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Abstract. Enzymatic reactions occur through active sites of enzymes, which combine with the substrates to form

intermediate complexes and subsequently lead to product. Transformation from one intermediate to another re-

quires time dependent conformational changes of complexes. These changes are thus often accompanied by some

time delay during formation of product. Time delay due to conformational changes can be avoided by controlling

suitable reaction parameters, which are better identified by mathematical modeling. In this research article, we

have proposed a delay differential equation model of enzymatic reaction system and analyzed the dynamics of the

system critically from analytical and numerical points of view. It has been observed that time delay affects the

stability and performance characteristics of the system. A control induced delay differential equation model is

derived to reduce the delay induced instability of the system which contributes product optimization.
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In biochemical system, reactions are generally catalyzed by enzymes for smooth conversion

of substrates to product. Enzymes are very much selective in nature where a particular enzyme

generally accelerates only a specific reaction. Enzyme works on the basis of binding target

molecules or substrates through the active sites which is the most vibrant part of an enzyme.

After binding with the substrate, it forms enzyme-substrate complex and finally transformed

into product through enzyme-product complex. Existence of an enzyme-substrate complex in

enzymatic reactions is first proposed by Brown in 1902 [1]. Later, it is shown that formation of

complex by the interaction of substrate and enzyme is a reversible process [2]. Transformation

of enzyme-substrate complex to enzyme-product complex involves conformational changes ac-

companied by some time delay which reduces the optimal conversion [3–5]. So most of the

enzymatic reactions are not instantaneous and natural time delay is also observed in the evolu-

tion of cell states [6, 7].

Formation, stability and conformational changes of intermediate complexes affect the rate

of reaction, nature of product and conversion efficiency of biochemical reactions. One of the

most important aspects of enzyme kinetics is the formation and retention of intermediate com-

plexes of different nature including time delay. The time delay in reaction system has been

studied through mathematical modeling by many researchers [8–10]. It has been proposed that

Ninio [11] first constructed a delayed enzyme-substrate reaction by sequence of conventional

elementary steps. Hinch and Schnell [12] studied the distribution of delay by the number of

intermediates between reactant mixing and product formation in enzyme kinetic reactions. Al-

bornoz and Parravano [13] proposed continuous delayed models for large enough number of

substrate molecules in enzyme kinetic reactions. Their models consider the time that elapses

from the moment enzyme-substrate complex forms until the moment a product molecule is re-

leased. It has also been shown that delay differential equations exhibit a comparatively complex

dynamical behavior than ordinary differential equations since a delay may cause an equilibrium

state to lose its stability and makes the system oscillatory [14–17].

Controlling or minimization of time delay in biochemical system is the key factor for prod-

uct optimization through mathematical concepts . Control measure in this regard in interme-

diate stages of conformational change contributes appreciably for economization of time as
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well as smooth completion of product in system kinetics [18–20]. Here, we initially formu-

late a mathematical model of enzymatic reactions considering the intermediate conversion of

enzyme-substrate complex to enzyme-product complex. In this stage of conformational change,

we introduce time delay to study the effect on concentrations of different components of the

system. To make this enzymatic process more realistic and to optimize the formation of prod-

uct, optimal control theory has been introduced in the delayed model for that particular stage.

We have discussed about stability of both the non-delayed and delayed system. “Pontryagin

Minimum Principle” is applied to determine the optimal control. We solve both the models

from numerical point of view. Stability analysis shows that the non-delayed system is globally

asymptotically stable where as the delayed system is locally asymptotically stable for all values

of delay. Our numerical results reveal that the product in biochemical system can be optimized

by reducing delay time with the understanding of control based modeling technique.

2. Mathematical Model Formulation

The schematic diagram of a basic enzymatic reaction, proposed by Michaelis and Menten [2],

can be represented as follows,

S+E 
 ES→ E +P,

where S is the substrate, E is the enzyme, ES is the enzyme-substrate complex and P is the

product. We want to extend the above schematic diagram with the assumption that the complex

ES is converted to the enzyme-product complex EP. All reactions which are catalyzed by

enzymes are reversible and this could play a prominent role in biochemistry [21]. We consider

that the stage of product formation from EP complex is reversible. The extended schematic

diagram thus can be represented by [3–5],

S+E
k1


k−1

ES
k2


k−2

EP
k3


k−3

E +P,

where S, E, ES, EP and P are the substrate, enzyme, enzyme-substrate intermediate complex

(represented by C1), enzyme-product intermediate complex (C2) and the product respectively.

The rate constants for the formation of C1 and C2 are denoted by k1 and k2 respectively and k3
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is the catalysis rate constant. k−1 and k−2 are the rate constants for backward reactions of C1

and C2 respectively and k−3 is the rate constant for backward reactions of E and P. The above

diagram demonstrates that one mole of substrate S combines with one mole of enzyme E to

form C1. This complex (C1) may convert to C2 through some conformational changes or may

decompose back into unmodified substrate S and enzyme E. Finally, C2 is either converted to

the product P and makes the enzyme free or revert back into C1.

Considering s, ek, c1, c2 and p as the concentrations of S, E, ES, EP and P respectively, from

the law of mass action, the non-linear system of differential equations for the above enzymatic

reaction may be enunciated as follows:

ds
dt

= −k1eks+ k−1c1,

dek

dt
= −k1eks+ k−1c1 + k3c2− k−3ek p,

dc1

dt
= k1eks− k−1c1− k2c1 + k−2c2,

dc2

dt
= k2c1− k−2c2− k3c2 + k−3ek p,

d p
dt

= k3c2− k−3ek p,(1)

with the initial conditions,

ek(0) = ek0, s(0) = s0, c1(0) = 0, c2(0) = 0, p(0) = 0.(2)

From the above system, we have

ds
dt

+
d p
dt
− dek

dt
= 0,

dc1

dt
+

dc2

dt
+

dek

dt
= 0.(3)

From relation (3) with help of initial conditions (2), we have the following relations.

s+ p− ek = s0− ek0,

c1 + c2 + ek = ek0.(4)
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Using (4), system (1) can be reduced to a three dimensional model given below,

dek

dt
= −{k1(s0− ek0 + ek)+ k3}ek +(k−1− k3)c1 +(k1− k−3)ek p+ k3ek0,

dc1

dt
= {k1(s0− ek0 + ek)− k−2}ek− (k−1 + k2 + k−2)c1− k1ek p+ k−2ek0,

d p
dt

= −k3(c1 + ek)− k−3ek p+ k3ek0,(5)

with initial conditions,

ek(0) = ek0, c1(0) = 0, p(0) = 0.(6)

2.1. Theoretical Study of System (5)

Here we determine the equilibrium point of system (5) and discuss the stability of the system

around it.

2.1.1. Equilibria and Stability

In this section, we only consider positive equilibrium point of the system and its stability.

The system (5) possesses the following interior equilibria E∗(e∗k ,c
∗
1, p∗), where

c∗1 =
k−2(ek0− e∗k)

k2 + k−2
, p∗ =

k2k3(ek0− e∗k)
(k2 + k−2)k−3e∗k

and e∗k satisfies the following equation,

Λ1e∗k
2 +Λ2e∗k−Λ3 = 0.(7)

The coefficients Λ1, Λ2 and Λ3 are given by,

Λ1 = k1(k2 + k−2)k−3,

Λ2 = k1(k2 + k−2)k−3(s0− ek0)+ k1k2k3 + k−1k−2k−3,

Λ3 = (k1k2k3 + k−1k−2k−3)ek0.

2.1.2. Existence Condition

Positive equilibrium point E∗ exists if e∗k satisfies the following condition,

ek0− e∗k > 0.
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2.1.3. Stability Analysis

Here we discuss about stability of the equilibrium point E∗. The jacobian matrix J(e∗k ,c
∗
1, p∗)

about the equilibrium point E∗(e∗k ,c
∗
1, p∗) is [mi j], i, j = 1,2,3, where

m11 = −{k1(s∗+ e∗k)+ k−3 p∗+ k3},

m12 = k−1− k3,

m13 = (k1− k−3)e∗k ,

m21 = k1(s∗+ e∗k)− k−2,

m22 = −(k−1 + k2 + k−2),

m23 = −k1e∗k , m31 =−(k3 + k−3 p∗),

m32 = −k3, m33 =−k−3e∗k .(8)

The characteristic equation of system (5) is

ξ
3 +A1ξ

2 +A2ξ +A3 = 0,(9)

where the coefficients are given by,

A1 = −(m11 +m22 +m33),

A2 = m22m33−m32m23 +m11m22−m21m12 +m11m33−m31m13,

A3 = −[m11(m22m33−m32m23)−m12(m21m33−m31m23)

+m13(m21m32−m31m22)].

It is clear from the expressions of A1, A3 and A1A2−A3 (given in Appendix A) that the coeffi-

cients of (9) always satisfy the Routh-Hurwitz conditions i.e.,

A1 > 0, A3 > 0 and A1A2−A3 > 0.(10)

Thus, we have the following proposition.

Proposition 1. The equilibrium point E∗(e∗k ,c
∗
1, p∗) is locally asymptotically stable.
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2.1.4. Global Stability

Now, we want to show that the equilibrium point E∗(e∗k ,c
∗
1, p∗) is globally asymptotically

stable. Let us formulate the following Lyapunov function,

L(ek,c1, p) =
1
2
{ν1e2

k +ν2c2
1 +ν3 p2},(11)

where νi > 0, (i = 1,2,3) is to be determined suitably. The derivative of L along the solution of

Ẋ(t) = J(e∗k ,c
∗
1, p∗)X(t), where X(t) = (ek(t),c1(t), p(t))T , is given by,

dL
dt

= ν1ekėk +ν2c1ċ1 +ν3 pṗ

= ν1m11e2
k +(ν1m12 +ν2m21)ekc1 +(ν1m13 +ν3m31)ek p

+ν2m22c2
1 +ν3m33 p2 +(ν2m23 +ν3m32)c1 p,(12)

where ėk =
dek
dt , ċ1 =

dc1
dt , ṗ = d p

dt and mi j’s (i, j = 1,2,3) are given by equation (8).

The symmetric matrix corresponding to dL
dt is given by,

ϒ =
1
2


2ν1m11 ν1m12 +ν2m21 ν1m13 +ν3m31

ν1m12 +ν2m21 2ν2m22 ν2m23 +ν3m32

ν1m13 +ν3m31 ν2m23 +ν3m32 2ν3m33

 .

The equilibrium point E∗ is globally asymptotically stable if dL
dt is negative definite i.e., if matrix

ϒ is negative definite. This follows if 2ν1m11 < 0, 4ν1ν2m11m22− (ν1m12 +ν2m21)
2 > 0 and

| ϒ |< 0, where | ϒ | is determinant of matrix ϒ. Hence, we have the following proposition.

Proposition 2. The equilibrium point E∗(e∗k ,c
∗
1, p∗) is globally asymptotically stable for suit-

ably chosen positive values of ν1, ν2 and ν3 satisfying 4ν1ν2m11m22− (ν1m12 + ν2m21)
2 > 0

and | ϒ |< 0.

2.2. The Model with Delay

The mathematical model (1) does not involve any time delay. Since the process is not instan-

taneous, as it takes time to form the complex EP from the complex ES, we assume that there is

a delay in the intermediate step ES
τ


EP [3–5].
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The dependency of one chemical component on the history of another chemical component

can also force the system into oscillation. When this dependency is distributed and it is taken

into consideration, model (1) reduces to a system of delay differential equations. However,

introduction of delay into system (1) may produce spontaneous oscillation [22].

Incorporating delay in the model equations (1), we get the following delay induced system,

ds(t)
dt

= −k1ek(t)s(t)+ k−1c1(t),

dek(t)
dt

= −k1ek(t)s(t)+ k−1c1(t)+ k3c2(t)− k−3ek(t)p(t),

dc1(t)
dt

= k1ek(t)s(t)− k−1c1(t)− k2c1(t)+ k−2c2(t),

dc2(t)
dt

= k2c1(t− τ)− k−2c2(t)− k3c2(t)+ k−3ek(t)p(t),

d p(t)
dt

= k3c2(t)− k−3ek(t)p(t),(13)

along with initial conditions,

s(θ) = s0 > 0, ek(θ) = ek0 > 0, c1(θ) = 0, c2(θ) = 0, p(θ) = 0, θ ∈ [−τ,0].(14)

Here we also have the following relation,

ds(t)
dt

+
d p(t)

dt
− dek(t)

dt
= 0.(15)

Using initial conditions (14) and the relation (15), from (13), we have

ds(t)
dt

= −k1{s(t)+ p(t)+ ek0− s0}s(t)+ k−1c1(t),

dc1(t)
dt

= k1{s(t)+ p(t)+ ek0− s0}s(t)− (k−1 + k2)c1(t)+ k−2c2(t),

dc2(t)
dt

= k2c1(t− τ)− (k−2 + k3)c2(t)

+k−3{s(t)+ p(t)+ ek0− s0}p(t),

d p(t)
dt

= k3c2(t)− k−3{s(t)+ p(t)+ ek0− s0}p(t),(16)

with initial conditions

s(θ) = s0, c1(θ) = 0, c2(θ) = 0, p(θ) = 0, where θ ∈ [−τ,0].
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2.3. Length of Delay and Stability of the System

Let us define s̄(t) = s(t)− s∗, c̄1(t) = c1(t)− c∗1, c̄2(t) = c2(t)− c∗2, p̄(t) = p(t)− p∗.

The linearized form of the system (16) about (e∗k ,c
∗
1, p∗) is,

ds̄(t)
dt

= −k1(s∗+ e∗k)s̄(t)+ k−1c̄1(t)− k1s∗ p̄(t),

dc̄1(t)
dt

= k1(s∗+ e∗k)s̄(t)− (k−1 + k2)c̄1(t)+ k−2c̄2(t)+ k1s∗ p̄(t),

dc̄2(t)
dt

= k2c̄1(t− τ)+ k−3 p∗s̄(t)− (k−2 + k3)c̄2(t)+ k−3(e∗k + p∗)p̄(t),

d p̄(t)
dt

= −k−3 p∗s̄(t)+ k3c̄2(t)− k−3(e∗k + p∗)p̄(t).(17)

Now we express system (17) in matrix form as follows:

d
dt


s̄(t)

c̄1(t)

c̄2(t)

p̄(t)

= B1


s̄(t)

c̄1(t)

c̄2(t)

p̄(t)

+B2


s̄(t− τ)

c̄1(t− τ)

c̄2(t− τ)

p̄(t− τ)

 ,

where

B1 =


−k1(s∗+ e∗k) k−1 0 −k1s∗

k1(s∗+ e∗k) −(k−1 + k2) k−2 k1s∗

k−3 p∗ 0 −(k−2 + k3) k−3(e∗k + p∗)

−k−3 p∗ 0 k3 −k−3(e∗k + p∗)


and

B2 =


0 0 0 0

0 0 0 0

0 k2 0 0

0 0 0 0

 .

The characteristic equation of system (17) is given by,

4(ξ ) = | ξ I−B1− e−ξ τB2 |= 0,

(18) i.e., ξ
4 +a11ξ

3 +a12ξ
2 +a13ξ +a14 +(a15ξ

2 +a16ξ −a14)e−ξ τ = 0.
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Here,

a11 = a21 +a22

a12 = a23 +a21a22 +a24 +a25,

a13 = a21a23 +a22a24 +a25a29 +a26,

a14 = a23a24−a15a25,

a15 = −k−2k2,

a16 = a15a27−a28,(19)

where

a21 = k−1 + k2 + k1(s∗+ e∗k),

a22 = k−2 + k3 + k−3(e∗k + p∗),

a23 = k−3k−2(e∗k + p∗),

a24 = k1k2(s∗+ e∗k),

a25 = −k−3k1s∗p∗,

a26 = −k−3k−2k−1 p∗,

a27 = k1(s∗+ e∗k)+ k−3(e∗k + p∗),

a28 = k1k2k3s∗,

a29 = k−2 + k2.(20)

For τ > 0, we study the nature of roots of the equation (18) analytically to ensure the stability

of the delay model. The characteristic equation (18) is transcendental for τ > 0. It is not

possible to apply R-H criterion to this equation.

We have shown that the coefficients of the non-delayed system always satisfy the Routh-

Hurwitz conditions. Hence, roots of it have negative real parts. Since the characteristic equation

(18) is a continuous function of τ , there is continuity in the eigenvalues for τ > 0. Rouche’s

Theorem [23] and the continuity of the eigenvalues assure that the roots of equation (18) have
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positive real parts if and only if the roots are purely imaginary. We study if equation (18) has

purely imaginary roots or not.

Let λ =η(τ)+ iω(τ) be a root of equation (18), where η(τ) and ω(τ) depend on the delay τ .

η(0)< 0 since the equilibrium point E∗ of (5) is stable. E∗ remains stable for sufficiently small

positive values of τ as by continuity η(τ) < 0 for such values of τ [24, 25]. The equilibrium

point E∗ loses its stability if there exists some τc > 0 so that η(τc) = 0 and λ = iω(τc) is a

purely imaginary root of equation (18) and becomes unstable when η(τ) becomes positive. We

show that the characteristic equation (18) has no purely imaginary root for all values of τ i.e.,

E∗ is always stable.

Suppose ξ = iω(τ) is a root of the equation (18). Then,

(21) ω
4− ia11ω

3−a12ω
2 + ia13ω +a14 +(−a15ω

2 + ia16ω−a14)(cosωτ− isinωτ) = 0.

Separating real and imaginary parts we obtain the following equations,

ω
4−a12ω

2 +a14 = (a15ω
2 +a14)cosωτ−a16ω sinωτ,

a11ω
3−a13ω = (a15ω

2 +a14)sinωτ +a16ω cosωτ.(22)

Squaring and adding the above two equations we get,

ω
8 +α1ω

6 +α2ω
4 +α3ω

2 = 0,(23)

where

α1 = a2
11−2a12,

α2 = a2
12 +2a14−2a11a13−a2

15,

α3 = a2
13−2a12a14−2a15a14−a2

16.(24)

Let us consider, v = ω2. Then equation (23) becomes,

F(v) = v4 +α1v3 +α2v2 +α3v = 0.(25)

Here v = 0 is a root of equation (25) i.e., ξ is not a purely imaginary root of (18). So, rest of

study depends on the following cubic equation,

FR(v) = v3 +α1v2 +α2v+α3 = 0.(26)
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It is clear from the expressions of α1, α2 and α3 (given in Appendix A) that all of these coeffi-

cients are positive for all parameter values. Roots of the equation dFR(v)
dv = 0 i.e., of

3v2 +2α1v+α2 = 0(27)

can be represented as

v1,2 =
−α1±

√
α2

1 −3α2

3
.(28)

Both of v1 and v2 are negative as α2 > 0 implies that
√

α2
1 −3α2 < α1. Hence, equation (27)

has no positive roots. Thus, equation (26) has no positive roots as FR(0) = α3 > 0.

This implies that there is no ω so that iω is a root of the characteristic equation (18). Hence,

the real parts of all the roots of (18) are negative for all τ > 0. We thus have the following

proposition.

Proposition 3. The equilibrium point E∗(e∗k ,c
∗
1, p∗) is locally asymptotically stable for all delay

τ > 0.

3. The Optimal Control Problem

Now, we are introducing control input u(t) to reduce the delay induced instability of the

system. Thus u(t) is introduced in the stage ES
EP where there is a delay in forward reaction.

This is shown by the following schematic diagram,

S+E
k1


k−1

ES
k2, τ, u(t)



k−2

EP
k3


k−3

E +P.

Here u(t) represents control input with values normalized between 0 and 1. u(t) = 1 represents

the maximal use of control and u(t) = 0 signifies no control. The control measure stands for

reaction temperature, pressure, enzyme concentration, activation energy etc. [26]. Introducing
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control parameter into the model (13), we get the following system,

ds(t)
dt

= −k1ek(t)s(t)+ k−1c1(t),

dek(t)
dt

= −k1ek(t)s(t)+ k−1c1(t)+ k3c2(t)− k−3ek(t)p(t),

dc1(t)
dt

= k1ek(t)s(t)− k−1c1(t)− (1−u(t))k2c1(t)+ k−2c2(t),

dc2(t)
dt

= (1−u(t))k2c1(t− τ)− k−2c2(t)− k3c2(t)+ k−3ek(t)p(t),

d p(t)
dt

= k3c2(t)− k−3ek(t)p(t),(29)

with initial conditions s(θ) = s0 > 0, ek(θ) = ek0 > 0, c1(θ) = 0, c2(θ) = 0, p(θ) = 0, where

θ ∈ [−τ,0].

We want to maximize the product and minimize the cost of product formation. So, we define

the cost function for the minimization problem as,

J(u(t)) =
∫ t f

ti
[Au2(t)−Bp2(t)]dt(30)

subject to the state system (29). The parameter A represents the weight constant on the benefit

of the cost of production and B is the penalty multiplier. Our aim is to find the optimal control

u∗(t) such that

J(u∗(t)) = min (J(u) : u ∈U),

where U = (u(t) : u is measurable and 0≤ u≤ 1, t ∈ [ti, t f ]).

3.1. Optimality System
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Pontryagin Minimum Principle with delay provides necessary conditions for an optimal con-

trol problem. The Hamiltonian (H) given by,

H = Au2(t)−Bp2(t)

+ξ1{−k1ek(t)s(t)+ k−1c1(t)}

+ξ2{−k1ek(t)s(t)+ k−1c1(t)+ k3c2(t)− k−3ek(t)p(t)}

+ξ3{k1ek(t)s(t)− k−1c1(t)− (1−u(t))k2c1(t)+ k−2c2(t)}

+ξ4{(1−u(t))k2c1(t− τ)− k−2c2(t)− k3c2(t)+ k−3ek(t)p(t)}

+ξ5{k3c2(t)− k−3ek(t)p(t)}.(31)

Applying Pontryagin Minimum Principle with delay [27–29], we obtain the following theorem.

Theorem 3.1. If the objective cost function J(u∗(t)) over U is minimum for the optimal con-

trol u∗(t) corresponding to the interior equilibrium (s∗, e∗k , c∗1, c∗2, p∗) then there exist adjoint

variables ξ1, ξ2, ξ3, ξ4 and ξ5 which satisfy the following system of equations:

dξ1

dt
= k1ek(ξ1 +ξ2−ξ3),

dξ2

dt
= k1s(ξ1 +ξ2−ξ3)+ k−3 p(ξ5−ξ4),

dξ3

dt
= −k−1(ξ1 +ξ2−ξ3)+(1−u(t))k2ξ3

+k2χ[0,t f−τ](t){u(t + τ)−1}ξ4(t + τ),

dξ4

dt
= k−2(ξ4−ξ3)− k3(ξ2−ξ4 +ξ5),

dξ5

dt
= 2Bp+ k−3ek(ξ2−ξ4 +ξ5),(32)

with the transversality condition satisfying ξi(t f )=0 (i=1, 2, 3, 4, 5).

Moreover, the optimal control is given by,

u∗(t) = max(0, min(1, k2{c1(t−τ)ξ4(t)−c1(t)ξ3(t)}
2A )).
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FIGURE 1. Concentration profiles of substances of the ODE model (1) using the

parameter values as in Table 1.

Proof. The adjoint equations and transversality conditions can be obtained by using Pontryagin

Minimum Principle with delay such that

dξ1

dt
(t) = −∂H

∂ s
(t),

dξ2

dt
(t) =−∂H

∂ek
(t),

dξ3

dt
(t) = −∂H

∂c1
(t)−χ[0,t f−τ](t)

∂H
∂c1

(t + τ),

dξ4

dt
(t) = −∂H

∂c2
(t),

dξ5

dt
(t) =−∂H

∂ p
(t),(33)

with ξi(t f ) = 0, i = 1, 2, 3, 4, 5.

From (33) we get the adjoint equations as,

dξ1

dt
= k1ek(ξ1 +ξ2−ξ3),

dξ2

dt
= k1s(ξ1 +ξ2−ξ3)+ k−3 p(ξ5−ξ4),

dξ3

dt
= −k−1(ξ1 +ξ2−ξ3)+(1−u(t))k2ξ3

+k2χ[0,t f−τ](t){u(t + τ)−1}ξ4(t + τ),

dξ4

dt
= k−2(ξ4−ξ3)− k3(ξ2−ξ4 +ξ5),

dξ5

dt
= 2Bp+ k−3ek(ξ2−ξ4 +ξ5).(34)
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FIGURE 2. Concentration profiles of substances of the DDE system (13) for

τ = 1 min and other parameter values are as given in Table 1.

According to Pontryagin Minimum Principle, the unconstrained optimal control variables

u∗(t) satisfies

∂H
∂u∗

(t) = 0.

This implies,

∂H
∂u∗

(t) = 2Au(t)+ k2c1(t)ξ3(t)− k2c1(t− τ)ξ4(t) = 0.(35)

Due to the boundedness of the standard control,

u∗(t) =


0, k2{c1(t−τ)ξ4(t)−c1(t)ξ3(t)}

2A ≤ 0;
k2{c1(t−τ)ξ4(t)−c1(t)ξ3(t)}

2A , 0 < k2{c1(t−τ)ξ4(t)−c1(t)ξ3(t)}
2A < 1;

1, k2{c1(t−τ)ξ4(t)−c1(t)ξ3(t)}
2A ≥ 1.

Hence, the compact form of u∗(t) is given by,

u∗(t) = max(0, min(1,
k2{c1(t− τ)ξ4(t)− c1(t)ξ3(t)}

2A
)).(36)

Thus equation (29) together with equation (34) and (36) represent the optimality system.

4. Numerical Simulation
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FIGURE 3. Concentration profiles of substances of the DDE system (13) for

τ = 2 min and other parameter values are as given in Table 1.

TABLE 1. Parameters used in numerical calculation

Parameter Definition Recommended Value

with Unit

k1 Forward rate constant for the formation 2.7 (mol/l)−1min−1

of enzyme-substrate complex C1

k−1 Rate constant for backward 1.5 min−1

reaction of C1

k2 Forward rate constant for the formation 2 min−1

of enzyme-product complex C2

k−2 Rate constant for backward 0.5 min−1

reaction of C2

k3 Forward rate constant for the formation 1.3 min−1

of the product P

k−3 Rate constant for backward reaction 0.0012 (mol/l)−1min−1

of product P and enzyme E

In this section, the dynamics of reaction system kinetics are analyzed numerically based on

the analytical results. We present some numerical results of system (1) and (13). The present

study also deals with the application of optimum control in model (13) of the enzyme kinetic
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FIGURE 4. Concentration profiles of substances of the DDE system (13) for

τ = 5 min and other parameter values are as given in Table 1.
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FIGURE 5. Concentration profiles of product of the DDE system (13) for τ =

0,2,5 and other parameter values are as given in Table 1.

system. The analytical results of optimal control are satisfied by numerical simulation using

MATLAB.

Concentration profiles of the substances of system (1) are represented by Figure 1. The pa-

rameter values are considered as shown in Table 1. Here ideal reaction conditions are considered

i.e., there is no delay in the system. Figure 1 reveals that the substrate concentration falls off

with time and becomes zero as it is consumed with the progress of the reaction. This is due to
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FIGURE 6. The system dynamics under the influence of optimal control u∗(t)

with τ = 5 min. Solid line indicates “without control” and dotted line indicates

“with control”.

the initial higher rate of collision between substrate and enzyme which gradually slows down

with time. Consumption of higher rate of substrate concurrently reduces enzyme concentration

(ek) as the reaction proceeds and is recovered at the end of the reaction. Initial formation of the

complexes C1 and C2 is higher. After a certain time, concentrations of both the complexes de-

crease with time due to conversion of C1 to C2 and that of C2 to E and P. Product concentration

increases smoothly from the beginning of the reaction.

Figure 2 displays concentration profiles of the substances in presence of delay (τ = 1). It

has been observed from the figure that initial oscillation diminishes after 5 minutes of reaction.

Duration of oscillation increases with increment of time delay which persists for longer time as

observed in Figure 3 and 4. So product formation takes more time in delayed system. This is

due to the fact that delay effect on reaction rate directs the conversion of ES to EP for a longer

time which results unnecessary presence of enzyme-substrate complex. So, concentration of

product decreases significantly which has been shown in Figure 5.

Figure 6 exhibits the behavior of the delayed system (13) under the influence of optimal

control u∗(t). Here, it can be seen from the figure (Figure 6) that application of control measures

in the delayed system minimizes the oscillations of intermediate complexes which enhances
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product optimization. So, control approach in the delayed biochemical system improves the

product formation.

5. Discussion and Conclusion

In this research article, we have proposed a delay induced mathematical model of a bio-

chemical system for better realization of it along with the non-delayed system. We show by

constructing a Lyapunov function that the non-delayed system is globally asymptotically sta-

ble.The delayed system is locally asymptotically stable for all values of time delay τ . The

delayed model has been solved numerically using MATLAB. It is seen that time lag can pro-

duce major changes in the behavior of a delayed model rather than ordinary model. We have

observed from the model analysis that the delay induced system takes higher time for product

formation. This is due to the fact that longer delay time for conformational changes reduces

the rate of formation of product. Introduction of optimal control to this system shows that the

solution trajectories approach towards a stable region which actually directs the higher rate of

product formation from enzyme-product intermediate complex.

In conclusion, the proposed delay induced mathematical model is much more realistic. It

provides an idea to understand the dynamics of delay induced enzymatic system. This study will

help the future researchers regarding the time delay in suitable phases of biochemical system

and product optimization.
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Appendix A The expressions A1, A3 and A1A2−A3 are as follows:

A1 = k1(s∗+ e∗k)+ k−3(e∗k + p∗)+ k−1 + k−2 + k2 + k3,

A3 = k−3k1(k−2 + k2)(s∗+ e∗k + p∗)e∗k + k−3k−2k−1e∗k + k1k2k3e∗k ,

A1A2−A3 = {k1(s∗+ e∗k)+ k−3(e∗k + p∗)+ k−1 + k−2 + k2 + k3}.

{(k−1 + k−2 + k2)k−3e∗k + k−3(k−1 + k−2 + k2)p∗+ k1(k−2

+k2 + k3 + k−3e∗k)(s
∗+ e∗k)+ k−3k1e∗k p∗+ k3(k−1 + k2)+ k−1k−2}

−{k−3k1(k−2 + k2)(s∗+ e∗k + p∗)e∗k + k−3k−2k−1e∗k + k1k2k3e∗k}.(37)

Thus, from the relations (37), A1, A3 and A1A2−A3 are obviously always positive.
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Expressions of the coefficients α1, α2, α3 of equation (25) are given by,

α1 = {k−1 + k2 + k1(s∗+ e∗k)}2 +{k−2 + k3 + k−3(e∗k + p∗)}2

−2k−3k−2(e∗k + p∗)−2k1k2(s∗+ e∗k)+2k−3k1s∗p∗,

α2 = {k−3k−2(e∗k + p∗)+ k−2k−1 + k−1k3 + k−3k−1(e∗k + p∗)+ k−2k2 + k2k3

+k−3k2(e∗k + p∗)+ k−2k1(s∗+ e∗k)+ k1k3(s∗+ e∗k)+ k−3k1(e∗k + p∗)e∗k

+k−3k1s∗e∗k + k1k2(s∗+ e∗k)}2 +2k−3k−2k1k2(s∗+ e∗k + p∗)e∗k− k2
−2k2

2

−2{k−2 + k−1 + k2 + k3 + k1(s∗+ e∗k)+ k−3(e∗k + p∗)}.{k−3k−2k−1e∗k

+k−3k−2k2(e∗k + p∗)+ k−3k−2k1(e∗k + p∗)e∗k + k−3k−2k1s∗e∗k

+k−2k1k2(s∗+ e∗k)+ k1k2k3(s∗+ e∗k)+ k−3k1k2(s∗e∗k + p∗)e∗k},

α3 = {k−3k−2k−1e∗k + k−3k−2k2e∗k + k−3k−2k2 p∗+ k−3k−2k1(s∗+ e∗k + p∗)e∗k

+k−2k1k2(s∗+ e∗k)+ k1k2k3(s∗+ e∗k)+ k−3k1k2(s∗+ e∗k + p∗)e∗k}2

+2k−3k2
−2k1k2

2(s
∗+ e∗k + p∗)e∗k−{k−2k1k2(s∗+ e∗k)+ k−3k−2k2(e∗k + p∗)

+k1k2k3s∗}2−2k−3k−2k1k2(s∗+ e∗k + p∗)e∗k .{k−3k−2(e∗k + p∗)

+k1k2(s∗+ e∗k)+ k−2k−1 + k−1k3 + k−3k−1(e∗k + p∗)+ k−2k2 + k2k3

+k−3k2(e∗k + p∗)+ k−2k1(s∗+ e∗k)+ k1k3(s∗+ e∗k)

+k−3k1(s∗+ e∗k + p∗)e∗k}.(38)

It is easy to understand from (38) that all of α1, α2 and α3 are always positive.


