Communications in Optimization Theory

Available online at http://cot.mathres.org

FIXED POINT THEOREMS VIA C-CLASS FUNCTIONS IN SYMMETRIC SPACES

ARSLAN HOJAT ANSARI ${ }^{1}$, PANDA SUMATI KUMARI ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
${ }^{2}$ Department of Mathematics, National Institute of Technology-Andhra Pradesh, A.P, India

Abstract

This paper is devoted to prove the existence of fixed points for self maps satisfying some C-class type contractive conditions in symmetric spaces. Without assuming continuity, we prove coincidence and fixed point theorems. Moreover, as an application, we provide common fixed point theorems via a family of C-class functions in a generating space of a symmetric family under a contractive condition of the Lebesgue integral type.

Keywords. Symmetric space; (E.A)-property; Weak commutativity; Compatible mappings, Coincidence point.
2010 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction-Preliminaries

The authors of [1] introduced the notion of ($E . A$)-property which generalizes the concept of non-compatible mappings in metric spaces. They proved some common fixed-point theorems concerning non-compatible mappings under strict contractive conditions. In [7], The authors studied commutative maps as a tool for generalizing maps. Since then, a large number of generalizations of Theorem 1 of [7] which utilized the commuting map concept appeared; see $[6,12,13]$ and the references therin. In $[18,19]$ the authors proved various common fixed-point

[^0]theorems for strict contractive non-compatible mappings in metric spaces. Clearly, commuting mappings are weakly commuting and weakly commuting pairs are compatible. Examples in [8] and [21] shows that neither converse is true. Some common fixed point theorems in [1, 18, 10] proved for strict contractive mappings in metric spaces are extended to symmetric (semi-metric) spaces under tight conditions.

In this paper, we present a few theorems that establish the existence of common periodic points for a pair of maps via the concept of C-class functions in a symmetric space when the maps have a unique common fixed point. Moreover, we prove common fixed point theorems via family of C-class functions in a generating space of symmetric family under a contractive condition of Lebesgue integral type.

Definition 1.1. A symmetric on a set X is a function $d: X \times X \rightarrow[0, \infty)$ such that for all $x, y \in X$,
(i) $d(x, y)=0$ iff $x=y$,
(ii) $d(x, y)=d(y, x)$.

If d is symmetric on a set X, then for $x \in X$ and $\varepsilon>0$, we write $\mathscr{B}(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}$. A topology $\mathfrak{F}(d)$ on X is given by $\mathscr{U} \in \mathfrak{F}(d)$ if and only if for each $x \in X, \mathscr{B}(x, \varepsilon) \subset \mathscr{U}$ for some $\varepsilon>0$. A set $S \subset X$ is a neighborhood of $b \in X$ iff there exists $\mathscr{U} \in \mathfrak{F}(d)$ such that $b \in \mathscr{U} \subset S$. A symmetric d is a semi-metric if for each $x \in X$ and for each $\varepsilon>0, \mathscr{B}(x, \varepsilon)$ is a neighborhood of x in the topology $\mathfrak{F}(d)$.

Definition 1.2. A semi-metric space is a topological space whose topology $\mathfrak{F}(d)$ on X is induced by semi-metric d. In what follows symmetric space as well as semi-metric space will be denoted by (X, d). The distinction between a symmetric and a semi-metric is evident as one can easily construct a symmetric d such that $\mathscr{B}(x, \varepsilon)$ need not be a neighborhood of x in $\mathfrak{F}(d)$. We can find generalized symmetric space in $[14,20]$.

For a symmetric d on X the following two axioms were given by Wilson [22]:

$$
\begin{gathered}
W_{3}: \text { For a sequence }\left\{x_{n}\right\} \text { in } X \text { and } x, y \in X, \\
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0 \text { and } \lim _{n \rightarrow \infty} d\left(x_{n}, y\right)=0 \text { imply } x=y . \\
W_{4}: \text { For a sequence }\left\{x_{n}\right\},\left\{y_{n}\right\} \text { in } X \text { and } x \in X, \\
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0 \text { and } \lim _{n \rightarrow \infty} d\left(y_{n}, x_{n}\right)=0 \text { imply } \lim _{n \rightarrow \infty} d\left(y_{n}, x\right)=0 .
\end{gathered}
$$

Definition 1.3. [17] A pair of self-mappings (f, g) on a symmetric (semi-metric) space, (X, d) said to be R-weakly commuting if there exists some real number $R>0$ such that $d(f g x, g f x) \leq$ $R d(f x, g x)$ for all $x \in X$, where as the pair (f, g) is said to be point wise R-weakly commuting if given $x \in X$ there exists $R>0$ such that $d(f g x, g f x) \leq R d(f x, g x)$.

Here it may be noted that on the points of coincidence R-weak commutativity is equivalent to commutativity and remains a necessary minimal condition for the existence of common fixed points of contractive type mappings.

Definition 1.4. [17] A pair of self-mappings (f, g) on a symmetric (semi-metric) space, (X, d) said to be compatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=t \in X$. Here it may be noted that R-weakly commuting mappings need not be compatible.

Definition 1.5. [17] A pair of self-mappings (f, g) on a symmetric (semi-metric) space, (X, d) said to be weakly compatible(or coincidentally commuting) if $f x=g x$ implies $f g x=g f x$.

Definition 1.6. [17] A pair of self-mappings (f, g) on a symmetric (semi-metric) space, (X, d) said to enjoy $E . A$-property if there exists a sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=t$, for some $t \in X$.

Clearly non compatible pairs satisfy property $(E . A)$. The concept of C-class functions was introduced by Ansari in [2] that is pivotal result in fixed point theory; see [3] , [4] and [5].

Definition 1.7. [2] A mapping $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if it is continuous and satisfies following axioms:
(1) $f(s, t) \leq s$,
(2) $f(s, t)=s$ implies that either $s=0$ or $t=0$; for all $s, t \in[0, \infty)$.

For some f we have that $f(0,0)=0$. We denote C-class functions as \mathscr{C}.
Example 1.8. [2] The following functions $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ are elements of \mathscr{C}, for all $s, t \in[0, \infty)$:
(1) $f(s, t)=s-t, f(s, t)=s \Rightarrow t=0$;
(2) $f(s, t)=m s, 0<m<1, f(s, t)=s \Rightarrow s=0$;
(3) $f(s, t)=\frac{s}{(1+t)^{r}} ; r \in(0, \infty), f(s, t)=s \Rightarrow s=0$ or $t=0$;
(4) $f(s, t)=\log \left(t+a^{s}\right) /(1+t), a>1, f(s, t)=s \Rightarrow s=0$ or $t=0$;
(5) $F(s, t)=\ln \left(1+a^{s}\right) / 2, a>e, F(s, 1)=s \Rightarrow s=0$;
(6) $F(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1, r \in(0, \infty), F(s, t)=s \Rightarrow t=0$;
(7) $F(s, t)=s \log _{t+a} a, a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(8) $f(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right), f(s, t)=s \Rightarrow t=0$;
(9) $F(s, t)=s \beta(s), \beta:[0, \infty) \rightarrow[0,1)$, and is continuous, $F(s, t)=s \Rightarrow s=0$;
(10) $F(s, t)=s-\frac{t}{k+t}, F(s, t)=s \Rightarrow t=0$;
(11) $F(s, t)=s-\varphi(s), F(s, t)=s \Rightarrow s=0$,here $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0 \Leftrightarrow t=0$;
(12) $F(s, t)=\operatorname{sh}(s, t), F(s, t)=s \Rightarrow s=0$,here $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$;
(13) $f(s, t)=s-\left(\frac{2+t}{1+t}\right) t, f(s, t)=s \Rightarrow t=0$.
(14) $f(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}, f(s, t)=s \Rightarrow s=0$.
(15) $f(s, t)=\phi(s), f(s, t)=s \Rightarrow s=0$,here $\phi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\phi(0)=0$, and $\phi(t)<t$ for $t>0$,
(16) $f(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty), f(s, t)=s \Rightarrow s=0$.

Definition 1.9. [9] A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(i) ψ is non-decreasing and continuous,
(ii) $\psi(t)=0$ if and only if $t=0$.

In this paper, we denote Ψ set altering distance functions.
Definition 1.10. [2] An ultra altering distance function is a continuous, nondecreasing mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0, t>0$ and

An ultra altering distance function is a continuous, nondecreasing mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0, t>0$.

We denote Φ_{u}, the set of ultra altering distance functions. We can find some convergence axioms in [20].

$$
\begin{aligned}
& C_{1}: \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \Rightarrow \lim _{n \rightarrow \infty} d\left(y_{n}, x\right)=0 \\
& C_{2}: \lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0, \lim _{n \rightarrow \infty} d\left(y_{n}, x\right)=0 \Rightarrow \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
\end{aligned}
$$

2. Some theorems related to coincidence points and fixed points

Theorem 2.1. [16] Let (X, d) be a symmetric (semi-metric) space with W_{3} or a Hausdorff semi-metric space. Let (f, g) be a pair of self maps of X that has the (E.A)-property and
(1) $d(g x, g y)<\max \{d(f x, g x), d(f y, g y), d(f x, f y)\}$,
(2) $f(X)$ is a closed subset of a X.

Then f and g have a point of coincidence.
The following variant of Theorem 2.1 also holds.

Theorem 2.2. [16] Theorem 2.1 remains true if d-closedness ($\mathfrak{F}(d)$-closedness) of $f(X)$ is replaced by d-closedness $(\mathfrak{F}(d)$-closedness) of $g(X)$ along with $g(X) \subset f(X)$ retaining the rest of the hypotheses.

Theorems 2.1 and 2.2 ensure common fixed point instead of point of coincidence if contractive condition (1) of theorem 2.1 is replaced by a slightly weaker condition.

Theorem 2.3. [16] In the setting of Theorems 2.1 and $2.2, f$ and g have a unique common fixed point provided f and g are weakly compatible and satisfy the contraction condition (1) of Theorem 2.1 for all $x \neq y \in X, d(g x, g y)<\max \{d(f x, g x), d(f y, g y), d(f x, f y)\}$.

Proof. In view of Theorems 2.1 and 2.2, f and g have a point of coincidence ' a '. i.e., $f(a)=$ $g(a)$. Now due to weak compatibility one can write $f g(a)=f f(a)=g g(a)=g f(a)$. If $g g(a)=$ $g(a)$ then (1) of Theorem2.3 implies

$$
d(g a, g g a)<\max \{d(f a, g a), d(f g a, g g a), d(f a, f g a)\}=d(g a, g g a),
$$

which is a contradiction. Hence $g a=g g a=g f a=f g a=f f a$, which shows that $g a$ is a common fixed point of f and g. Uniqueness of the common fixed point follows easily.

Corollary 2.4. [16] Let (X, d) be a symmetric (semi-metric) space that enjoys W_{3} (the Hausdorff separation axiom). Let g be a self map of X such that for all $x \neq y \in X, d(g x, g y)<$ $\max \{d(x, g x), d(y, g y), d(x, y)\}$. Then g has a unique fixed point.

Proof. If we take $f=I$ the identity mapping in Theorem 2.3, and follow a similar proof as that in Theorem 2.3, we establish this Corollary 2.4.

In [10], Sumati Kumari presented a few results that establish the existence of common periodic points for a pair of maps on a symmetric (metric) space when the maps have a unique common fixed point. These results are supported by suitable examples.

Theorem 2.5. [16] Let be a self map of a symmetric space X, d satisfying

$$
d(f x, f y)<\max \{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)\}
$$

for each $x, y \in X(x \neq y)$ for which the right hand side of above inequality is not zero. Then $u \in X$ is a periodic point of f if and only if u is the unique fixed point of f.

By using Corollary 2.4 and Theorem 2.5, we have the following result.

Theorem 2.6. [16] Let g be a self map on a symmetric space (X, d) satisfying $d(g x, g y)<$ $\max \{d(x, y), d(x, g x), d(y, g y)\}$ for each $x, y \in X(x \neq y)$ for which the right hand side of above inequality is not zero. Then $u \in X$ is a periodic point of g if and only if u is the unique fixed point of g.

To illustrate the above theorem, we have the following example.

Example 2.7. [16] Let $X=[0,1)$ and $d(x, y)=|x-y|^{2}$. The inequality can be easily checked. Then next theorem involves a function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$which satisfies the following conditions:
(1) ϕ is non-decreasing on \mathbb{R}^{+},
(2) $0<\phi(t)<t$ for each $t \in(0, \infty)$.

Theorem 2.8. Let A, B, S and T be self-mappings of a symmetric (semi-metric) space (X, d) that enjoy W_{3} (the Hausdorff's T_{2} separation axiom) and $F \in \mathscr{C}, \psi \in \Psi, \phi \in \Phi_{u}$. Suppose that
(1) $A(X) \subset T(X), B(X) \subset S(X)$,
(2) The pair (B, T) enjoys the property ($E . A$) (or alternatively the pair (A, S) enjoys the property (E.A)),
(3) $d(A x, B y) \leq F(\psi(m(x, y)), \phi(m(x, y)))$, where $m(x, y)=\max \{d(S x, A x), d(T y, B y), d(S x, T y)\}$,
(4) $S(X)$ is $d-\operatorname{closed}(\mathfrak{F}(d)$-closed) subset of X (or alternatively, $T(X)$ is d-closed $(\mathfrak{F}(d)$ closed) subset of X.)

Then pairs (A, S) has a point of coincidence u and the pair (B, T) has a point of coincidence w.

Proof. Since the pair (B, T) enjoys the property $(E . A)$), there exists a sequence $\left\{X_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} B\left(x_{n}\right)=\lim _{n \rightarrow \infty} T\left(x_{n}\right)=t \in X$.. Since $B(X) \subset S(X)$, for each x_{n} there exists y_{n} such that $B x_{n}=S y_{n}$. Thus in all $B x_{n} \rightarrow t, S y_{n} \rightarrow t$ and $T x_{n} \rightarrow t$. Now we assert that $A y_{n} \rightarrow t$. Suppose, to obtain a contradiction in each case.

Case (i) $A y_{m}=B x_{m}$ for only finitely many m.
Let $A y_{m} \neq B x_{m}$ for all $m \geq n_{0}$, where n_{0} is a positive integer. Then for $m \geq n_{0}$,

$$
\begin{aligned}
\psi\left(d\left(A y_{m}, B x_{m}\right)\right) & \leq F\left(\psi\left(\max \left\{d\left(S y_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right), d\left(S y_{m}, T x_{m}\right)\right\}\right)\right. \\
& \left.\phi\left(\max \left\{d\left(S y_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right), d\left(S y_{m}, T x_{m}\right)\right\}\right)\right) \\
& =F\left(\psi\left(\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right), d\left(B x_{m}, T x_{m}\right)\right\}\right)\right. \\
& \left.\phi\left(\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right), d\left(B x_{m}, T x_{m}\right)\right\}\right)\right) \\
& =F\left(\psi\left(\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right)\right\}\right)\right. \\
& \left.\phi\left(\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right)\right\}\right)\right) \\
& \leq \psi\left(\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(T x_{m}, B x_{m}\right)\right\}\right)
\end{aligned}
$$

Hence $\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(B x_{m}, T x_{m}\right)\right\}=d\left(B x_{m}, A y_{m}\right)$. It follows that

$$
\psi\left(d\left(A y_{m}, B x_{m}\right)\right) \leq F\left(\psi\left(d\left(B x_{m}, A y_{m}\right)\right), \phi\left(d\left(B x_{m}, A y_{m}\right)\right)\right) .
$$

So $\psi\left(d\left(B x_{m}, A y_{m}\right)\right)=0$, or $\phi\left(d\left(B x_{m}, A y_{m}\right)\right)=0$. Therefore, we have $d\left(B x_{m}, A y_{m}\right)=0$, which is a contradiction. Hence $\max \left\{d\left(B x_{m}, A y_{m}\right), d\left(B x_{m}, T x_{m}\right)\right\}=d\left(B x_{m}, T x_{m}\right)$. This implies that

$$
\psi\left(d\left(A y_{m}, B x_{m}\right)\right) \leq F\left(\psi\left(d\left(B x_{m}, A y_{m}\right)\right), \phi\left(d\left(B x_{m}, A y_{m}\right)\right)\right) \leq \psi\left(d\left(B x_{m}, A y_{m}\right)\right)
$$

Hence, we have

$$
d\left(A y_{m}, B x_{m}\right) \leq d\left(B x_{m}, A y_{m}\right)
$$

Letting $m \rightarrow \infty$ and using C_{2}, we get

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} d\left(A y_{m}, B x_{m}\right) & \leq \lim _{m \rightarrow \infty} d\left(B x_{m}, T x_{m}\right) \\
& =0 \text { by }\left(C_{2}\right) .
\end{aligned}
$$

From the fact that $\lim B x_{m}=\lim T x_{m}=t$, we have $\lim \operatorname{supd}\left(A y_{m}, B x_{m}\right)=0$, which implies $\lim d\left(A y_{m}, B x_{m}\right)=0$. This implies $\lim A y_{m}=\lim B x_{m}=t$ by C_{1}. Therefore $\lim A y_{m}=t$.

Case (ii) Suppose $A y_{m}=B x_{m}$ for infinitely many values of m. Let the sequence $\mathscr{K}=\left\{k_{1}<\right.$ $\left.k_{2}<k_{3}<\ldots\right\}$ enjoying the property that $A y_{k_{i}}=B x_{k_{i}}$ for $i=1,2 \ldots$ and $\mathscr{J}=\left\{j_{1}<j_{2}<j_{3}<\ldots\right\}$ have the property that $A y_{j_{i}} \neq B x_{j_{i}}$ for $j=1,2 \ldots$ and let $\mathscr{K} \cup \mathscr{J}=\mathbb{N}$. Then the sequence $A y_{k_{i}} \rightarrow t$ since the sequence $B x_{k_{i}} \rightarrow t$. If \mathscr{J} is a finite set then we may suppose $\mathscr{J}=\emptyset$ and conclude $A y_{m} \rightarrow t$. Otherwise we can conclude that $A y_{j_{i}} \rightarrow t$ as in case (i). Since $\mathscr{K} \cup \mathscr{J}=\mathbb{N}$ and since $A y_{k_{i}} \rightarrow t$ and also $A y_{j_{i}} \rightarrow t$, It is clear that $A y_{m} \rightarrow t$.

Suppose that $S(X)$ is a d-closed subset of X then $S y_{n} \rightarrow t$ and one can find a point $u \in X$ such that $S u=t$. Now we suppose that $A u \neq S u$. Then

$$
\begin{aligned}
\psi\left(d\left(A u, B x_{n}\right) \leq\right. & F\left(\psi\left(\max \left\{d(S u, A u), d\left(T x_{n}, B x_{n}\right), d\left(S u, T x_{n}\right)\right\}\right),\right. \\
& \left.\left.\phi\left(\max \left\{d(S u, A u), d\left(T x_{n}, B x_{n}\right), d\left(S u, T x_{n}\right)\right\}\right)\right)\right),
\end{aligned}
$$

which on letting $n \rightarrow \infty$ yields

$$
\psi(d(A u, S u)) \leq F(\psi(d(S u, A u)), \phi(d(S u, A u)))
$$

So $\psi(d(S u, A u))=0$, or $\phi(d(S u, A u))=0$. Therefore $d(S u, A u)=0$, which is a contradiction. Hence $A u=S u$. Also $A(X) \subset T(X)$, there exists $w \in X$ such that $A u=T w$. We assert that $T w=B w$. If not, then using inequality (3) of Theorem 2.7, one gets

$$
\begin{aligned}
\psi(d(A u, B w)) \leq & F(\psi(\max \{d(S u, A u), d(T w, B w), d(S u, T w)\}) \\
& \phi(\max \{d(S u, A u), d(T w, B w), d(S u, T w)\})) \\
= & F(\psi(d(T w, B w)), \phi(d(T w, B w)) \\
= & F(\psi(d(A u, B w)), \phi(d(A u, B w)) .
\end{aligned}
$$

It follows that $\psi(d(A u, B w))=0$, or $\phi(d(A u, B w))=0$. Therefore $d(A u, B w)=0$, which is a contradiction. Hence $A u=S u=B w=T w$. This shows that the pairs (A, S) and (B, T) have a point of coincidence $u \& w$. The proof is similar if we consider the case when pair (A, S) enjoys property $(E . A)$, and $T(X)$ is d-closed subset of X. Hence it is omitted. This completes the proof of the theorem.

Theorem 2.9. In the setting of Theorem $2.7, A, B, S$ and T have a unique common fixed point provided one adds the weak compatibility of the pair (A, S) (or weak compatibility of the pair
(B, T) and satisfying the contractive condition (3) of Theorem 2.7 for $x \neq y \in X$,

$$
\psi(d(A x, B y)) \leq F(\psi(m(x, y)), \phi(m(x, y)))
$$

where $m(x, y)=\max \{d(S x, A y), d(T y, B y), d(S x, T y)\}$,
Proof. In view of Theorem 2.7, one concludes that $A u=S u=B w=T w$. Now the weak compatibility of (A, S) implies that $A S u=S A u$ and $A A u=A S u=S A u=S S u$. Suppose that $A u \neq A A u$ then using (3) Of Theorem 2.7, one gets

$$
\begin{aligned}
d(A u, A A u)= & d(A A u, B w) \\
\leq & F(\psi(\max \{d(S A u, A A u), d(T w, B w), d(S A u, T w)\}) \\
& , \phi(\max \{d(S A u, A A u), d(T w, B w), d(S A u, T w)\})) \\
= & F(\psi(d(A u, A A u)), \varphi(d(A u, A A u)))
\end{aligned}
$$

It follows that $\psi(d(A u, A A u))=0$, or $\phi(d(A u, A A u))=0$. Therefore $d(A u, A A u)=0$, which is a contradiction. Thus $A u=A A u=S A u$. Then $A u$ is the common fixed point of A and S. Also $A u$ is a common fixed point of the pair (B, T). Uniqueness of the common fixed point follows easily. The proof is similar in the other case. This completes the proof.

Corollary 2.10. Let f be self map of a symmetric (semi-metric) space that enjoys W_{3} (the Hausdorffness of $\mathfrak{F}(d))$ and satisfying $d(f x, f y) \leq F(\psi(m(x, y)), \phi(m(x, y)))$, where $m(x, y)=$ $\max \{d(x, f x), d(y, f y), d(x, y)$.$\} Then f$ has a unique fixed point.

Proof. Take $A=B=f$ and $S=T=I$ an identity mapping in Theorem 2.8, and follow the similar proof as that in Theorem 2.8, we find the desired conclusion immediately.

3. Common fixed point theorems via a family of C-class functions

Definition 3.1. [11] Let X be a non-empty set and $\left\{d_{\alpha}: \alpha \in(0,1]\right\}$ a family of mapping d_{α} of $X \times X$ into \mathbb{R}^{+}. Then $\left(X, d_{\alpha}\right)$ is called a generating space of symmetric family if it satisfied the following conditions for any $x, y \in X$.
(i) $d_{\alpha}(x, y)=0$ if and only if $x=y \forall \alpha \in(0,1]$;
(ii) $d_{\alpha}(x, y)=d_{\alpha}(y, x) \forall \alpha \in(0,1]$.

Definition 3.2. A pair (A, χ) of self mappings of a G_{s}-family $\left(X, d_{\alpha}\right)$ is said to satisfy the common limit range of χ property, abbreviated as $\left(C L R_{\chi}\right)$-property, if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} \chi x_{n}=\eta$, where $\eta \in \chi(X)$.

Definition 3.3. Two pairs (A, χ) and (B, ϑ) of self mappings of a G_{s}-family $\left(X, d_{\alpha}\right)$ is said to satisfy the common limit range of χ and ϑ property, abbreviated as $\left(C L R_{\chi \vartheta}\right)$-property, if there exist two sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that,

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} \chi x_{n}=\lim _{n \rightarrow \infty} B y_{n}=\lim _{n \rightarrow \infty} \vartheta y_{n}=\eta, \text { where } \eta \in \chi(X) \cap \vartheta(X)
$$

Also, let Φ denote the set of all increasing functions $\Upsilon:[0,+\infty) \rightarrow[0,+\infty)$ that satisfy the below conditions
(1) Υ is lower semi-continuous on $[0,+\infty)$;
(2) $\Upsilon(0) \geq 0$;
(3) $\Upsilon(\lambda)>0$ for each $\lambda>0$.

Theorem 3.4. Let A, B, χ and ϑ be self mappings of a G_{s}-family $\left(X, d_{\alpha}\right)$. Suppose that the following criteria hold.
(1) the pair (A, χ) satisfies the $\left(C L R_{\chi}\right)$-property (or the pair (B, ϑ) satisfies the $\left(C L R_{\vartheta}\right)$ property).
(2) $A(X) \subset \chi(X)($ or $B(X) \subset \vartheta(X))$.
(3) $\vartheta(X)($ or $\chi(X))$ is a closed subset of X.
(4) $\left\{B y_{n}\right\}$ converges for every sequence $\left\{y_{n}\right\}$ in X whenever ϑy_{n} converges (or $\left\{A x_{n}\right\}$ converges for every sequence $\left\{x_{n}\right\}$ in X whenever χx_{n} converges).
(5) there exists $\Upsilon \in \Phi$ such that

$$
\begin{equation*}
\int_{0}^{d_{\alpha}(A x, B y)} \phi(t) d t \leq F(M(x, y), \Upsilon(M(x, y))), \forall x, y \in X \tag{3.1}
\end{equation*}
$$

where $M(x, y)=\int_{0}^{\max \left\{d_{\alpha}(B y, \chi x), \frac{k}{2}\left[d_{\alpha}(\chi x, \vartheta y)+d_{\alpha}(B y, \vartheta y)\right], \frac{k}{2}\left[d_{\alpha}(B y, \chi x)+d_{\alpha}(A x, \vartheta y)\right]\right\}} \phi(t) d t$
and $\phi:[0, \infty) \rightarrow[0, \infty)$ is a Lebesgue-integrable mapping which is summable such that

$$
\begin{equation*}
\int_{0}^{\varepsilon} \phi(t) d t>0 \tag{3.2}
\end{equation*}
$$

for all $\varepsilon>0$ and $1 \leq k<2$.
Then the pairs (A, χ) and (B, ϑ) satisfies $\left(C L R_{\chi \vartheta}\right)$-property and have a coincidence point. Moreover, A, B, χ and ϑ have a unique common fixed point if both the pairs are weakly compatible.

Proof. From given hypothesis, the pair (A, χ) satisfies the $\left(C L R_{\chi}\right)$-property. Thus there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} \chi x_{n}=\eta, \text { where } \eta \in \chi(X)
$$

From the statement of the theorem, we have $A(X) \subset \chi(X)(\vartheta(X)$ is closed subset of X,$) so for$ each $\left\{x_{n}\right\} \subset X$, there exists a sequence $\left\{y_{n}\right\} \subset X$ such that $A x_{n}=\vartheta y_{n}$.

Hence $\lim _{n \rightarrow \infty} \vartheta y_{n}=\lim _{n \rightarrow \infty} A x_{n}=\eta$. Since $\vartheta(X)$ is closed, $\eta \in \chi(X)$. Therefore $\eta \in \chi(X) \cap \vartheta(X)$. Thus we have $A x_{n} \rightarrow \eta, \chi x_{n} \rightarrow \eta$ and $\vartheta y_{n} \rightarrow \eta$ as $n \rightarrow \infty$. Again from the statement of the theorem, the sequences $B y_{n}$ converges.

Now we will prove that the pairs (A, χ) and (B, ϑ) satisfies $\left(C L R_{\chi \vartheta}\right)$-property. And in all we need to show that $B y_{n} \rightarrow \eta$ as $n \rightarrow \infty$. If we take x_{n} instead of x and y_{n} instead of y, we get

$$
\begin{equation*}
\int_{0}^{d_{\alpha}\left(A x_{n}, B y_{n}\right)} \phi(t) d t \leq F\left(M\left(x_{n}, y_{n}\right), \Upsilon\left(M\left(x_{n}, y_{n}\right)\right)\right) \tag{3.3}
\end{equation*}
$$

where $M\left(x_{n}, y_{n}\right)=\begin{aligned} & \max \left\{d_{\alpha}\left(B y_{n}, \chi x_{n}\right), \frac{k}{2}\left[d_{\alpha}\left(\chi x_{n}, \vartheta y_{n}\right)+d_{\alpha}\left(B y_{n}, \vartheta y_{n}\right)\right], \frac{k}{2}\left[d_{\alpha}\left(B y_{n}, \chi x_{n}\right)+d_{\alpha}\left(A x_{n}, \vartheta y_{n}\right)\right]\right\} \\ & 0\end{aligned}(t) d t$. Let us assume that $B y_{n} \rightarrow \xi(\neq \eta)$ for $t>0$ as $n \rightarrow \infty$. By taking limit as $n \rightarrow \infty$ in (3.3), we get

$$
\begin{equation*}
\int_{0}^{d_{\alpha}(\eta, \xi)} \phi(t) d t \leq F\left(\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}\right), \Upsilon\left(\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}\right)\right)\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}\right)= & \int_{0}^{\max \left\{d_{\alpha}(\xi, \eta), \frac{k}{2}\left[d_{\alpha}(\eta, \eta)+d_{\alpha}(\xi, \eta)\right], \frac{k}{2}\left[d_{\alpha}(\xi, \eta)+d_{\alpha}(\eta, \eta)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{\max \left\{d_{\alpha}(\xi, \eta), \frac{k}{2} d_{\alpha}(\xi, \eta)\right\}} \phi(t) d t \\
& =\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t \tag{3.5}
\end{align*}
$$

since $1 \leq k<2$. Hence from (3.5), we get

$$
\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t \leq F\left(\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t\right)\right)
$$

which implies

$$
\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t=0 \quad \text { or } \Upsilon\left(\int_{0}^{d_{\alpha}(\xi, \eta)} \phi(t) d t\right)=0
$$

From the definition of $\phi, \Upsilon, d_{\alpha}(\xi, \eta)=0$ or equivalently $\xi=\eta$, which contradicts to $\xi \neq \eta$. Hence (A, χ) and (B, ϑ) share the $\left(C L R_{\chi \vartheta}\right)$-property. Since the pairs (A, χ) and (B, ϑ) satisfies the $\left(C L R_{\chi}\right)$-property, then there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} \chi x_{n}=\lim _{n \rightarrow \infty} B y_{n}=\lim _{n \rightarrow \infty} \vartheta y_{n}=\eta, \text { where } \eta \in \chi(X) \cap \vartheta(X)
$$

As $\eta \in \chi(X)$, there exists a point $\ell \in X$ such that $\chi \ell=\eta$. Now we prove that $A \ell=\eta$. In order to prove this, let $A \ell \neq \eta$. Note that

$$
\begin{equation*}
\int_{0}^{d_{\alpha}\left(A \ell, B y_{n}\right)} \phi(t) d t \leq F\left(M\left(\ell, y_{n}\right), \Upsilon\left(M\left(\ell, y_{n}\right)\right)\right) \tag{3.6}
\end{equation*}
$$

where $M\left(\ell, y_{n}\right)=\int_{0}^{\max \left\{d_{\alpha}\left(B y_{n}, \chi \ell\right), \frac{k}{2}\left[d_{\alpha}\left(\chi \ell, \vartheta y_{n}\right)+d_{\alpha}\left(B y_{n}, \vartheta y_{n}\right)\right], \frac{k}{2}\left[d_{\alpha}\left(B y_{n}, \chi \ell\right)+d_{\alpha}\left(A \ell, \vartheta y_{n}\right)\right]\right\}} \phi(t) d t$. By letting $n \rightarrow \infty$ in (3.6), we get

$$
\begin{equation*}
\int_{0}^{d_{\alpha}(A \ell, \eta)} \phi(t) d t \leq F\left(\lim _{n \rightarrow \infty} M\left(\ell, y_{n}\right), \Upsilon\left(\lim _{n \rightarrow \infty} M\left(\ell, y_{n}\right)\right)\right) \tag{3.7}
\end{equation*}
$$

where,

$$
\begin{align*}
\lim _{n \rightarrow \infty} M\left(\ell, y_{n}\right) & =\int_{0}^{\max \left\{d_{\alpha}(\eta, S \ell), \frac{k}{2}\left[d_{\alpha}(\chi \ell, \eta)+d_{\alpha}(\eta, \eta)\right], \frac{k}{2}\left[d_{\alpha}(\eta, \chi \ell)+d_{\alpha}(A \ell, \eta)\right]\right\}} \phi(t) d t \\
& =\int_{0}^{\frac{k}{2} d_{\alpha}(A \ell, \eta)} \phi(t) d t
\end{align*}
$$

From (3.7), we find that

$$
\begin{align*}
\int_{0}^{d_{\alpha}(A \ell, \eta)} \phi(t) d t & \leq F\left(\int_{0}^{\frac{k}{2} d_{\alpha}(A \ell, \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{\frac{k}{2} d_{\alpha}(A \ell, \eta)} \phi(t) d t\right)\right) \tag{3.9}\\
& \leq F\left(\int_{0}^{d_{\alpha}(A \ell, \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{\frac{k}{2} d_{\alpha}(A \ell, \eta)} \phi(t) d t\right)\right)
\end{align*}
$$

which yields $A \ell=\eta$. Therefore $\chi \ell=A \ell=\eta$. This implies that ℓ is a coincidence point of the pair (A, χ). As $\eta \in \vartheta(X)$, there exists a point $\eta_{1} \in X$ such that $\vartheta \eta_{1}=\eta$. On the other hand, we have

$$
\begin{equation*}
\int_{0}^{d_{\alpha}\left(A x_{n}, B \eta_{1}\right)} \phi(t) d t \leq F\left(M\left(x_{n}, \eta_{1}\right), \Upsilon\left(M\left(x_{n}, \eta_{1}\right)\right)\right) \tag{3.10}
\end{equation*}
$$

where,

$$
\begin{aligned}
M\left(x_{n}, \eta_{1}\right)= & \int_{0}^{\max \left\{d_{\alpha}\left(B \eta_{1}, \chi x_{n}\right), \frac{k}{2}\left[d_{\alpha}\left(\chi x_{n}, \vartheta \eta_{1}\right)+d_{\alpha}\left(B \eta_{1}, \vartheta \eta_{1}\right)\right], \frac{k}{2}\left[d_{\alpha}\left(B \eta_{1}, \chi x_{n}\right)+d_{\alpha}\left(A x_{n}, \vartheta \eta_{1}\right)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{\max \left\{d_{\alpha}\left(B \eta_{1}, \eta\right), \frac{k}{2}\left[d_{\alpha}(\eta, \eta)+d_{\alpha}\left(B \eta_{1}, \eta\right)\right], \frac{k}{2}\left[d_{\alpha}\left(B \eta_{1}, \eta\right)+d_{\alpha}(\eta, \eta)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{d_{\alpha}\left(B \eta_{1}, \eta\right)} \phi(t) d t
\end{aligned}
$$

Equation (3.10) yields

$$
\int_{0}^{d_{\alpha}\left(\eta, B \eta_{1}\right)} \phi(t) d t \leq F\left(\int_{0}^{d_{\alpha}\left(B \eta_{1}, \eta\right)} \phi(t) d t, \Upsilon\left(\int_{0}^{d_{\alpha}\left(B \eta_{1}, \eta\right)} \phi(t) d t\right)\right)
$$

Thus $\int_{0}^{d_{\alpha}\left(B \eta_{1}, \eta\right)} \phi(t) d t=0, \operatorname{orr}\left(\int_{0}^{d_{\alpha}\left(B \eta_{1}, \eta\right)} \phi(t) d t\right)=0$. From the property of $\phi, \Upsilon, d_{\alpha}\left(B \eta_{1}, \eta\right)=0$, which yields $B \eta_{1}=\eta$. Thus $B \eta_{1}=\vartheta \eta_{1}=\eta$, which shows that η_{1} is a coincidence point of the pair (B, ϑ). Since the pair (A, χ) and (B, ϑ) are weakly compatible, $A \ell=S \ell$ and $B \eta_{1}=\vartheta \eta_{1}$. Therefore $A \eta=A \chi \ell=\chi A \ell=\chi \eta$ and $B \eta=B \vartheta \eta_{1}=\vartheta B \eta_{1}=\vartheta \eta$. Note that

$$
\begin{equation*}
\int_{0}^{d_{\alpha}\left(A \eta, B \eta_{1}\right)} \phi(t) d t \leq F\left(M\left(\eta, \eta_{1}\right), \Upsilon\left(M\left(\eta, \eta_{1}\right)\right)\right) \tag{3.12}
\end{equation*}
$$

where,

$$
\begin{align*}
M\left(\eta, \eta_{1}\right)= & \int_{0}^{\max \left\{d_{\alpha}\left(B \eta_{1}, \chi \eta\right), \frac{k}{2}\left[d_{\alpha}\left(\chi \eta, \vartheta \eta_{1}\right)+d_{\alpha}\left(B \eta_{1}, \vartheta \eta_{1}\right)\right], \frac{k}{2}\left[d_{\alpha}\left(B \eta_{1}, \chi \eta\right)+d_{\alpha}\left(A \eta, \vartheta \eta_{1}\right)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{\max \left\{d_{\alpha}(\eta, A \eta), \frac{k}{2}\left[d_{\alpha}(A \eta, \eta)+d_{\alpha}(\eta, \eta)\right], \frac{k}{2}\left[d_{\alpha}(\eta, A \eta)+d_{\alpha}(A \eta, \eta)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{d_{\alpha}(\eta, A \eta)} \phi(t) d t
\end{align*}
$$

From (3.12), we get

$$
\int_{0}^{d_{\alpha}(A \eta, \eta)} \phi(t) d t \leq F\left(\int_{0}^{d_{\alpha}(\eta, A \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{d_{\alpha}(\eta, A \eta)} \phi(t) d t\right)\right) .
$$

It follows that $\int_{0}^{d_{\alpha}(\eta, A \eta)} \phi(t) d t=0$, or $\Upsilon\left(\int_{0}^{d_{\alpha}(\eta, A \eta)} \phi(t) d t\right)=0$. Therefore $A \eta=\eta$. Thus $A \eta=$ $\chi \eta=\eta$ and therefore η is a common fixed point of the pair (A, χ). If we take $x=\ell$ and $y=\eta$ in (3.1), we get

$$
\begin{equation*}
\int_{0}^{d_{\alpha}(A \ell, B \eta)} \phi(t) d t \leq F(M(\ell, \eta), \Upsilon(M(\ell, \eta))) \tag{3.14}
\end{equation*}
$$

where,

$$
\begin{align*}
M(\ell, \eta)= & \int_{0}^{\max \left\{d_{\alpha}(B \eta, \chi \ell), \frac{k}{2}\left[d_{\alpha}(\chi \ell, \vartheta \eta)+d_{\alpha}(B \eta, \vartheta \eta)\right], \frac{k}{2}\left[d_{\alpha}(B \eta, \chi \ell)+d_{\alpha}(A \ell, \chi \eta)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{\max \left\{d_{\alpha}(B \eta, \eta), \frac{k}{2}\left[d_{\alpha}(\eta, \chi \eta)+d_{\alpha}(\chi \eta, \chi \eta)\right], \frac{k}{2}\left[d_{\alpha}(B \eta, \eta)+d_{\alpha}(\eta, B \eta)\right]\right\}} \phi(t) d t \\
= & \int_{0}^{d_{\alpha}(B \eta, \eta)} \phi(t) d t
\end{align*}
$$

From (3.14), we get

$$
\int_{0}^{d_{\alpha}(\eta, B \eta)} \phi(t) d t \leq F\left(\int_{0}^{d_{\alpha}(\eta, B \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{d_{\alpha}(\eta, B \eta)} \phi(t) d t\right)\right)
$$

Thus $\int_{0}^{d_{\alpha}(\eta, B \eta)} \phi(t) d t=0, r\left(\int_{0}^{d_{\alpha}(\eta, B \eta)} \phi(t) d t\right)=0$. Therefore $\eta=B \eta$. Which implies $B \eta=$ $\chi \eta=\eta$. Therefore η is a common fixed point of A, B, χ and ϑ. In order to prove uniqueness, suppose z be another common fixed point of A, B, χ and ϑ. i.e., $A z=B z=\vartheta z=\chi z=z$. Putting $x=z, y=\eta$ in (3.1), we have

$$
\begin{equation*}
\int_{0}^{d_{\alpha}(A z, B \eta)} \phi(t) d t \leq F(M(z, \eta), \Upsilon(M(z, \eta))) \tag{3.16}
\end{equation*}
$$

where,

$$
\begin{aligned}
M(z, \eta) & =\int_{0}^{\max \left\{d_{\alpha}(B \eta, \chi z), \frac{k}{2}\left[d_{\alpha}(\chi z, \vartheta \eta)+d_{\alpha}(B \eta, \vartheta \eta)\right], \frac{k}{2}\left[d_{\alpha}(B \eta, \chi z)+d_{\alpha}(A z, \vartheta \eta)\right]\right\}} \phi(t) d t \\
& =\int_{0}^{\max \left\{d_{\alpha}(\eta, z), \frac{k}{2}\left[d_{\alpha}(z, \eta)+d_{\alpha}(\eta, \eta)\right], \frac{k}{2}\left[d_{\alpha}(\eta, z)+d_{\alpha}(z, \eta)\right]\right\}} \phi(t) d t \\
& =\int_{0}^{d_{\alpha}(\eta, z)} \phi(t) d t .
\end{aligned}
$$

From (3.16), we get

$$
\int_{0}^{d_{\alpha}(z, \eta)} \phi(t) d t \leq F\left(\int_{0}^{d_{\alpha}(z, \eta)} \phi(t) d t, \Upsilon\left(\int_{0}^{d_{\alpha}(z, \eta)} \phi(t) d t\right)\right) .
$$

Thus $\int_{0}^{d_{\alpha}(z, \eta)} \phi(t) d t=0, \operatorname{orr}\left(\int_{0}^{d_{\alpha}(z, \eta)} \phi(t) d t\right)=0$. Therefore $z=\eta$. Hence A, B, χ and ϑ have a unique common fixed point.

REFERENCES

[1] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181-188.
[2] A.H. Ansari, Note on " φ - ψ-contractive type mappings and related fixed point", The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September 2014, pages 377-380.
[3] A. H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl. 2014 (2014), Article ID 429.
[4] Z.M. Fadail, A.G.B. Ahmad, A.H. Ansari, S. Radenovic, M. Rajović, Some common fixed point results of mappings in 0-complete metric-like spaces via new function, Appl. Math. Sci. 9 (2015), 4109-4127.
[5] E. Hoxha, A.H. Ansari, K. Zoto, Some common fixed point results through generalized altering distances on dislocated metric spaces, Proceedings of EIIC, september 1-5, 2014, pages 403-409.
[6] G. Junck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
[7] G.Jungck, commuting mappings and fixed points, Amer. Math. Monthly. 83 (1976), 261-263.
[8] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779.
[9] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
[10] P. Sumati Kumari, Fixed and periodic point theory in certain spaces, J. Egyptian Math. Soc. 21 (2013), 276280.
[11] P. Sumati Kumari, Further generalizations of cyclic compatible contraction, Submitted to Chinese annals of Mathematics, series-B.
[12] P. Sumati Kumari, V. Vasantha Kumar, I. Rambhadra Sarma, Common fixed point theorems on weakly compatible maps on dislocated metric spaces, Math. Sci. 6 (2012), 71.
[13] P. Sumati Kumari, D. Panthi, Cyclic compatible contraction and related fixed point theorems, Fixed Point Theory Appl. 2016 (2016), 28.
[14] P. Sumati Kumari, C.V. Ramana, K. Zoto, On quasi-symmetric space. Indian J. Sci. Technol. 7(10):15831587.
[15] A. Latif, H. Isik, A.H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings, J. Nonlinear Sci. Appl. 9 (2016), 1129-1142.
[16] J. Madhusudan Rao, P. Sumati Kumari, Fixed and periodic point theorems on symmetric spaces, Math. Stat. 2 (2014), 39-47.
[17] R.P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994) 436-440.
[18] R.P. Pant, V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), 327-332.
[19] R.P. Pant, V. Pant, K. Jha, Note on common fixed points under strict contractive conditions, J. Math. Anal. Appl. 274 (2002) 879-880.
[20] I.R. Sarma, J.M. Rao, P.S. Kumari, D. Panthi, Convergence axioms on dislocated symmetric spaces, Abst. Appl. Anal. 2014 (2014), Article ID 745031.
[21] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. 32 (1982), 149-153.
[22] W.A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931) 361-373.

[^0]: *Corresponding author.
 E-mail addresses: analsisamirmath2@gmail.com (A.H. Ansari), mumy143143143@gmail.com (P.S. Kumari).
 Received May 19, 2016; Accepted December 2, 2016.

