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Abstract. This paper focuses on the problems of invariant manifolds for nonuniformly hyperbolic systems on

time scales. We establish the existence of smooth stable invariant manifolds for a nonlinear dynamical system on

time scales in Banach spaces assuming that the corresponding linearized system admits a nonuniform exponential

dichotomy.
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1. INTRODUCTION

Dynamical systems or dynamic equations on time scales originate from [1, 2] and allow a

simultaneous treatment of continuous dynamical systems, discrete dynamical systems and dy-

namical systems on the general time scales. The concept of uniform or nonuniform exponential

dichotomies on time scales introduced in [3, 4, 5, 6] is a very important method and tool to

explore the dynamic behavior of nonautonomous dynamical systems such as the existence and

roughness [4, 5, 7], the Hartman-Grobman theorems [6, 8, 9], periodic solutions [4, 11], (pseu-

do) almost-periodic solutions [10, 12, 13, 14, 15, 16] and impulsive dynamic systems [17].
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As one of the most important and useful properties, the classical theory of invariant manifolds

provides a geometric structure to describe and understand the qualitative behavior of nonlinear

dynamical systems and has been widely recognized both in mathematics and in application-

s [18]. In particular, with the help of nonuniform exponential dichotomies, Zhang, Fan and

Chang [6] investigated the existence of Lipschitz stable invariant manifolds for nonuniformly

hyperbolic systems on measure chains. However, there are few results to consider smooth sta-

ble invariant manifolds on time scales, which is quite different from the existing results and is

much more challenging.

The content of this paper is as follows. In Section 2, we introduce some basic preliminary

results on time scales in order to make this paper self-contained. Section 3 focuses on estab-

lishing smooth stable invariant manifolds for nonuniformly hyperbolic systems on time scales

with the help of nonuniform exponential dichotomies.

2. PRELIMINARIES

We first introduce some basic terminologies and results of the calculus on time scales. We

refer the readers to [1, 2] for more details.

Let (X ,‖ · ‖) be a Banach space. A time scale T is defined as a nonempty closed subset

of the real numbers. Define the forward jump operator σ : T→ T and the graininess function

µ(t) = σ(t)− t for any t ∈T. We assume that T is unbounded below and above. Let T+
τ := {t ∈

T : τ ≤ t} and T−τ := {t ∈ T : t ≤ τ} for any τ ∈ T. Crd(T,X) denotes the set of rd-continuous

functions g : T→ X . R+(T,R) := {g ∈ Crd(T,R) : 1+ µ(t)g(t) > 0, for t ∈ T} is the space

of positively regressive functions. Define (ϕ ⊕ψ)(t) := ϕ(t)+ψ(t)+ µ(t)ϕ(t)ψ(t),	ϕ :=

− ϕ(t)
1+µ(t)ϕ(t)

,(ω � ϕ)(t) := lim
h↘µ(t)

(1+hϕ(t))ω −1
h

for a given ω ∈ R+ and for any t ∈

T,ϕ,ψ ∈R+(T,R). If ϕ ∈R+(T,R), then we define the exponential function by

eϕ(t,s) = exp
{∫ t

s
ζµ(τ)(ϕ(τ))∆τ

}
with ζh(z) =

 z if h = 0,

Log(1+hz)/h if h 6= 0,

for s, t ∈ T, where Log is the principal logarithm. Let κ = min{t ∈ T,0 ≤ t}. For any ϕ ∈

Crd(T+
κ ,R), we introduce the abbreviation [ϕ]∗ := supt∈T+

κ
(ϕ(t)), [ϕ]∗ := inft∈T+

κ
(ϕ(t)) and the



SMOOTH STABLE INVARIANT MANIFOLDS ON TIME SCALES 3

notations 0C ϕ ⇔ 0 < [ϕ]∗. It is clear to see that

lim
t→∞

e	ϕ(t,τ) = 0, lim
τ→−∞

e	ϕ(t,τ) = 0, eϕ(t,κ)≥ 1 for κ ≤ t,

for 0 < [ϕ]∗.

Let B(X) be the space of bounded linear operators defined on X . We consider the following

systems

(2.1) x∆ = A(t)x,

(2.2) x∆ = A(t)x+ f (t,x),

where A(t) ∈ Crd(T+
κ ,B(X)), f : T+

κ ×X → X . Let T (t,s) be the evolution operator satisfying

T (t,s)x(s) = x(t) for s≤ t, t,s ∈ T and any solution x(t) of equation (2.1).

Definition 2.1 ([6]). (2.1) is said to have a nonuniform exponential dichotomy on a time scale

T if there are a projection P(t) : X → X for κ ≤ t, a constant K > 1 and growth rates 0C a,0C

b,0E ρ such that, for any κ ≤ s≤ t, P(t)T (t,s)=T (t,s)P(s), TQ(t,s) :=T (t,s)|Q(s)X : Q(s)X→

Q(t)X is invertible, where Q(t) = id−P(t), and

‖T (t,s)P(s)‖ ≤ Ke	a(t,s)eρ(s,κ),

‖TQ(t,s)−1Q(t)‖ ≤ Ke	b(t,s)eρ(t,κ).
(2.3)

We then define the stable and unstable subspaces for each κ ≤ t by

E(t) = P(t)(X) and F(t) = Q(t)(X).

We denote by ∂ the partial derivative with respect to the second variable of any given function

of two variables and assume that:

(1) f (t,0) = 0 for any κ ≤ t;

(2) there exists c > 0 such that

(2.4)
∥∥∥∥∂ f

∂x
(t,x)

∥∥∥∥≤ ce	(3�ρ)(t,κ)

and

(2.5)
∥∥∥∥∂ f

∂x
(t,x1)−

∂ f
∂x

(t,x2)

∥∥∥∥≤ ce	(3�ρ)(t,κ)‖x1− x2‖
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for any κ ≤ t,x1,x2 ∈ X .

We also denote by X the space of rd-continuous functions Φ : T+
κ ×E(s)→ X of class C1

in ξ ∈ E(s) such that for each κ ≤ s:

(1) Φ(s,E(s))⊂ F(s) and Φ(s,0) = 0;

(2)

‖(∂Φ/∂ξ )(s,ξ )‖ ≤ 1,

‖(∂Φ/∂ξ )(s,ξ1)− (∂Φ/∂ξ )(s,ξ2)‖ ≤ ‖ξ1−ξ2‖
(2.6)

for every ξ1,ξ2 ∈ E(s).

It is easy to show that X is a Banach space with the norm

|Φ|′ = sup{‖Φ(s,ξ )‖/‖ξ‖ : κ ≤ s and ξ ∈ E(s)\{0}} .

Given Φ ∈X , we consider the graph

(2.7) W =
{
(s,ξ ,Φ(s,ξ )) : (s,ξ ) ∈ T+

κ ×E(s)
}
.

Moreover, for each (s,u(s),v(s)) ∈ T+
κ ×E(s)×F(s) we consider

(2.8) Ψγ(s,u(s),v(s)) = (t,u(t),v(t)), t− s = γ ≥ 0

generated by equation (2.2), where

(2.9) u(t) =U(t,s)u(s)+
∫ t

s
U(t,σ(τ)) f (τ,u(τ),v(τ))∆τ,

(2.10) v(t) =V (t,s)v(s)+
∫ t

s
V (t,σ(τ)) f (τ,u(τ),v(τ))∆τ,

where U(t,s) = T (t,s)P(s) and V (t,s) = TQ(t,s)Q(s).

3. EXISTENCE OF SMOOTH STABLE MANIFOLDS

In this section, we establish the existence of smooth stable invariant manifolds for nonuni-

formly hyperbolic systems on time scales. Let X ∗ be the space of rd-continuous functions

z : T+
κ ×E(s)→ X of class C1 in ξ ∈ E(s) such that for κ ≤ s:

(1) z(t,ξ ) ∈ E(t), z(t,0) = 0 for every s≤ t and z(s,ξ ) = ξ ;
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(2)

(3.1) ‖(∂ z/∂ξ )(t,ξ )‖ ≤ 2Ke	a(t,s)eρ(s,κ)

and

(3.2) ‖(∂ z/∂ξ )(t,ξ1)− (∂ z/∂ξ )(t,ξ2)‖ ≤ 2Ke	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

for every s≤ t and ξ1,ξ2 ∈ E(s).

It is not difficult to show that X ∗ is a Banach space with the norm

(3.3) ‖z‖∗ = sup
{

‖z(t,ξ )‖
‖ξ‖e	a(t,s)eρ(s,κ)

: s≤ t,ξ ∈ E(s)\{0}
}

and ‖z‖∗ ≤ K for each z ∈X ∗.

The following is our main result. It establishes the existence of a smooth stable invariant

manifold for equation (2.2).

Theorem 3.1. Assume that equation (2.1) admits a nonuniform exponential dichotomy and

[aµ]∗ < ∞, [ρµ]∗ < ∞. If [a⊕b	ρ]∗ > 0 and c is sufficiently small, then there exists a unique

function Φ ∈X such that the set W is forward invariant under Ψγ , in the sense that

(3.4) Ψγ(s,ξ ,Φ(s,ξ )) ∈W for every (s,ξ ) ∈ T+
κ ×E(s), γ ≥ 0.

Furthermore, the graph W is of class C1 for ξ ∈ E(s), and there exist constants d1,d2 > 0 such

that

(3.5) ‖Ψγ(s,ξ1,Φ(s,ξ1))−Ψγ(s,ξ2,Φ(s,ξ2))‖ ≤ d1e	a(t,s)eρ(s,κ)‖ξ1−ξ2‖

and

(3.6) ‖
∂Ψγ

∂ξ
(s,ξ1,Φ(s,ξ1))−

∂Ψγ

∂ξ
(s,ξ2,Φ(s,ξ2))‖ ≤ d2e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

for t− s = γ ≥ 0 and (s,ξ1),(s,ξ2) ∈ T+
κ ×E(s).

The proof of Theorem 3.1 will be obtained in several steps.
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Lemma 3.1. For s≤ t, we have

(3.7) ‖z(t,ξ1)− z(t,ξ2)‖ ≤ 2Ke	a(t,s)eρ(s,κ)‖ξ1−ξ2‖,

(3.8) ‖(∂Φ/∂ξ )(t,z(t,ξ ))‖ ≤ 2Ke	a(t,s)eρ(s,κ),

(3.9) ‖(∂ f/∂ξ )(t,z(t,ξ ),Φ(t,z(t,ξ )))‖ ≤ 4Kce	(3�ρ)(t,κ)e	a(t,s)eρ(s,κ),

(3.10) ‖Φ(t,z(t,ξ1))−Φ(t,z(t,ξ2))‖ ≤ 2Ke	a(t,s)eρ(s,κ)‖ξ1−ξ2‖,

(3.11) ‖(∂Φ/∂ξ )(t,z(t,ξ1))− (∂Φ/∂ξ )(t,z(t,ξ2))‖ ≤ 6K2e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖,

(3.12)
‖(∂ f/∂ξ )(t,z(t,ξ1),Φ(t,z(t,ξ1)))− (∂ f/∂ξ )(t,z(t,ξ2),Φ(t,z(t,ξ2)))‖

≤ 24K2ce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

for every Φ ∈X ,z ∈X ∗,ξ1,ξ2 ∈ E(s).

Proof. It follows from (3.1) that

‖z(t,ξ1)− z(t,ξ2)‖ ≤ sup
θ∈[0,1]

∥∥∥∥ ∂ z
∂ξ

(t,ξ1 +θ(ξ2−ξ1))

∥∥∥∥ · ‖ξ1−ξ2‖

≤ 2Ke	a(t,s)eρ(s,κ)‖ξ1−ξ2‖.

By (2.6) and (3.1), we have∥∥∥∥∂Φ

∂ξ
(t,z(t,ξ ))

∥∥∥∥≤ ∥∥∥∥∂Φ

∂ z
(t,z)

∥∥∥∥ ·∥∥∥∥ ∂ z
∂ξ

(t,ξ )
∥∥∥∥≤ 2Ke	a(t,s)eρ(s,κ).

By (2.4), (3.1) and (3.8), we have∥∥∥∥∂ f
∂ξ

(t,z(t,ξ ),Φ(t,z(t,ξ )))
∥∥∥∥≤ ∥∥∥∥∂ f

∂ z
(t,z,Φ)

∥∥∥∥ ·∥∥∥∥ ∂ z
∂ξ

(t,ξ )
∥∥∥∥

+

∥∥∥∥ ∂ f
∂Φ

(t,z,Φ)

∥∥∥∥ ·∥∥∥∥∂Φ

∂ξ
(t,z)

∥∥∥∥
≤ 4Kce	(3�ρ)(t,κ)e	a(t,s)eρ(s,κ).
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Writing zi = z(t,ξi), i = 1,2. It follows from (2.6) and (3.7) that

‖Φ(t,z(t,ξ1))−Φ(t,z(t,ξ2))‖

≤ sup
θ∈[0,1]

∥∥∥∥∂Φ

∂ z
(t,z1 +θ(z2− z1))

∥∥∥∥ · ‖z(t,ξ1)− z(t,ξ2)‖

≤ 2Ke	a(t,s)eρ(s,κ)‖ξ1−ξ2‖.

By (2.6), (3.1), (3.2) and (3.7), we have

A1(t) : =
∥∥∥∥∂Φ

∂ z
(t,z1)

∂ z
∂ξ

(t,ξ1)−
∂Φ

∂ z
(t,z1)

∂ z
∂ξ

(t,ξ2)

∥∥∥∥
≤ 2Ke	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

and

A2(t) : =
∥∥∥∥∂Φ

∂ z
(t,z1)

∂ z
∂ξ

(t,ξ2)−
∂Φ

∂ z
(t,z2)

∂ z
∂ξ

(t,ξ2)

∥∥∥∥
≤ 2Ke	a(t,s)eρ(s,κ)‖z1− z2‖

≤ 4K2e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖.

Therefore, one has ∥∥∥∥∂Φ

∂ξ
(t,z(t,ξ1))−

∂Φ

∂ξ
(t,z(t,ξ2))

∥∥∥∥
=

∥∥∥∥∂Φ

∂ z
(t,z1)

∂ z
∂ξ

(t,ξ1)−
∂Φ

∂ z
(t,z2)

∂ z
∂ξ

(t,ξ2)

∥∥∥∥
≤ A1(t)+A2(t)≤ 6K2e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

since K > 1. Writing Φi = Φ(t,z(t,ξi)), i = 1,2. By (2.4), (2.5), (3.1), (3.2), (3.7) and (3.10)

we have

B1(t) : =
∥∥∥∥∂ f

∂ z
(t,z1,Φ1)

∂ z
∂ξ

(t,ξ1)−
∂ f
∂ z

(t,z1,Φ1)
∂ z
∂ξ

(t,ξ2)

∥∥∥∥
≤ 2Kce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖
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and

B2(t) : =
∥∥∥∥∂ f

∂ z
(t,z1,Φ1)

∂ z
∂ξ

(t,ξ2)−
∂ f
∂ z

(t,z2,Φ2)
∂ z
∂ξ

(t,ξ2)

∥∥∥∥
≤ 2Kce	(3�ρ)(t,κ)e	a(t,s)eρ(s,κ)(‖z1− z2‖+‖Φ1−Φ

2‖)

≤ 8K2ce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖.

On the other hand, it follows from (3.8) and (3.11) that

B3(t) : =
∥∥∥∥ ∂ f

∂Φ
(t,z1,Φ1)

∂Φ

∂ξ
(t,z1)− ∂ f

∂Φ
(t,z1,Φ1)

∂Φ

∂ξ
(t,z2)

∥∥∥∥
≤ 6K2ce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖

and

B4(t) : =
∥∥∥∥ ∂ f

∂Φ
(t,z1,Φ1)

∂Φ

∂ξ
(t,z2)− ∂ f

∂Φ
(t,z2,Φ2)

∂Φ

∂ξ
(t,z2)

∥∥∥∥
≤ 2Kce	(3�ρ)(t,κ)e	a(t,s)eρ(s,κ)(‖z1− z2‖+‖Φ1−Φ

2‖)

≤ 8K2ce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖.

Therefore, we have∥∥∥∥∂ f
∂ξ

(t,z(t,ξ1),Φ(t,z(t,ξ1)))−
∂ f
∂ξ

(t,z(t,ξ2),Φ(t,z(t,ξ2)))

∥∥∥∥
≤ B1(t)+B2(t)+B3(t)+B4(t)

≤ 24K2ce	(3�ρ)(t,κ)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖.

Lemma 3.2. Given c> 0 sufficiently small and (s,ξ ,Φ)∈T+
κ ×E(s)×X , there exists a unique

function z ∈X ∗ such that (2.9) holds for every s≤ t.

Proof. Given (s,ξ ) ∈ T+
κ ×E(s) and Φ ∈X , we define an operator L in X ∗ by

(Lz)(t,ξ ) =U(t,s)ξ +
∫ t

s
U(t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ.
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Obviously, (Lz)(t,ξ ) ∈ E(t), (Lz)(t,0) = 0 and (Lz)(s,ξ ) = ξ . It follows from (2.4), (2.6) and

(3.3) that

‖ f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))‖ ≤ ce	(3�ρ)(τ,κ)‖(z(τ,ξ ),Φ(τ,z(τ,ξ )))‖

≤ 2ce	(3�ρ)(τ,κ)‖z(τ,ξ )‖

≤ 4Kce	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)‖ξ‖.

(3.13)

By (2.3), we have

∫ t

s
‖U(t,σ(τ))‖‖ f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))‖

≤ 4K2c‖ξ‖
∫ t

s
e	a(t,σ(τ))eρ(σ(τ),κ)e	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)∆τ

≤ 4K2ce	a(t,s)eρ(s,κ)‖ξ‖
∫ t

s
(1+aµ(τ))(1+ρµ(τ))e	(2�ρ)(τ,κ)∆τ

≤ 4K2cλ
′e	a(t,s)eρ(s,κ)‖ξ‖,

where

λ
′ =

(1+[aµ]∗)(1+[ρµ]∗)(1+[(2�ρ)µ]∗)

[2�ρ]∗
.

Then

‖(Lz)(t,ξ )‖ ≤ ‖U(t,s)ξ‖+
∫ t

s
‖U(t,σ(τ))‖‖ f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))‖∆τ

≤ Ke	a(t,s)eρ(s,κ)‖ξ‖+4K2cλ
′e	a(t,s)eρ(s,κ)‖ξ‖.

This implies that ‖Lz‖∗ ≤ K +4K2cλ ′ < ∞. By (2.3) and (3.9), one has

∥∥∥∥∂ (Lz)
∂ξ

(t,ξ )
∥∥∥∥≤ Ke	a(t,s)eρ(s,κ)

+4K2c
∫ t

s
e	a(t,σ(τ))eρ(σ(τ),κ)e	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)∆τ

≤ Ke	a(t,s)eρ(s,κ)+4K2cλ
′e	a(t,s)eρ(s,κ)≤ 2Ke	a(t,s)eρ(s,κ),
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since c is sufficiently small so that 4K2cλ ′ ≤ K. For any ξ1,ξ2 ∈ E(s), we have∥∥∥∥∂ (Lz)
∂ξ

(t,ξ1)−
∂ (Lz)

∂ξ
(t,ξ2)

∥∥∥∥≤ 24K2c‖ξ1−ξ2‖

×
∫ t

s
e	a(t,σ(τ))eρ(σ(τ),s)e	(3�ρ)(τ,κ)e	a(τ,s)e(2�ρ)(s,κ)∆τ

≤ 24K2cλ
′e	a(t,s)e(2�ρ)(s,κ)‖ξ1−ξ2‖ ≤ 2Ke	a(t,s)e(2�ρ)(s,κ)‖ξ1−ξ2‖,

since c is sufficiently small. Therefore, L(X ∗)⊂X ∗. On the other hand, for each z1,z2 ∈X ∗,

we conclude that

‖ f (τ,z1(τ,ξ ),Φ(τ,z1(τ,ξ )))− f (τ,z2(τ,ξ ),Φ(τ,z2(τ,ξ )))‖

≤ ce	(3�ρ)(τ,κ)‖(z1(τ,ξ ),Φ(τ,z1(τ,ξ )))− (z2(τ,ξ ),Φ(τ,z2(τ,ξ )))‖

≤ 2ce	(3�ρ)(τ,κ)‖z1(τ,ξ )− z2(τ,ξ )‖

≤ 2ce	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)‖ξ‖‖z1− z2‖∗.

It follows from (2.3) that

‖(Lz1)(t)− (Lz2)(t)‖ ≤ 2Kc‖ξ‖‖z1− z2‖∗

×
∫ t

s
e	a(t,σ(τ))eρ(σ(τ),κ)e	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)∆τ

≤ 2Kcλ
′e	a(t,s)eρ(s,κ)‖ξ‖‖z1− z2‖∗.

This implies that ‖Lz1−Lz2‖∗≤ 2Kcλ ′‖z1−z2‖∗ and L is a contraction if c is sufficiently small.

Therefore, there exists a unique function z ∈X ∗ such that Lz = z.

Let z = zΦ(t,ξ ) be the unique function given by Lemma 3.2, that is,

(3.14) z(t,ξ ) =U(t,s)ξ +
∫ t

s
U(t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ

for each s≤ t.

Lemma 3.3. Let Φ ∈X and z be the unique function given by Lemma 3.2. Then the following

properties hold:

(1) if

(3.15) Φ(t,z(t,ξ )) =V (t,s)Φ(s,ξ )+
∫ t

s
V (t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ
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for every (s,ξ ) ∈ T+
κ ×E(s) and s≤ t, then

(3.16) Φ(s,ξ ) =−
∫

∞

s
V (σ(τ),s)−1 f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ.

(2) if identity (3.16) holds for every (s,ξ ) ∈ T+
κ ×E(s), then (3.15) holds for every (s,ξ ) ∈

T+
κ ×E(s).

Proof. It follows from (2.3) and (3.13) that∫
∞

s
‖V (σ(τ),s)−1‖‖ f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))‖∆τ

≤ 4K2c‖ξ‖
∫ t

s
e	b(σ(τ),s)eρ(σ(τ),κ)e	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)∆τ

≤ 4K2c‖ξ‖ea⊕b⊕ρ(s,κ)
∫ t

s

1+ρµ(τ)

1+bµ(τ)
e	(a⊕b⊕(2�ρ))(τ,κ)∆τ

≤ 4K2c‖ξ‖
(

1+[ρµ]∗

1+[bµ]∗

)(
1

[a⊕b⊕ (2�ρ)]∗
+[µ]∗

)
< ∞.

This implies that (3.16) is well-defined. If (3.15) holds for every (s,ξ ) ∈ T+
κ ×E(s) and s ≤ t,

then identity (3.15) can be written in the form

(3.17) Φ(s,ξ ) =V (t,s)−1
Φ(t,z(t,ξ ))−

∫ t

s
V (σ(τ),s)−1 f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ.

By (2.3), (2.6), and (3.1), we have

‖V (t,s)−1
Φ(t,z(t,ξ ))‖ ≤ Ke	b(t,s)eρ(t,κ)‖z(t,ξ )‖

≤ 2K2‖ξ‖e	b(t,s)eρ(t,κ)e	a(t,s)eρ(s,κ)

≤ 2K2‖ξ‖e	(a⊕b	ρ)(t,κ)ea⊕b⊕ρ(s,κ).

Therefore, (3.16) holds when letting t→ ∞ since [a⊕b	ρ]∗ > 0.

We now assume that (3.16) holds for every (s,ξ ) ∈ T+
κ ×E(s). It follows from (3.16) that

V (t,s)Φ(s,ξ ) =−
∫

∞

s
V (t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ

=−
∫ t

s
V (t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ

−
∫

∞

t
V (t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ

=−
∫ t

s
V (t,σ(τ)) f (τ,z(τ,ξ ),Φ(τ,z(τ,ξ )))∆τ +Φ(t,z(t,ξ )).
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This completes the proof of the lemma.

Lemma 3.4. If c is sufficiently small, then there exists K1 > 0 such that

(3.18) ‖zΦ1(t,ξ )− zΦ2(t,ξ )‖ ≤ K1eγ	a(t,s)eρ(s,κ)‖ξ‖ · |Φ1−Φ2|′

for every Φ1,Φ2 ∈X , (s,ξ ) ∈ T+
κ ×E(s) and s≤ t.

Proof. Write zi = zΦi for i = 1,2. We first note that

‖Φ1(τ,z1(τ,ξ ))−Φ2(τ,z2(τ,ξ ))‖

≤ ‖Φ1(τ,z1(τ,ξ ))−Φ2(τ,z1(τ,ξ ))‖+‖Φ2(τ,z1(τ,ξ ))−Φ2(τ,z2(τ,ξ ))‖

≤ ‖z1(τ,ξ )‖ · |Φ1−Φ2|′+‖z1(τ,ξ )− z2(τ,ξ )‖.

Then we have

‖ f (τ,z1(τ,ξ ),Φ1(τ,z1(τ,ξ )))− f (τ,z1(τ,ξ ),Φ2(τ,z2(τ,ξ )))‖

≤ ce	(3�ρ)(τ,κ)(‖z1(τ,ξ )‖ · |Φ1−Φ2|′+2‖z1(τ,ξ )− z2(τ,ξ )‖)

≤ 2Kce	(3�ρ)(τ,κ)e	a(τ,s)eρ(s,κ)‖ξ‖ · |Φ1−Φ2|′

+2ce	(3�ρ)(τ,κ)‖z1(τ,ξ )− z2(τ,ξ )‖.

(3.19)

It follows from (2.3) that

e	a(s, t)‖z1(t,ξ )− z2(t,ξ )‖ ≤ 2K2cλ
′eρ(s,κ)‖ξ‖ · |Φ1−Φ2|′

+ γ

∫ t

s
e	a(s,τ)‖z1(τ,ξ )− z2(τ,ξ )‖∆τ,

where

γ = 2Kc(1+[aµ]∗)(1+[ρµ]∗).

By using Gronwall’s inequality (see Section 6 in [2]), we have

‖z1(t,ξ )− z2(t,ξ )‖ ≤ 2K2cλ
′eγ	a(t,s)eρ(s,κ)‖ξ‖ · |Φ1−Φ2|′.

Lemma 3.5. If c is sufficiently small, then there exists a unique function Φ∈X such that (3.16)

holds for every (s,ξ ) ∈ T+
κ ×E(s).
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Proof. For each Φ ∈X and (s,ξ ) ∈ T+
κ ×E(s), we define an operator J by

(JΦ)(s,ξ ) =−
∫

∞

s
V (σ(τ),s)−1 f (τ,zΦ(τ,ξ ),Φ(τ,zΦ(τ,ξ )))∆τ,

where zΦ is the unique function given by Lemma 3.2. It is easy to show that JΦ is of class C1

in ξ ∈ E(s), JΦ(s,E(s))⊂ F(s) and JΦ(s,0) = 0. By (2.3) and (3.9), we have∥∥∥∥∂ (JΦ)

∂ξ
(s,ξ )

∥∥∥∥≤ ∫ ∞

s
‖V (σ(τ),s)−1‖

∥∥∥∥∂ f
∂ξ

∥∥∥∥∆τ

≤ 4K2c
(

1+[ρµ]∗

1+[bµ]∗

)(
1

[a⊕b⊕ (2�ρ)]∗
+[µ]∗

)
,

which implies that ‖(∂ (JΦ)/∂ξ )(s,ξ )‖ ≤ 1 since c is sufficiently small. It follows from (2.3)

and (3.12) that ∥∥∥∥∂ (JΦ)

∂ξ
(s,ξ1)−

∂ (JΦ)

∂ξ
(s,ξ2)

∥∥∥∥
≤
∫

∞

s
‖V (σ(τ),s)−1‖

∥∥∥∥∂ f
∂ξ

(τ,ξ1)−
∂ f
∂ξ

(τ,ξ2)

∥∥∥∥
≤ 24K3c

(
1+[ρµ]∗

1+[bµ]∗

)(
1

[a⊕b⊕ (2�ρ)]∗
+[µ]∗

)
‖ξ1−ξ2‖.

Therefore, J(X )⊂X .

Now we show that J is a contraction. Let (s,ξ ) ∈ T+
κ ×E(s), for each Φ1,Φ2 ∈ X and

zi = zΦi
ξ

for i = 1,2. By (3.18) and (3.19), we have

C(τ) : = ‖ f (τ,z1(τ,ξ ),Φ1(τ,z1(τ,ξ )))− f (τ,z2(τ,ξ ),Φ2(τ,z2(τ,ξ )))‖

≤ 2(K +K1)ce	(3�ρ)(τ,κ)(e	a(τ,s)

+ eγ	a(τ,s))eρ(s,κ)‖ξ‖ · |Φ1−Φ2|′.

Then

‖(JΦ1)(s,ξ )− (JΦ2)(s,ξ )‖

≤
∫

∞

s
‖V (σ(τ),s)−1‖C(τ)∆τ

≤ 2K(K +K1)c
(

1+[ρµ]∗

1+[bµ]∗

)
‖ξ‖ · |Φ1−Φ2|′

×
∫

∞

s
e	b(τ,s)eρ(τ,κ)e	(3�ρ)(τ,κ)(e	a(τ,s)+ eγ	a(τ,s))eρ(s,κ)∆τ.
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If c is sufficiently small, then

‖(JΦ1)(s,ξ )− (JΦ2)(s,ξ )‖ ≤ η‖ξ‖|Φ1−Φ2|′,

where

η = 2K(K +K1)c
(

1+[ρµ]∗

1+[bµ]∗

)(
1

[γ	 (a⊕b⊕ (2�ρ))]∗
+[µ]∗

)
< 1,

which means that J is a contraction and has a unique fixed point Φ in X .

We are now at the right position to establish Theorem 3.1.

Proof of Theorem 3.1. It follows from Lemma 3.2 that, for each (s,ξ ) ∈ T+
κ ×E(s) and Φ ∈

X , there exists a unique function z = zΦ

ξ
∈X ∗. By Lemmas 3.3 and 3.5, for each κ ≤ s and

ξ ∈ E(s) there exists a unique function Φ such that (3.15) holds. Therefore, (3.4) holds and W

is forward invariant under Ψγ . Meanwhile, since the function Φ is of class C1 for ξ ∈ E(s), the

graph W is of class C1 for ξ ∈ E(s). For each (s,ξ1),(s,ξ2) ∈ T+
κ ×E(s) and γ = t− s≥ 0, by

(3.7) and (3.10) we have

‖Ψγ(s,ξ1,Φ(s,ξ1))−Ψγ(s,ξ2,Φ(s,ξ2))‖

= ‖(t,z(t,ξ1),Φ(t,z(t,ξ1)))− (t,z(t,ξ2),Φ(t,z(t,ξ2)))‖

≤ 4Ke	a(t,s)eρ(s,κ)‖ξ1−ξ2‖,

and it follows from (3.2) and (3.12) that

‖
∂Ψγ

∂ξ
(s,ξ1,Φ(s,ξ1))−

∂Ψγ

∂ξ
(s,ξ2,Φ(s,ξ2))‖

≤ ‖(∂ z)(∂ξ )(t,ξ1)− (∂ z)(∂ξ )(t,ξ2)‖

+‖(∂Φ)(∂ξ )(t,z(t,ξ1))− (∂Φ)(∂ξ )(t,z(t,ξ2))‖

≤ (2K +6K2)e	a(t,s)e2�ρ(s,κ)‖ξ1−ξ2‖.

This completes the proof of the theorem. �
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