex set, this might require a prohibitive amount
of computation time. In 2011, Censor et al. [5] modified Korpelevich’s extragradient method
and first introduced the subgradient extragradient method, in which the second projection onto
C is replaced by a projection onto a half-space:

yn = PC(xn− τAxn),

Cn = {x ∈ H : 〈xn− τAxn− yn,x− yn〉 ≤ 0},
xn+1 = PCn(xn− τAyn) ∀n≥ 0,

with τ ∈ (0, 1
L). In 2014, Kraikaew and Saejung [22] introduced the Halpern subgradient ex-

tragradient method for solving the VIP (1.1), and proved strong convergence of the proposed
method to a solution of VIP (1.1).

In 2018, by virtue of the inertial technique, Thong and Hieu [31] first introduced the inertial
subgradient extragradient method, and proved weak convergence of the proposed method to a
solution of VIP (1.1). Very recently, Thong and Hieu [25] introduced two inertial subgradient
extragradient algorithms with linear-search process for solving the VIP (1.1) with monotone
and Lipschitz continuous mapping A and the fixed-point problem (FPP) of a quasi-nonexpansive
mapping T with a demiclosedness property in a real Hilbert space.

Algorithm 1.1 (see [25, Algorithm 1]). Initialization: Given γ > 0, l ∈ (0,1), µ ∈ (0,1).
Let x0,x1 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = xn +αn(xn− xn−1) and compute yn = PC(wn− τnAwn), where τn is chosen

to be the largest τ ∈ {γ,γl,γl2, ...} satisfying τ‖Awn−Ayn‖ ≤ µ‖wn− yn‖.
Step 2. Compute zn = PCn(wn− τnAyn) with Cn := {x ∈ H : 〈wn− τnAwn− yn,x− yn〉 ≤ 0}.
Step 3. Compute xn+1 = (1−βn)wn+βnT zn. If wn = zn = xn+1 then wn ∈ Fix(T )∩VI(C,A).

Set n := n+1 and go to Step 1.

Algorithm 1.2 (see [25, Algorithm 2]). Initialization: Given γ > 0, l ∈ (0,1), µ ∈ (0,1).
Let x0,x1 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = xn +αn(xn− xn−1) and compute yn = PC(wn− τnAwn), where τn is chosen

to be the largest τ ∈ {γ,γl,γl2, ...} satisfying τ‖Awn−Ayn‖ ≤ µ‖wn− yn‖.
Step 2. Compute zn = PCn(wn− τnAyn) with Cn := {x ∈ H : 〈wn− τnAwn− yn,x− yn〉 ≤ 0}.
Step 3. Compute xn+1 = (1− βn)xn + βnT zn. If wn = zn = xn = xn+1 then xn ∈ Fix(T )∩

VI(C,A). Set n := n+1 and go to Step 1.

Under mild conditions, they proved weak convergence of the proposed algorithms to an ele-
ment of Fix(T )∩VI(C,A). Inspired by the research work of [25], we introduce two asymptotic
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inertial subgradient extragradient algorithms with line-search process for solving VIP (1.1) with
pseudomonotone and Lipschitz continuous mapping and the CFPP of an asymptotically nonex-
pansive mapping and a strictly pseudocontractive mapping in H. The proposed algorithms are
based on inertial subgradient extragradient method with line-search process, hybrid steepest-
descent method, viscosity approximation method, Mann iteration method and asymptotically
nonexpansive mapping. Under suitable conditions, we prove strong convergence of the pro-
posed algorithms to an element in the common solution set of the VIP and CFPP, which solves
a certain hierarchical VIP defined on this common solution set. Finally, our main results are
applied to solve the VIP and CFPP in an illustrated example.

This paper is organized as follows. In Sect. 2, we recall some definitions and preliminary
results for further use. Sect. 3 deals with the convergence analysis of the proposed algorithms.
Finally, in Sect. 4, our main results are applied to solve the VIP and CFPP in an illustrated ex-
ample. Our algorithms are more advantageous and more flexible than Algorithms 1 and 2 in [25]
because they involve solving VIP (1.1) with pseudomonotone and Lipschitz continuous map-
ping and the CFPP of an asymptotically nonexpansive mapping and a strictly pseudocontractive
mapping. Our results improve and extend the corresponding results announced in Kraikaew and
Saejung [22], Thong and Hieu [25, 31], Yao et al. [2], and Cai et al. [38].

2. PRELIMINARIES

Suppose that {xn} is a sequence in H. Then we denote by xn→ x (resp., xn ⇀ x) the strong
(resp., weak) convergence of {xn} to x. A mapping T : C→ H is called

(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L> 0 such that ‖T x−Ty‖≤L‖x−y‖ ∀x,y∈
C;

(ii) monotone if 〈T x−Ty,x− y〉 ≥ 0 ∀x,y ∈C;
(iii) pseudomonotone if 〈T x,y− x〉 ≥ 0⇒ 〈Ty,y− x〉 ≥ 0 ∀x,y ∈C;
(iv) α-strongly monotone if ∃α > 0 such that 〈T x−Ty,x− y〉 ≥ α‖x− y‖2 ∀x,y ∈C;
(v) sequentially weakly continuous if ∀{xn} ⊂C, the relation holds: xn ⇀ x⇒ T xn ⇀ T x.
It is easy to see that every monotone operator is pseudomonotone but the converse is not true.

Also, recall that the mapping T : C→ C is a ζ -strict pseudocontraction for some ζ ∈ [0,1) if
and only if the inequality holds 〈T x−Ty,x−y〉 ≤ ‖x−y‖2− 1−ζ

2 ‖(I−T )x− (I−T )y‖2 ∀x,y ∈
C. From [30] we know that if T is a ζ -strictly pseudocontractive mapping, then T satisfies
Lipschitz condition ‖T x−Ty‖ ≤ 1+ζ

1−ζ
‖x− y‖ ∀x,y ∈ C. For each point x ∈ H, we know that

there exists a unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖ ∀y ∈C.
The mapping PC is called the metric projection of H onto C.

Lemma 2.1 (see [17]). The following hold:
(i) 〈x− y,PCx−PCy〉 ≥ ‖PCx−PCy‖2 ∀x,y ∈ H;
(ii) 〈x−PCx,y−PCx〉 ≤ 0 ∀x ∈ H,y ∈C;
(iii) ‖x− y‖2 ≥ ‖x−PCx‖2 +‖y−PCx‖2 ∀x ∈ H,y ∈C;
(iv) ‖x− y‖2 +2〈x− y,y〉= ‖x‖2−‖y‖2, ∀x,y ∈ H;
(v) ‖λx+µy‖2 +λ µ‖x− y‖2 = λ‖x‖2 +µ‖y‖2, ∀x,y ∈ H, ∀λ ,µ ∈ [0,1] with λ +µ = 1.
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The following lemma is an immediate consequence of the subdifferential inequality of the
function 1

2‖ · ‖
2.

Lemma 2.2. There holds the inequality

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉 ∀x,y ∈ H.

Lemma 2.3 (see [5, Lemma 2.1]). Let A : C→ H be pseudomonotone and continuous. Then
x∗ ∈C is a solution to the VIP 〈Ax∗,x− x∗〉 ≥ 0 ∀x ∈C, if and only if 〈Ax,x− x∗〉 ≥ 0 ∀x ∈C.

Lemma 2.4 (see [37]). Let {an} be a sequence of nonnegative real numbers satisfying the
conditions: an+1 ≤ (1−λn)an +λnγn ∀n≥ 1, where {λn} and {γn} are sequences of real num-
bers such that (i) {λn} ⊂ [0,1] and ∑

∞
n=1 λn = ∞, and (ii) limsupn→∞ γn ≤ 0 or ∑

∞
n=1 |λnγn|< ∞.

Then limn→∞ an = 0.

Lemma 2.5 (see [30]). Let T : C→C be a ζ -strict pseudocontraction. Then I−T is demi-
closed at zero, i.e., if {xn} is a sequence in C such that xn ⇀ x ∈ C and (I−T )xn → 0, then
(I−T )x = 0, where I is the identity mapping of H.

Lemma 2.6 (see [2]). Let T : C→C be a ζ -strictly pseudocontractive mapping. Let γ and
δ be two nonnegative real numbers. Assume (γ + δ )ζ ≤ γ . Then ‖γ(x− y)+ δ (T x−Ty)‖ ≤
(γ +δ )‖x− y‖ ∀x,y ∈C.

Lemma 2.7 (see [37, Lemma 3.1]). Let λ ∈ (0,1], T : C→ H be a nonexpansive mapping,
and the mapping T λ : C→H be defined by T λ x := T x−λ µF(T x) ∀x ∈C, where F : H→H is
κ-Lipschitzian and η-strongly monotone. Then T λ is a contraction provided 0 < µ < 2η

κ2 , i.e.,
‖T λ x−T λ y‖ ≤ (1−λτ)‖x− y‖ ∀x,y ∈C, where τ = 1−

√
1−µ(2η−µκ2) ∈ (0,1].

Lemma 2.8 (see [39]). Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X , and T : C→ C be an asymptotically
nonexpansive mapping with Fix(T ) 6= /0. Then I− T is demiclosed at zero, i.e., if {xn} is a
sequence in C such that xn ⇀ x∈C and (I−T )xn→ 0, then (I−T )x = 0, where I is the identity
mapping of X .

3. MAIN RESULTS

In this section, let the feasible set C be a nonempty closed convex subset of a real Hilbert
space H, and assume always that the following hold.

T : H → H is an asymptotically nonexpansive mapping with {θn} and S : H → H is a ζ -
strictly pseudocontractive mapping.

A : H → H is L-Lipschitz continuous, pseudomonotone on H, and sequentially weakly con-
tinuous on C, such that Ω = Fix(T )∩Fix(S)∩VI(C,A) 6= /0.

f : H → H is a contraction with constant δ ∈ [0,1), and F : H → H is η-strongly monotone
and κ-Lipschitzian such that δ < τ := 1−

√
1−ρ(2η−ρκ2) for ρ ∈ (0, 2η

κ2 ).
{σn} ⊂ [0,1] and {αn},{βn},{γn},{δn} ⊂ (0,1) such that
(i) supn≥1

σn
αn

< ∞ and βn + γn +δn = 1 ∀n≥ 1;
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(ii) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞;

(iii) limn→∞
θn
αn

= 0 and (γn +δn)ζ ≤ γn ∀n≥ 1;
(iv) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1 and liminfn→∞ δn > 0.

Algorithm 3.1. Initialization: Given γ > 0, l ∈ (0,1), µ ∈ (0,1). Let x0,x1 ∈H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = T nxn +σn(T nxn−T nxn−1) and compute yn = PC(wn− τnAwn), where τn is

chosen to be the largest τ ∈ {γ,γl,γl2, ...} satisfying

τ‖Awn−Ayn‖ ≤ µ‖wn− yn‖. (3.1)

Step 2. Compute zn = αn f (xn)+ (I−αnρF)T nPCn(wn− τnAyn) with Cn := {x ∈ H : 〈wn−
τnAwn− yn,x− yn〉 ≤ 0}.

Step 3. Compute

xn+1 = βnxn + γnzn +δnSzn. (3.2)

Again set n := n+1 and go to Step 1.

Lemma 3.1. The Armijo-like search rule (3.1) is well defined, and the inequality holds:
min{γ, µl

L } ≤ τn ≤ γ .

Proof. From the L-Lipschitz continuity of A we get µ

L‖Awn−APC(wn− γlmAwn)‖ ≤ µ‖wn−
PC(wn− γlmAwn)‖. Thus, (3.1) holds for all γlm ≤ µ

L and so τn is well defined. Obviously,
τn ≤ γ . If τn = γ , then the inequality is true. If τn < γ , then from (3.1) we get ‖Awn−APC(wn−
τn
l Awn)‖ > µ

τn
l
‖wn−PC(wn− τn

l Awn)‖. Again from the L-Lipschitz continuity of A we obtain

τn >
µl
L . Hence the inequality is valid. �

Lemma 3.2. Let {wn},{yn},{zn} be the sequences generated by Algorithm 3.1. Then

‖zn− p‖2 ≤ αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2− (1−αnτ)(1+θn)(1−µ)×
×[‖wn− yn‖2 +‖un− yn‖2]+2αn〈( f −ρF)p,zn− p〉 ∀p ∈Ω,n≥ n0,

(3.3)
for some n0 ≥ 1, where un := PCn(wn− τnAyn).

Proof. First, take an arbitrary p ∈Ω⊂C ⊂Cn. We note that

‖un− p‖2 = ‖PCn(wn− τnAyn)−PCn p‖2 ≤ 〈un− p,wn− τnAyn− p〉
= 1

2‖un− p‖2 + 1
2‖wn− p‖2− 1

2‖un−wn‖2−〈un− p,τnAyn〉.

So, it follows that ‖un− p‖2 ≤ ‖wn− p‖2−‖un−wn‖2−2〈un− p,τnAyn〉, which together with
(3.1) and the pseudomonotonicity of A, we deduce that 〈Ayn, p− yn〉 ≤ 0 and

‖un− p‖2 ≤ ‖wn− p‖2−‖un−wn‖2 +2τn(〈Ayn, p− yn〉+ 〈Ayn,yn−un〉)
≤ ‖wn− p‖2−‖un−wn‖2 +2τn〈Ayn,yn−un〉
= ‖wn− p‖2−‖un− yn‖2−‖yn−wn‖2 +2〈wn− τnAyn− yn,un− yn〉.

(3.4)
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Since un = PCn(wn−τnAyn) with Cn := {x ∈H : 〈wn−τnAwn−yn,x−yn〉 ≤ 0}, we have 〈wn−
τnAwn− yn,un− yn〉 ≤ 0, which together with (3.1), implies that

2〈wn− τnAyn− yn,un− yn〉 = 2〈wn− τnAwn− yn,un− yn〉+2τn〈Awn−Ayn,un− yn〉
≤ 2µ‖wn− yn‖‖un− yn‖ ≤ µ(‖wn− yn‖2 +‖un− yn‖2).

Therefore, substituting the last inequality for (3.4), we infer that

‖un− p‖2 ≤ ‖wn− p‖2− (1−µ)‖wn− yn‖2− (1−µ)‖un− yn‖2 ∀p ∈Ω. (3.5)

In addition, from Algorithm 3.1 we have

zn− p = αn f (xn)+(I−αnρF)T nPCn(wn− τnAyn)− p
= αn( f (xn)− f (p))+(I−αnρF)T nun− (I−αnρF)p+αn( f −ρF)p.

Taking into account limn→∞
θn(2+θn)
αn(1−βn)

= 0, we know that θn(2+θn)≤ αn(1−βn)(τ−δ )
2 ∀n≥ n0 for

some n0 ≥ 1. Hence we have that for all n≥ n0,

αnδ +(1−αnτ)(1+θn) = 1−αn(τ−δ )+(1−αnτ)θn

≤ 1−αn(τ−δ )+θn ≤ 1− αn(τ−δ )
2 ≤ 1.

Using Lemma 2.2, Lemma 2.7, and the convexity of the function h(t) = t2 ∀t ∈ R, from (3.5)
we obtain that for all n≥ n0,

‖zn− p‖2

≤ ‖αn( f (xn)− f (p))+(I−αnρF)T nun− (I−αnρF)p‖2 +2αn〈( f −ρF)p,zn− p〉
≤ [αnδ‖xn− p‖+(1−αnτ)(1+θn)‖un− p‖]2 +2αn〈( f −ρF)p,zn− p〉
≤ αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖un− p‖2 +2αn〈( f −ρF)p,zn− p〉
≤ αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖wn− p‖2− (1−µ)‖wn− yn‖2

−(1−µ)‖un− yn‖2]+2αn〈( f −ρF)p,zn− p〉
= αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2− (1−αnτ)(1+θn)(1−µ)×
×[‖wn− yn‖2 +‖un− yn‖2]+2αn〈( f −ρF)p,zn− p〉.

This completes the proof. �

Lemma 3.3. Let {wn},{xn},{yn},{zn} be bounded sequences generated by Algorithm 3.1.
If T nxn−T n+1xn→ 0, xn−xn+1→ 0, wn−xn→ 0, wn− zn→ 0 and ∃{wnk} ⊂ {wn} such that
wnk ⇀ z ∈ H, then z ∈Ω.

Proof. From Algorithm 3.1, we get wn−xn = T nxn−xn+αn(T nxn−T nxn−1) ∀n≥ 1, and hence
‖T nxn− xn‖ ≤ ‖wn− xn‖+αn‖T nxn−T nxn−1‖ ≤ ‖wn− xn‖+(1+θn)‖xn− xn−1‖. Utilizing
the assumptions xn− xn+1→ 0 and wn− xn→ 0, we have from θn→ 0 that

lim
n→∞
‖xn−T nxn‖= 0. (3.6)

Combining the assumptions wn− xn→ 0 and wn− zn→ 0 implies that as n→ ∞,

‖zn− xn‖ ≤ ‖wn− zn‖+‖wn− xn‖→ 0.
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Note that for each p ∈Ω,

‖wn− p‖2 = ‖T nxn− p+σn(T nxn−T nxn−1)‖2

≤ (‖T nxn− p‖+σn‖T nxn−T nxn−1‖)2

≤ (1+θn)
2(‖xn− p‖+σn‖xn− xn−1‖)2

= [1+θn(2+θn)][‖xn− p‖2 +σn‖xn− xn−1‖(2‖xn− p‖+σn‖xn− xn−1‖)]
= ‖xn− p‖2 +Γn +θn(2+θn)(‖xn− p‖2 +Γn),

where Γn = σn‖xn− xn−1‖(2‖xn− p‖+σn‖xn− xn−1‖). So it follows from (3.3) that for all
n≥ n0,

(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]

≤ αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2−‖zn− p‖2 +2αn〈( f −ρF)p,zn− p〉
≤ αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖xn− p‖2 +Γn

+θn(2+θn)(‖xn− p‖2 +Γn)]−‖zn− p‖2 +2αn‖( f −ρF)p‖‖zn− p‖
= [αnδ +(1−αnτ)(1+θn)]‖xn− p‖2−‖zn− p‖2 +(1−αnτ)(1+θn)[Γn

+θn(2+θn)(‖xn− p‖2 +Γn)]+2αn‖( f −ρF)p‖‖zn− p‖
≤ [1− αn(τ−δ )

2 ]‖xn− p‖2−‖zn− p‖2 +(1−αnτ)(1+θn)[Γn

+θn(2+θn)(‖xn− p‖2 +Γn)]+2αn‖( f −ρF)p‖‖zn− p‖
≤ ‖xn− p‖2−‖zn− p‖2 +(1−αnτ)(1+θn)[Γn

+θn(2+θn)(‖xn− p‖2 +Γn)]+2αn‖( f −ρF)p‖‖zn− p‖
≤ ‖xn− zn‖(‖xn− p‖+‖zn− p‖)+(1+θn)[Γn

+θn(2+θn)(‖xn− p‖2 +Γn)]+2αn‖( f −ρF)p‖‖zn− p‖.
Since αn→ 0, θn→ 0, Γn→ 0 and xn− zn→ 0, from the boundedness of {xn},{zn} we get

lim
n→∞
‖wn− yn‖= 0 and lim

n→∞
‖un− yn‖= 0.

Thus we deduce that as n→ ∞,

‖wn−un‖ ≤ ‖wn− yn‖+‖yn−un‖→ 0 and ‖xn−un‖ ≤ ‖xn−wn‖+‖wn−un‖→ 0.

Furthermore, by Algorithm 3.1 we get xn+1− zn = βn(xn− zn)+ δn(Szn− zn), which immedi-
ately yields

δn‖Szn− zn‖= ‖xn+1− xn +(1−βn)(xn− zn)‖ ≤ ‖xn+1− xn‖+‖xn− zn‖.

Since xn− xn+1→ 0, zn− xn→ 0 and liminfn→∞ δn > 0, we obtain

lim
n→∞
‖zn−Szn‖= 0. (3.7)

Noticing yn = PC(wn− τnAwn), we have 〈wn− τnAwn− yn,x− yn〉 ≤ 0 ∀x ∈C, and hence
1
τn
〈wn− yn,x− yn〉+ 〈Awn,yn−wn〉 ≤ 〈Awn,x−wn〉 ∀x ∈C. (3.8)

Being weakly convergent, {wnk} is bounded. Then, according to the Lipschitz continuity of A,
{Awnk} is bounded. Since wn−yn→ 0, {ynk} is bounded as well. Note that τn≥min{γ, µl

L }. So,
from (3.8) we get liminfk→∞〈Awnk ,x−wnk〉 ≥ 0 ∀x ∈C. Meantime, observe that 〈Ayn,x−yn〉=
〈Ayn− Awn,x−wn〉+ 〈Awn,x−wn〉+ 〈Ayn,wn− yn〉. Since wn− yn → 0, from L-Lipschitz
continuity of A we obtain Awn−Ayn→ 0, which together with (3.8) yields liminfk→∞〈Aynk ,x−
ynk〉 ≥ 0 ∀x ∈C.
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Next we show that xn−T xn→ 0. Indeed, note that

‖T xn− xn‖ ≤ ‖T xn−T n+1xn‖+‖T n+1xn−T nxn‖+‖T nxn− xn‖
≤ (1+θ1)‖xn−T nxn‖+‖T n+1xn−T nxn‖+‖T nxn− xn‖
= (2+θ1)‖xn−T nxn‖+‖T n+1xn−T nxn‖.

Hence from (3.6) and the assumption T nxn−T n+1xn→ 0 we get

lim
n→∞
‖xn−T xn‖= 0. (3.9)

We now take a sequence {εk} ⊂ (0,1) satisfying εk ↓ 0 as k→∞. For all k≥ 1, we denote by
mk the smallest positive integer such that

〈Ayn j ,x− yn j〉+ εk ≥ 0 ∀ j ≥ mk. (3.10)

Since {εk} is decreasing, it is clear that {mk} is increasing. Noticing that {ymk} ⊂C guarantees

Aymk 6= 0 ∀k ≥ 1, we set µmk =
Aymk
‖Aymk‖

2 , we get 〈Aymk ,µmk〉 = 1 ∀k ≥ 1. So, from (3.10) we

get 〈Aymk ,x + εkµmk − ymk〉 ≥ 0 ∀k ≥ 1. Again from the pseudomonotonicity of A we have
〈A(x+ εkµmk),x+ εkµmk− ymk〉 ≥ 0 ∀k ≥ 1. This immediately leads to

〈Ax,x− ymk〉 ≥ 〈Ax−A(x+ εkµmk),x+ εkµmk− ymk〉− εk〈Ax,µmk〉 ∀k ≥ 1. (3.11)

We claim that limk→∞ εkµmk = 0. Indeed, from wnk ⇀ z and wn− yn→ 0, we obtain ynk ⇀ z.
So, {yn} ⊂ C guarantees z ∈ C. Again from the sequentially weak continuity of A, we know
that Aynk ⇀ Az. Thus, we have Az 6= 0 (otherwise, z is a solution). Taking into account the
sequentially weak lower semicontinuity of the norm ‖ ·‖, we get 0 < ‖Az‖ ≤ liminfk→∞ ‖Aynk‖.
Note that {ymk} ⊂ {ynk} and εk ↓ 0 as k→ ∞. So it follows that 0 ≤ limsupk→∞ ‖εkµmk‖ =
limsupk→∞

εk
‖Aymk‖

≤ limsupk→∞ εk
liminfk→∞ ‖Aynk‖

= 0. Hence we get εkµmk → 0.
Next we show that z ∈Ω. Indeed, from wn−xn→ 0 and wnk ⇀ z, we get xnk ⇀ z. From (3.9)

we have xnk −T xnk → 0. Note that Lemma 2.8 guarantees the demiclosedness of I−T at zero.
Thus z ∈ Fix(T ). Meantime, from wn− zn → 0 and wnk ⇀ z, we get znk ⇀ z. From (3.7) we
have znk−Sznk → 0. From Lemma 2.5 it follows that I−S is demiclosed at zero, and hence we
get (I−S)z = 0, i.e., z∈ Fix(S). On the other hand, letting k→∞, we deduce that the right hand
side of (3.11) tends to zero by the uniform continuity of A, the boundedness of {ymk},{µmk}
and the limit limk→∞ εkµmk = 0. Thus, we get 〈Ax,x− z〉= liminfk→∞〈Ax,x− ymk〉 ≥ 0 ∀x ∈C.
By Lemma 2.3 we have z ∈ VI(C,A). Therefore, z ∈ Fix(T )∩ Fix(S)∩VI(C,A) = Ω. This
completes the proof. �

Theorem 3.1. Let the sequence {xn} be generated by Algorithm 3.1. Assume that T nxn−
T n+1xn→ 0. Then

xn→ x∗ ∈Ω ⇔
{

xn− xn+1→ 0,
xn− yn→ 0

where x∗ ∈Ω is a unique solution to the VIP: 〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

Proof. First of all, since 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1, we may assume, without loss
of generality, that {βn} ⊂ [a,b]⊂ (0,1). We claim that PΩ( f + I−ρF) is a contraction. Indeed,
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by Lemma 2.7 we have

‖PΩ( f + I−ρF)x−PΩ( f + I−ρF)y‖ ≤ ‖ f (x)− f (y)‖+‖(I−ρF)x− (I−ρF)y‖
≤ δ‖x− y‖+(1− τ)‖x− y‖= [1− (τ−δ )]‖x− y‖ ∀x,y ∈ H,

which implies that PΩ( f + I−ρF) is a contraction. Banach’s Contraction Mapping Principle
guarantees that PΩ( f + I−ρF) has a unique fixed point. Say x∗ ∈ H, that is, x∗ = PΩ( f + I−
ρF)x∗. Thus, there exists a unique solution x∗ ∈Ω = Fix(T )∩Fix(S)∩VI(C,A) to the VIP

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω. (3.12)

It is now easy to see that the necessity of the theorem is valid. Indeed, if xn → x∗ ∈ Ω =

Fix(T )∩Fix(S)∩VI(C,A), then x∗ = T x∗, x∗ = Sx∗ and x∗ = PC(x∗− τnAx∗), which together
with Algorithm 3.1, imply that

‖wn− x∗‖ = ‖T nxn− x∗+σn(T nxn−T nxn−1)‖
≤ (1+θn)(‖xn− x∗‖+σn‖xn− xn−1‖)→ 0 (n→ ∞),

and hence
‖yn− xn‖ ≤ ‖yn− x∗‖+‖xn− x∗‖

= ‖PC(wn− τnAwn)−PC(x∗− τnAx∗)‖+‖xn− x∗‖
≤ ‖wn− x∗‖+ τn‖Awn−Ax∗‖+‖xn− x∗‖
≤ (1+ γL)‖wn− x∗‖+‖xn− x∗‖→ 0 (n→ ∞).

In addition, it is clear that

‖xn− xn+1‖ ≤ ‖xn− x∗‖+‖xn+1− x∗‖→ 0 (n→ ∞).

Next we show the sufficiency of the theorem. To the aim, we assume limn→∞(‖xn− xn+1‖+
‖xn− yn‖) = 0 and divide the proof of the sufficiency into several steps.

Step 1. We show that {xn} is bounded. Indeed, take an arbitrary p ∈Ω = Fix(T )∩Fix(S)∩
VI(C,A). Then T p = p, Sp = p, and (3.5) holds, i.e.,

‖un− p‖2 ≤ ‖wn− p‖2− (1−µ)‖wn− yn‖2− (1−µ)‖un− yn‖2. (3.13)

This immediately implies that

‖un− p‖ ≤ ‖wn− p‖ ∀n≥ 1. (3.14)

From the definition of wn, we get

‖wn− p‖ ≤ ‖T nxn− p‖+σn‖T nxn−T nxn−1‖
≤ (1+θn)(‖xn− p‖+σn‖xn− xn−1‖)
= (1+θn)(‖xn− p‖+αn · σn

αn
‖xn− xn−1‖).

(3.15)

Since supn≥1
σn
αn

< ∞ and supn≥1 ‖xn− xn−1‖ < ∞, we know that supn≥1
σn
αn
‖xn− xn−1‖ < ∞,

which hence implies that there exists a constant M1 > 0 such that
σn

αn
‖xn− xn−1‖ ≤M1 ∀n≥ 1. (3.16)

Combining (3.14), (3.15) and (3.16), we obtain

‖un− p‖ ≤ ‖wn− p‖ ≤ (1+θn)(‖xn− p‖+αnM1) ∀n≥ 1. (3.17)
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So, from Algorithm 3.1, Lemma 2.7 and (3.17) it follows that for all n≥ n0,

‖zn− p‖ = ‖αn( f (xn)− f (p))+(I−αnρF)T nun− (I−αnρF)p+αn( f −ρF)p‖
≤ αnδ‖xn− p‖+(1−αnτ)(1+θn)‖un− p‖+αn‖( f −ρF)p‖
≤ [αnδ +(1−αnτ)(1+θn)

2](‖xn− p‖+αnM1)+αn‖( f −ρF)p‖
≤ [αnδ +1−αnτ +θn(2+θn)](‖xn− p‖+αnM1)+αn‖( f −ρF)p‖
≤ (1− αn(τ−δ )

2 )(‖xn− p‖+αnM1)+αn‖( f −ρF)p‖
≤ (1− αn(τ−δ )

2 )‖xn− p‖+αn(M1 +‖( f −ρF)p‖),

which together with Lemma 2.6 and (γn +δn)ζ ≤ γn, implies that for all n≥ n0,

‖xn+1− p‖ = ‖βn(xn− p)+ γn(zn− p)+δn(Szn− p)‖
≤ βn‖xn− p‖+(1−βn)‖ 1

1−βn
[γn(zn− p)+δn(Szn− p)]‖

≤ βn‖xn− p‖+(1−βn)‖zn− p‖
≤ βn‖xn− p‖+(1−βn)[(1− αn(τ−δ )

2 )‖xn− p‖+αn(M1 +‖( f −ρF)p‖)]
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖+αn(1−βn)(M1 +‖( f −ρF)p‖)
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖+ αn(1−βn)(τ−δ )
2 · 2(M1+‖( f−ρF)p‖)

τ−δ

≤max{‖xn− p‖, 2(M1+‖( f−ρF)p‖)
τ−δ

}.

By induction, we obtain ‖xn− p‖ ≤ max{‖xn0 − p‖, 2(M1+‖(ρF− f )p‖)
τ−δ

} ∀n ≥ n0. Thus, {xn} is
bounded, and so are the sequences {un},{wn},{yn},{zn},{ f (xn)},{Szn},{T nun},{T nxn}.

Step 2. We show that for all n≥ n0,

(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn−yn‖2+‖un−yn‖2]≤ ‖xn− p‖2−‖xn+1− p‖2+αnM4,

with constant M4 > 0. Indeed, utilizing Lemma 2.6, Lemma 3.2 and the convexity of ‖ · ‖2,
from (γn +δn)ζ ≤ γn we obtain that for all n≥ n0,

‖xn+1− p‖2 = ‖βn(xn− p)+ γn(zn− p)+δn(T zn− p)‖2

≤ βn‖xn− p‖2 +(1−βn)‖ 1
1−βn

[γn(zn− p)+δn(T zn− p)]‖2

≤ βn‖xn− p‖2 +(1−βn)‖zn− p‖2

≤ βn‖xn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+2αn〈( f −ρF)p,zn− p〉}
≤ βn‖xn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2},

(3.18)

where supn≥1 2‖( f −ρF)p‖‖zn− p‖ ≤M2 for some M2 > 0. Also, from (3.17) we have

‖wn− p‖2 ≤ (1+θn)
2(‖xn− p‖+αnM1)

2

= [1+θn(2+θn)][‖xn− p‖2 +αn(2M1‖xn− p‖+αnM2
1)]

= ‖xn− p‖2 +αn(2M1‖xn− p‖+αnM2
1)

+θn(2+θn)[‖xn− p‖2 +αn(2M1‖xn− p‖+αnM2
1)]

≤ ‖xn− p‖2 +αnM3,

(3.19)

where supn≥1{2M1‖xn− p‖+αnM2
1 +

θn
αn
(2+θn)[‖xn− p‖2+αn(2M1‖xn− p‖+αnM2

1)]}≤M3

for some M3 > 0. Note that αnδ +(1−αnτ)(1+θn)≤ 1− αn(τ−δ )
2 for all n≥ n0. Substituting
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(3.19) for (3.18), we deduce that for all n≥ n0,

‖xn+1− p‖2

≤ βn‖xn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖xn− p‖2 +αnM3]

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2}
≤ βn‖xn− p‖2 +(1−βn){(1− αn(τ−δ )

2 )‖xn− p‖2 +(1−αnτ)(1+θn)αnM3
−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2}
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖2 +(1−βn)(1−αnτ)(1+θn)αnM3
−(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+ (1−βn)αnM2
≤ ‖xn− p‖2− (1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM4,

(3.20)
where supn≥1(M2 +(1+θn)M3)≤M4 for some M4 > 0. This immediately implies that for all
n≥ n0,

(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn−yn‖2+‖un−yn‖2]≤ ‖xn− p‖2−‖xn+1− p‖2+αnM4.

(3.21)
Step 3. We show that for all n≥ n0,

‖xn+1− p‖2 ≤ [1− αn(1−βn)(τ−δ )
2 ]‖xn− p‖2 + αn(1−βn)(τ−δ )

2 [ 4
τ−δ
〈( f −ρF)p,zn− p〉

+ 4M
τ−δ
· σn

αn
· ‖xn− xn−1‖+ 4M2

τ−δ
· θn

αn
],

with constant M > 0. Indeed, we have

‖wn− p‖2 ≤ (1+θn)
2(‖xn− p‖+σn‖xn− xn−1‖)2

= ‖xn− p‖2 +σn‖xn− xn−1‖(2‖xn− p‖+σn‖xn− xn−1‖)
+θn(2+θn)(‖xn− p‖+σn‖xn− xn−1‖)2

≤ ‖xn− p‖2 +σn‖xn− xn−1‖M+θnM2,

(3.22)

where supn≥1(2+θn)(‖xn− p‖+σn‖xn− xn−1‖) ≤M for some M > 0. Note that αnδ +(1−
αnτ)(1+θn)≤ 1− αn(τ−δ )

2 for all n≥ n0. Thus, combining (3.18) and (3.22), we have that for
all n≥ n0,

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)[αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

+2αn〈( f −ρF)p,zn− p〉]
≤ βn‖xn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖xn− p‖2

+σn‖xn− xn−1‖M+θnM2]+2αn〈( f −ρF)p,zn− p〉}
≤ βn‖xn− p‖2 +(1−βn){(1− αn(τ−δ )

2 )‖xn− p‖2 +(1−αnτ)(1+θn)×
×[σn‖xn− xn−1‖M+θnM2]+2αn〈( f −ρF)p,zn− p〉}
≤ [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖2 +(1−βn)[σn‖xn− xn−1‖2M+θn2M2]

+2αn(1−βn)〈( f −ρF)p,zn− p〉
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖2 + αn(1−βn)(τ−δ )
2 [ 4

τ−δ
〈( f −ρF)p,zn− p〉

+ 4M
τ−δ
· σn

αn
· ‖xn− xn−1‖+ 4M2

τ−δ
· θn

αn
].

(3.23)
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Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈Ω to the VIP (3.12).
Indeed, putting p = x∗, we deduce from (3.23) that

‖xn+1− x∗‖2 ≤ [1− αn(1−βn)(τ−δ )
2 ]‖xn− x∗‖2 + αn(1−βn)(τ−δ )

2 ×
×[ 4

τ−δ
〈( f −ρF)x∗,zn− x∗〉+ 4M

τ−δ
· σn

αn
· ‖xn− xn−1‖+ 4M2

τ−δ
· θn

αn
].

(3.24)

By Lemma 2.4, it suffices to show that limsupn→∞〈( f − ρF)x∗,zn− x∗〉 ≤ 0. From (3.21),
xn− xn+1→ 0, αn→ 0, θn→ 0 and {βn} ⊂ [a,b]⊂ (0,1), we obtain

limsup
n→∞

(1−αnτ)(1−b)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]

≤ limsup
n→∞

(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]

≤ limsup
n→∞

[‖xn− p‖2−‖xn+1− p‖2 +αnM4]

≤ limsup
n→∞

[‖xn− p‖2−‖xn+1− p‖2]+ limsup
n→∞

αnM4

≤ limsup
n→∞

(‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖= 0.

This immediately implies that

lim
n→∞
‖wn− yn‖= 0 and lim

n→∞
‖un− yn‖= 0. (3.25)

Obviously, the assumption ‖xn− yn‖ → 0 together with (3.25), guarantees that ‖wn− xn‖ ≤
‖wn− yn‖+‖yn− xn‖→ 0 (n→ ∞). So it follows that

‖T nxn− xn‖ = ‖wn− xn−σn(T nxn−T nxn−1)‖
≤ ‖wn− xn‖+σn(1+θn)‖xn− xn−1‖→ 0 (n→ ∞).

(3.26)

Since zn = αn f (xn)+(I−αnρF)T nun with un := PCn(wn− τnAyn), from (3.25), (3.26) and the
boundedness of {xn},{T nun}, we conclude that as n→ ∞,

‖zn− xn‖= ‖αn f (xn)−αnρFT nun +T nun− xn‖
≤ αn(‖ f (xn)‖+‖ρFT nun‖)+‖T nun− xn‖
≤ αn(‖ f (xn)‖+‖ρFT nun‖)+‖T nun−T nyn‖+‖T nyn−T nxn‖+‖T nxn− xn‖
≤ αn(‖ f (xn)‖+‖ρFT nun‖)+(1+θn)(‖un− yn‖+‖yn− xn‖)+‖T nxn− xn‖→ 0

(3.27)
(due to the assumption ‖xn−yn‖→ 0). Obviously, the limit limn→∞ ‖wn−xn‖= 0 together with
(3.27), guarantees that ‖wn− zn‖ ≤ ‖wn−xn‖+‖xn− zn‖→ 0 (n→∞). From the boundedness
of {zn}, it follows that there exists a subsequence {znk} of {zn} such that

limsup
n→∞

〈( f −ρF)x∗,zn− x∗〉= lim
k→∞
〈( f −ρF)x∗,znk− x∗〉. (3.28)

Since H is reflexive and {zn} is bounded, we may assume, without loss of generality, that
znk ⇀ z̃. Hence from (3.28) we get

limsup
n→∞

〈( f −ρF)x∗,zn− x∗〉= lim
k→∞
〈( f −ρF)x∗,znk− x∗〉= 〈( f −ρF)x∗, z̃− x∗〉. (3.29)

It is easy to see from wn− zn→ 0 and znk ⇀ z̃ that wnk ⇀ z̃. Since T nxn−T n+1xn→ 0, xn−
xn+1→ 0, wn−xn→ 0, wn−zn→ 0 and wnk ⇀ z̃, by Lemma 3.3 we infer that z̃∈Ω. Therefore,
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from (3.12) and (3.29) we conclude that

limsup
n→∞

〈( f −ρF)x∗,zn− x∗〉= 〈( f −ρF)x∗, z̃− x∗〉 ≤ 0. (3.30)

Note that {βn} ⊂ [a,b]⊂ (0,1), {αn(1−βn)(τ−δ )
2 } ⊂ [0,1], ∑

∞
n=1

αn(1−βn)(τ−δ )
2 = ∞, and

limsup
n→∞

[
4

τ−δ
〈( f −ρF)x∗,zn− x∗〉+ 4M

τ−δ
· σn

αn
· ‖xn− xn−1‖+

4M2

τ−δ
· θn

αn
]≤ 0. (3.31)

Consequently, applying Lemma 2.4 to (3.24), we have limn→0 ‖xn− x∗‖ = 0. This completes
the proof. �

Next, we introduce another asymptotic inertial subgradient extragradient algorithm with line-
search process.

Algorithm 3.2. Initialization: Given γ > 0, l ∈ (0,1), µ ∈ (0,1). Let x0,x1 ∈H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = T nxn +σn(T nxn−T nxn−1) and compute yn = PC(wn− τnAwn), where τn is

chosen to be the largest τ ∈ {γ,γl,γl2, ...} satisfying

τ‖Awn−Ayn‖ ≤ µ‖wn− yn‖. (3.32)

Step 2. Compute zn = αn f (xn)+ (I−αnρF)T nPCn(wn− τnAyn) with Cn := {x ∈ H : 〈wn−
τnAwn− yn,x− yn〉 ≤ 0}.

Step 3. Compute

xn+1 = βnwn + γnzn +δnSzn. (3.33)

Again set n := n+1 and go to Step 1.

It is worth pointing out that Lemmas 3.1, 3.2 and 3.3 are still valid for Algorithm 3.2.

Theorem 3.2. Let the sequence {xn} be generated by Algorithm 3.2. Assume that T nxn−
T n+1xn→ 0. Then

xn→ x∗ ∈Ω ⇔
{

xn− xn+1→ 0,
xn− yn→ 0

where x∗ ∈Ω is a unique solution to the VIP: 〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

Proof. Utilizing the same arguments as in the proof of Theorem 3.1, we deduce that there exists
a unique solution x∗ ∈Ω = Fix(T )∩Fix(S)∩VI(C,A) to the VIP (3.12), and that the necessity
of the theorem is valid.

Next we show the sufficiency of the theorem. To the aim, we assume limn→∞(‖xn− xn+1‖+
‖xn− yn‖) = 0 and divide the proof of the sufficiency into several steps.

Step 1. We show that {xn} is bounded. Indeed, utilizing the same arguments as in Step 1 of
the proof of Theorem 3.1, we obtain that inequalities (3.13)-(3.17) hold. Taking into account
limn→∞

θn(2+θn)
αn(1−βn)

= 0, we know that θn(2+θn)≤ αn(1−βn)(τ−δ )
2 ∀n≥ n0 for some n0 ≥ 1. Hence
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we deduce that for all n≥ n0,

αn(1−βn)δ +[1−αn(1−βn)τ](1+θn)
2

= 1−αn(1−βn)(τ−δ )+ [1−αn(1−βn)τ]θn(2+θn)

≤ 1− αn(1−βn)(τ−δ )
2 .

Also, from Algorithm 3.2, Lemma 2.7 and (3.17) it follows that

‖zn− p‖ = ‖αn( f (xn)− f (p))+(I−αnρF)T nun− (I−αnρF)p+αn( f −ρF)p‖
≤ αnδ‖xn− p‖+(1−αnτ)(1+θn)‖un− p‖+αn‖( f −ρF)p‖
≤ αnδ‖xn− p‖+(1−αnτ)(1+θn)‖wn− p‖+αn‖( f −ρF)p‖,

which together with Lemma 2.6 and (γn +δn)ζ ≤ γn, implies that for all n≥ n0,

‖xn+1− p‖= ‖βn(wn− p)+ γn(zn− p)+δn(Szn− p)‖
≤ βn‖wn− p‖+(1−βn)‖ 1

1−βn
[γn(zn− p)+δn(T zn− p)]‖

≤ βn‖wn− p‖+(1−βn)‖zn− p‖
≤ βn‖wn− p‖+(1−βn)[αnδ‖xn− p‖+(1−αnτ)(1+θn)‖wn− p‖+αn‖( f −ρF)p‖]
≤ αn(1−βn)δ‖xn− p‖+[1−αn(1−βn)τ](1+θn)‖wn− p‖+αn(1−βn)‖( f −ρF)p‖
≤ αn(1−βn)δ‖xn− p‖+[1−αn(1−βn)τ](1+θn)

2(‖xn− p‖+αnM1)

+αn(1−βn)‖( f −ρF)p‖
≤ [αn(1−βn)δ +(1−αn(1−βn)τ)(1+θn)

2](‖xn− p‖+αnM1)

+αn(1−βn)‖( f −ρF)p‖
≤ [1− αn(1−βn)(τ−δ )

2 ](‖xn− p‖+αnM1)+αn(1−βn)‖( f −ρF)p‖

≤ [1− αn(1−βn)(τ−δ )
2 ]‖xn− p‖+ αn(1−βn)(τ−δ )

2 ·
2( M1

1−βn
+‖( f−ρF)p‖)

τ−δ

≤max{‖xn− p‖, 2( M1
1−b+‖( f−ρF)p‖)

τ−δ
}.

By induction, we obtain ‖xn− p‖ ≤ max{‖xn0− p‖, 2( M1
1−b+‖( f−ρF)p‖)

τ−δ
} ∀n ≥ n0. Thus, {xn} is

bounded, and so are the sequences {un},{wn},{yn},{zn},{ f (xn)},{Szn},{T nun},{T nxn}.
Step 2. We show that for all n≥ n0,

(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn−yn‖2+‖un−yn‖2]≤ ‖xn− p‖2−‖xn+1− p‖2+αnM4,

with constant M4 > 0. Indeed, utilizing Lemma 2.6, Lemma 3.2 and the convexity of ‖ · ‖2,
from (γn +δn)ζ ≤ γn we get

‖xn+1− p‖2

= ‖βn(wn− p)+ γn(zn− p)+δn(Szn− p)‖2

≤ βn‖wn− p‖2 +(1−βn)‖ 1
1−βn

[γn(zn− p)+δn(Szn− p)]‖2

≤ βn‖wn− p‖2 +(1−βn)‖zn− p‖2

≤ βn‖wn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+2αn〈( f −ρF)p,zn− p〉}
≤ βn‖wn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2},

(3.34)
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where supn≥1 2‖( f −ρF)p‖‖zn− p‖ ≤M2 for some M2 > 0. Also, from (3.17) we have

‖wn− p‖2 ≤ (1+θn)
2(‖xn− p‖+αnM1)

2

= ‖xn− p‖2 +αn(2M1‖xn− p‖+αnM2
1)

+θn(2+θn)[‖xn− p‖2 +αn(2M1‖xn− p‖+αnM2
1)]

≤ ‖xn− p‖2 +αnM3,

(3.35)

where supn≥1{2M1‖xn− p‖+αnM2
1 +

θn
αn
(2+θn)[‖xn− p‖2+αn(2M1‖xn− p‖+αnM2

1)]}≤M3

for some M3 > 0. Note that αnδ +(1−αnτ)(1+θn)≤ 1− αn(τ−δ )
2 for all n≥ n0. Substituting

(3.35) for (3.34), we obtain that for all n≥ n0,

‖xn+1− p‖2

≤ βn‖wn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖xn− p‖2 +αnM3]

−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2}
≤ βn(‖xn− p‖2 +αnM3)+(1−βn){(1− αn(τ−δ )

2 )‖xn− p‖2 +(1−αnτ)(1+θn)αnM3
−(1−αnτ)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM2}
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖2 +βnαnM3 +(1−βn)(1−αnτ)(1+θn)αnM3
−(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+ (1−βn)αnM2
≤ ‖xn− p‖2− (1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn− yn‖2 +‖un− yn‖2]+αnM4,

(3.36)
where supn≥1(M2 +(1+θn)M3)≤M4 for some M4 > 0. This immediately implies that for all
n≥ n0,

(1−αnτ)(1−βn)(1+θn)(1−µ)[‖wn−yn‖2+‖un−yn‖2]≤ ‖xn− p‖2−‖xn+1− p‖2+αnM4.

(3.37)
Step 3. We show that for all n≥ n0,

‖xn+1− p‖2 ≤ [1− αn(1−βn)(τ−δ )
2 ]‖xn− p‖2 + αn(1−βn)(τ−δ )

2 [ 4
τ−δ
〈( f −ρF)p,zn− p〉

+ 4M
(τ−δ )(1−b) ·

σn
αn
· ‖xn− xn−1‖+ 4M2

(τ−δ )(1−b) ·
θn
αn
],

with constant M > 0. Indeed, we have

‖wn− p‖2 ≤ (1+θn)
2(‖xn− p‖+σn‖xn− xn−1‖)2 ≤ ‖xn− p‖2 +σn‖xn− xn−1‖M+θnM2,

(3.38)
where supn≥1(2+θn)(‖xn− p‖+σn‖xn− xn−1‖) ≤M for some M > 0. Note that αnδ +(1−
αnτ)(1+θn)≤ 1− αn(τ−δ )

2 for all n≥ n0. Thus, combining (3.34) and (3.38), we have that for
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all n≥ n0,

‖xn+1− p‖2 ≤ βn‖wn− p‖2 +(1−βn)[αnδ‖xn− p‖2 +(1−αnτ)(1+θn)‖wn− p‖2

+2αn〈( f −ρF)p,zn− p〉]
≤ βn‖wn− p‖2 +(1−βn){αnδ‖xn− p‖2 +(1−αnτ)(1+θn)[‖xn− p‖2

+σn‖xn− xn−1‖M+θnM2]+2αn〈( f −ρF)p,zn− p〉}
≤ βn‖xn− p‖2 +(1−βn){(1− αn(τ−δ )

2 )‖xn− p‖2 +(1−αnτ)(1+θn)×
×[σn‖xn− xn−1‖M+θnM2]+2αn〈( f −ρF)p,zn− p〉}
+βn[σn‖xn− xn−1‖M+θnM2]

≤ [1− αn(1−βn)(τ−δ )
2 ]‖xn− p‖2 +(1+θn)[σn‖xn− xn−1‖M+θnM2]

+2αn(1−βn)〈( f −ρF)p,zn− p〉
= [1− αn(1−βn)(τ−δ )

2 ]‖xn− p‖2 + αn(1−βn)(τ−δ )
2 [ 4

τ−δ
〈( f −ρF)p,zn− p〉

+ 4M
(τ−δ )(1−b) ·

σn
αn
· ‖xn− xn−1‖+ 4M2

(τ−δ )(1−b) ·
θn
αn
].

(3.39)
Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈Ω to the VIP (3.12).

Indeed, utilizing the same argument as in Step 4 of the proof of Theorem 3.1, we obtain the
desired assertion. This completes the proof. �

Remark 3.1. Compared with the corresponding results in Kraikaew and Saejung [22], Thong
and Hieu [25, 31] and Yao et al. [2] and Cai et al. [38], our results improve and extend them in
the following aspects.

(i) The problem of finding an element of VI(C,A) in [22] is extended to develop our problem
of finding an element of Fix(T )∩ Fix(S)∩VI(C,A) where T is asymptotically nonexpansive
and S is strictly pseudocontractive. The Halpern subgradient extragradient method for solving
the VIP in [22] is extended to develop our asymptotic inertial subgradient extragradient method
with line-search process for solving the VIP and CFPP, which is based on inertial subgradi-
ent extragradient method with line-search process, hybrid steepest-descent method, viscosity
approximation method, Mann iteration method and asymptotically nonexpansive mapping.

(ii) The problem of finding an element of VI(C,A) in [31] is extended to develop our prob-
lem of finding an element of Fix(T )∩Fix(S)∩VI(C,A) where T is asymptotically nonexpan-
sive and S is strictly pseudocontractive. The inertial subgradient extragradient method with
weak convergence for solving the VIP in [31] is extended to develop our asymptotic inertial
subgradient extragradient method with line-search process (which is strongly convergent) for
solving the VIP and CFPP, which is based on inertial subgradient extragradient method with
line-search process, hybrid steepest-descent method, viscosity approximation method, Mann
iteration method and asymptotically nonexpansive mapping.

(iii) The problem of finding an element of VI(C,A)∩Fix(T ) (where A is monotone and T
is quasi-nonexpansive) in [25] is extended to develop our problem of finding an element of
Fix(T )∩ Fix(S)∩VI(C,A) where T is asymptotically nonexpansive and S is strictly pseudo-
contractive. The inertial subgradient extragradient method with line-search (which is weakly
convergent) for solving the VIP and FPP in [31] is extended to develop our asymptotic inertial
subgradient extragradient method with line-search process (which is strongly convergent) for
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solving the VIP and CFPP, which is based on inertial subgradient extragradient method with
line-search process, hybrid steepest-descent method, viscosity approximation method, Mann
iteration method and asymptotically nonexpansive mapping. It is worth pointing out that the
inertial subgradient extragradient method with line-search process in [25] combines the inertial
subgradient extragradient method [31] with Mann iteration method.

(iv) The problem of finding an element in the common solution set Ω of variational inequal-
ities for inverse-strongly monotone mappings A and B and the fixed point problem of strictly
pseudocontractive mapping T in [2], is extended to develop our problem of finding an element
of Fix(T )∩Fix(S)∩VI(C,A) where T is asymptotically nonexpansive and S is strictly pseudo-
contractive. The relaxed extragradient method in [2] (i.e., iterative scheme (1.3) in this paper), is
extended to develop our asymptotic inertial subgradient extragradient method with line-search
process (which is strongly convergent) for solving the VIP and CFPP, which is based on iner-
tial subgradient extragradient method with line-search process, hybrid steepest-descent method,
viscosity approximation method, Mann iteration method and asymptotically nonexpansive map-
ping. Meantime, the restrictions δ ∈ [0, 1

2), γn < (1− 2δ )δn and limn→∞(
γn+1

1−βn+1
− γn

1−βn
) = 0

imposed on (1.3), are dropped, where δ ∈ [0, 1
2) is weakened to the condition δ ∈ [0,1).

(v) The problem of finding an element in the common solution set Ω of variational inequali-
ties for inverse-strongly monotone mappings A and B and the fixed point problem of asymptoti-
cally nonexpansive mapping T in [38], is extended to develop our problem of finding an element
of Fix(T )∩Fix(S)∩VI(C,A) where T is asymptotically nonexpansive and S is strictly pseudo-
contractive. The viscosity implicit rule involving a modified extragradient method in [38] (i.e.,
iterative scheme (1.4) in this paper), is extended to develop our asymptotic inertial subgradient
extragradient method with line-search process for solving the VIP and CFPP, which is based
on inertial subgradient extragradient method with line-search process, hybrid steepest-descent
method, viscosity approximation method, Mann iteration method and asymptotically nonexpan-
sive mapping. Meantime, the restrictions ∑

∞
n=1 |αn+1−αn|< ∞ and ∑

∞
n=1 ‖T n+1yn−T nyn‖< ∞

imposed on (1.4), are dropped, where ∑
∞
n=1 ‖T n+1yn−T nyn‖< ∞ is weakened to the condition

‖T n+1xn−T nxn‖→ 0 (n→ ∞).

4. APPLICATIONS

In this section, our main results are applied to solve the VIP and CFPP in an illustrated
example. The initial point x0 = x1 is randomly chosen in R. Take f (x) = F(x) = 1

2x, γ = l =
µ = 1

2 , σn = αn =
1

n+1 , βn =
1
3 , γn =

1
2 , δn =

1
6 and ρ = 2. Then we know that δ = κ = η = 1

2 ,
and

τ = 1−
√

1−ρ(2η−ρκ2) = 1−
√

1−2(2 · 1
2
−2(

1
2
)2) = 1 ∈ (0,1].

We first provide an example of Lipschitz continuous and pseudomonotone mapping A, asymp-
totically nonexpansive mapping T and strictly pseudocontractive mapping S with Ω = Fix(T )∩
Fix(S)∩VI(C,A) 6= /0. Let C = [−1,1] and H = R with the inner product 〈a,b〉 = ab and in-
duced norm ‖ · ‖ = | · |. Let A,T,S : H → H be defined as Ax := 1

1+|sinx| −
1

1+|x| , T x := 2
3 sinx

and Sx := 3
8x+ 1

2 sinx for all x ∈H. Now, we first show that A is pseudomonotone and Lipschitz
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continuous with L = 2. Indeed, for all x,y ∈ H we have

‖Ax−Ay‖ = | 1
1+‖sinx‖ −

1
1+‖x‖ −

1
1+‖siny‖ +

1
1+‖y‖ |

≤ | 1
1+‖sinx‖ −

1
1+‖siny‖ |+ |

1
1+‖x‖ −

1
1+‖y‖ |

= | 1+‖siny‖−1−‖sinx‖
(1+‖sinx‖)(1+‖siny‖) |+ |

1+‖y‖−1−‖x‖
(1+‖x‖)(1+‖y‖) |

= | ‖siny‖−‖sinx‖
(1+‖sinx‖)(1+‖siny‖) |+ |

‖y‖−‖x‖
(1+‖x‖)(1+‖y‖) |

≤ ‖sinx−siny‖
(1+‖sinx‖)(1+‖siny‖) +

‖x−y‖
(1+‖x‖)(1+‖y‖)

≤ ‖sinx− siny‖+‖x− y‖
≤ 2‖x− y‖.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseudomono-
tone. For any given x,y ∈ H, it is clear that the relation holds:

〈Ax,y−x〉= (
1

1+ |sinx|
− 1

1+ |x|
)(y−x)≥ 0⇒〈Ay,y−x〉= (

1
1+ |siny|

− 1
1+ |y|

)(y−x)≥ 0.

Furthermore, it is easy to see that T is asymptotically nonexpansive with θn = (2
3)

n ∀n≥ 1, such
that ‖T n+1xn−T nxn‖→ 0 as n→ ∞. Indeed, we observe that

‖T nx−T ny‖ ≤ 2
3
‖T n−1x−T n−1y‖ ≤ ·· · ≤ (

2
3
)n‖x− y‖ ≤ (1+θn)‖x− y‖,

and

‖T n+1xn−T nxn‖≤ (
2
3
)n−1‖T 2xn−T xn‖=(

2
3
)n−1‖2

3
sin(T xn)−

2
3

sinxn‖≤ 2(
2
3
)n→ 0 (n→∞).

It is clear that Fix(T ) = {0} and

lim
n→∞

θn

αn
= lim

n→∞

(2/3)n

1/(n+1)
= 0.

In addition, it is clear that S is strictly pseudocontractive with constant ζ = 3
4 . Indeed, we

observe that for all x,y ∈ H,

‖Sx−Sy‖2 ≤ [
3
8
‖x− y‖+ 1

2
‖sinx− siny‖]2 ≤ ‖x− y‖2 +

3
4
‖(I−S)x− (I−S)y‖2.

It is clear that (γn+δn)ζ = (1
2 +

1
6) ·

3
4 ≤

1
2 = γn for all n≥ 1. Therefore, Ω = Fix(T )∩Fix(S)∩

VI(C,A) = {0} 6= /0. In this case, Algorithm 3.1 can be rewritten as follows:
wn = T nxn +

1
n+1(T

nxn−T nxn−1),

yn = PC(wn− τnAwn),

zn =
1

n+1 ·
1
2xn +

n
n+1T nPCn(wn− τnAyn),

xn+1 =
1
3xn +

1
2zn +

1
6Szn ∀n≥ 1,

(4.1)

where for each n≥ 1, Cn and τn are chosen as in Algorithm 3.1. Then, by Theorem 3.1, we know
that {xn} converges to 0∈Ω= Fix(T )∩Fix(S)∩VI(C,A) if and only if |xn−xn+1|+ |xn−yn|→
0 as n→ ∞.
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On the other hand, Algorithm 3.2 can be rewritten as follows:
wn = T nxn +

1
n+1(T

nxn−T nxn−1),

yn = PC(wn− τnAwn),

zn =
1

n+1 ·
1
2xn +

n
n+1T nPCn(wn− τnAyn),

xn+1 =
1
3wn +

1
2zn +

1
6Szn ∀n≥ 1,

(4.2)

where for each n≥ 1, Cn and τn are chosen as in Algorithm 3.2. Then, by Theorem 3.2, we know
that {xn} converges to 0∈Ω= Fix(T )∩Fix(S)∩VI(C,A) if and only if |xn−xn+1|+ |xn−yn|→
0 as n→ ∞.
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