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Abstract. This paper is devoted to prove the existence of fixed points for self maps satisfying some C-class type

contractive conditions in symmetric spaces. Without assuming continuity, we prove coincidence and fixed point

theorems. Moreover, as an application, we provide common fixed point theorems via a family of C-class functions

in a generating space of a symmetric family under a contractive condition of the Lebesgue integral type.
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1. Introduction-Preliminaries

The authors of [1] introduced the notion of (E.A)-property which generalizes the concept of

non-compatible mappings in metric spaces. They proved some common fixed-point theorems

concerning non-compatible mappings under strict contractive conditions. In [7], The authors

studied commutative maps as a tool for generalizing maps. Since then, a large number of

generalizations of Theorem 1 of [7] which utilized the commuting map concept appeared; see

[6, 12, 13] and the references therin. In [18, 19] the authors proved various common fixed-point
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theorems for strict contractive non-compatible mappings in metric spaces. Clearly, commuting

mappings are weakly commuting and weakly commuting pairs are compatible. Examples in [8]

and [21] shows that neither converse is true. Some common fixed point theorems in [1, 18, 10]

proved for strict contractive mappings in metric spaces are extended to symmetric (semi-metric)

spaces under tight conditions.

In this paper, we present a few theorems that establish the existence of common periodic

points for a pair of maps via the concept of C-class functions in a symmetric space when the

maps have a unique common fixed point. Moreover, we prove common fixed point theorems

via family of C-class functions in a generating space of symmetric family under a contractive

condition of Lebesgue integral type.

Definition 1.1. A symmetric on a set X is a function d : X×X→ [0,∞) such that for all x,y∈ X ,

(i) d(x,y) = 0 iff x = y,

(ii) d(x,y) = d(y,x).

If d is symmetric on a set X , then for x∈ X and ε > 0, we write B(x,ε)={y∈ X : d(x,y)< ε}.

A topology F (d) on X is given by U ∈F(d) if and only if for each x∈X , B(x,ε)⊂U for some

ε > 0. A set S ⊂ X is a neighborhood of b ∈ X iff there exists U ∈ F(d) such that b ∈U ⊂ S.

A symmetric d is a semi-metric if for each x ∈ X and for each ε > 0,B(x,ε) is a neighborhood

of x in the topology F(d).

Definition 1.2. A semi-metric space is a topological space whose topology F(d) on X is induced

by semi-metric d. In what follows symmetric space as well as semi-metric space will be denoted

by (X ,d). The distinction between a symmetric and a semi-metric is evident as one can easily

construct a symmetric d such that B(x,ε) need not be a neighborhood of x in F(d). We can find

generalized symmetric space in [14, 20].

For a symmetric d on X the following two axioms were given by Wilson [22]:

W3 : For a sequence {xn} in X and x,y ∈ X ,

lim
n→∞

d(xn,x) = 0 and lim
n→∞

d(xn,y) = 0 imply x = y.

W4 : For a sequence {xn},{yn} in X and x ∈ X ,

lim
n→∞

d(xn,x) = 0 and lim
n→∞

d(yn,xn) = 0 imply lim
n→∞

d(yn,x) = 0.
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Definition 1.3. [17] A pair of self-mappings ( f ,g) on a symmetric (semi-metric) space, (X ,d)

said to be R-weakly commuting if there exists some real number R > 0 such that d( f gx,g f x)≤

Rd( f x,gx) for all x ∈ X , where as the pair ( f ,g) is said to be point wise R-weakly commuting

if given x ∈ X there exists R > 0 such that d( f gx,g f x)≤ Rd( f x,gx).

Here it may be noted that on the points of coincidence R-weak commutativity is equivalent

to commutativity and remains a necessary minimal condition for the existence of common fixed

points of contractive type mappings.

Definition 1.4. [17] A pair of self-mappings ( f ,g) on a symmetric (semi-metric) space, (X ,d)

said to be compatible if lim
n→∞

d( f gxn,g f xn) = 0 whenever {xn} is a sequence in X such that

lim
n→∞

f (xn) = lim
n→∞

g(xn) = t ∈ X . Here it may be noted that R-weakly commuting mappings need

not be compatible.

Definition 1.5. [17] A pair of self-mappings ( f ,g) on a symmetric (semi-metric) space, (X ,d)

said to be weakly compatible(or coincidentally commuting) if f x = gx implies f gx = g f x.

Definition 1.6. [17] A pair of self-mappings ( f ,g) on a symmetric (semi-metric) space, (X ,d)

said to enjoy E.A-property if there exists a sequence {xn} such that lim
n→∞

f (xn) = lim
n→∞

g(xn) = t,

for some t ∈ X .

Clearly non compatible pairs satisfy property (E.A). The concept of C-class functions was

introduced by Ansari in [2] that is pivotal result in fixed point theory; see [3] , [4] and [5].

Definition 1.7. [2] A mapping f : [0,∞)2→ R is called C-class function if it is continuous and

satisfies following axioms:

(1) f (s, t)≤ s,

(2) f (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

For some f we have that f (0,0) = 0. We denote C-class functions as C .

Example 1.8. [2] The following functions F : [0,∞)2→R are elements of C , for all s, t ∈ [0,∞):

(1) f (s, t) = s− t, f (s, t) = s⇒ t = 0;

(2) f (s, t) = ms, 0<m<1, f (s, t) = s⇒ s = 0;

(3) f (s, t) = s
(1+t)r ; r ∈ (0,∞), f (s, t) = s⇒ s = 0 or t = 0;

(4) f (s, t) = log(t +as)/(1+ t), a > 1, f (s, t) = s⇒ s = 0 or t = 0;
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(5) F(s, t) = ln(1+as)/2, a > e, F(s,1) = s⇒ s = 0;

(6) F(s, t) = (s+ l)(1/(1+t)r)− l, l > 1,r ∈ (0,∞), F(s, t) = s⇒ t = 0;

(7) F(s, t) = s logt+a a, a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(8) f (s, t) = s− (1+s
2+s)(

t
1+t ), f (s, t) = s⇒ t = 0;

(9) F(s, t) = sβ (s), β : [0,∞)→ [0,1),and is continuous, F(s, t) = s⇒ s = 0;

(10) F(s, t) = s− t
k+t ,F(s, t) = s⇒ t = 0;

(11) F(s, t) = s−ϕ(s),F(s, t) = s⇒ s = 0,here ϕ : [0,∞)→ [0,∞) is a continuous function

such that ϕ(t) = 0⇔ t = 0;

(12) F(s, t) = sh(s, t),F(s, t) = s⇒ s = 0,here h : [0,∞)× [0,∞)→ [0,∞)is a continuous

function such that h(t,s)< 1 for all t,s > 0;

(13) f (s, t) = s− (2+t
1+t )t, f (s, t) = s⇒ t = 0.

(14) f (s, t) = n
√

ln(1+ sn), f (s, t) = s⇒ s = 0.

(15) f (s, t) = φ(s), f (s, t) = s⇒ s = 0,here φ : [0,∞)→ [0,∞) is a continuous function such

that φ(0) = 0, and φ(t)< t for t > 0,

(16) f (s, t) = s
(1+s)r ; r ∈ (0,∞), f (s, t) = s⇒ s = 0.

Definition 1.9. [9] A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the

following properties are satisfied:

(i) ψ is non-decreasing and continuous,

(ii) ψ (t) = 0 if and only if t = 0.

In this paper, we denote Ψ set altering distance functions.

Definition 1.10. [2] An ultra altering distance function is a continuous, nondecreasing mapping

ϕ : [0,∞)→ [0,∞) such that ϕ(t)> 0 , t > 0 and

An ultra altering distance function is a continuous, nondecreasing mapping ϕ : [0,∞)→ [0,∞)

such that ϕ(t)> 0 , t > 0.

We denote Φu, the set of ultra altering distance functions. We can find some convergence

axioms in [20].

C1 : limn→∞ d(xn,yn) = 0 = limn→∞ d(xn,x)⇒ limn→∞ d(yn,x) = 0.

C2 : limn→∞ d(xn,x) = 0, limn→∞ d(yn,x) = 0⇒ limn→∞ d(xn,yn) = 0.
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2. Some theorems related to coincidence points and fixed points

Theorem 2.1. [16] Let (X ,d) be a symmetric (semi-metric) space with W3 or a Hausdorff

semi-metric space. Let ( f ,g) be a pair of self maps of X that has the (E.A)-property and

(1) d(gx,gy)< max{d( f x,gx),d( f y,gy),d( f x, f y)},

(2) f (X) is a closed subset of a X .

Then f and g have a point of coincidence.

The following variant of Theorem 2.1 also holds.

Theorem 2.2. [16] Theorem 2.1 remains true if d-closedness (F(d)-closedness) of f (X) is

replaced by d-closedness (F(d)-closedness) of g(X) along with g(X)⊂ f (X) retaining the rest

of the hypotheses.

Theorems 2.1 and 2.2 ensure common fixed point instead of point of coincidence if contrac-

tive condition (1) of theorem 2.1 is replaced by a slightly weaker condition.

Theorem 2.3. [16] In the setting of Theorems 2.1 and 2.2, f and g have a unique common

fixed point provided f and g are weakly compatible and satisfy the contraction condition (1) of

Theorem 2.1 for all x 6= y ∈ X , d(gx,gy)< max{d( f x,gx),d( f y,gy),d( f x, f y)}.

Proof. In view of Theorems 2.1 and 2.2, f and g have a point of coincidence ‘a′. i.e., f (a) =

g(a). Now due to weak compatibility one can write f g(a) = f f (a) = gg(a) = g f (a). If gg(a) =

g(a) then (1) of Theorem2.3 implies

d(ga,gga)< max{d( f a,ga),d( f ga,gga),d( f a, f ga)}= d(ga,gga),

which is a contradiction. Hence ga = gga = g f a = f ga = f f a, which shows that ga is a

common fixed point of f and g. Uniqueness of the common fixed point follows easily.

Corollary 2.4. [16] Let (X ,d) be a symmetric (semi-metric) space that enjoys W3 (the Haus-

dorff separation axiom). Let g be a self map of X such that for all x 6= y ∈ X , d(gx,gy) <

max{d(x,gx),d(y,gy),d(x,y)}. Then g has a unique fixed point.

Proof. If we take f = I the identity mapping in Theorem 2.3, and follow a similar proof as that

in Theorem 2.3, we establish this Corollary 2.4.
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In [10], Sumati Kumari presented a few results that establish the existence of common pe-

riodic points for a pair of maps on a symmetric (metric) space when the maps have a unique

common fixed point. These results are supported by suitable examples.

Theorem 2.5. [16] Let be a self map of a symmetric space X ,d satisfying

d( f x, f y)< max{d(x,y),d(x, f x),d(y, f y),d(x, f y),d(y, f x)}

for each x,y ∈ X(x 6= y) for which the right hand side of above inequality is not zero. Then

u ∈ X is a periodic point of f if and only if u is the unique fixed point of f .

By using Corollary 2.4 and Theorem 2.5, we have the following result.

Theorem 2.6. [16] Let g be a self map on a symmetric space (X ,d) satisfying d(gx,gy) <

max{d(x,y),d(x,gx),d(y,gy)} for each x,y ∈ X(x 6= y) for which the right hand side of above

inequality is not zero. Then u ∈ X is a periodic point of g if and only if u is the unique fixed

point of g.

To illustrate the above theorem, we have the following example.

Example 2.7. [16] Let X = [0,1) and d(x,y) = |x− y|2. The inequality can be easily checked.

Then next theorem involves a function φ : R+→ R+ which satisfies the following conditions:

(1) φ is non-decreasing on R+,

(2) 0 < φ(t)< t for each t ∈ (0,∞).

Theorem 2.8. Let A,B,S and T be self-mappings of a symmetric (semi-metric) space (X ,d)

that enjoy W3 (the Hausdorff’s T2 separation axiom) and F ∈ C , ψ ∈Ψ, φ ∈Φu. Suppose that

(1) A(X)⊂ T (X), B(X)⊂ S(X),

(2) The pair (B,T ) enjoys the property (E.A) (or alternatively the pair (A,S) enjoys the

property (E.A)),

(3) d(Ax,By)≤F(ψ(m(x,y)),φ(m(x,y))), where m(x,y)=max{d(Sx,Ax),d(Ty,By),d(Sx,Ty)},

(4) S(X) is d-closed(F(d)-closed) subset of X (or alternatively, T (X) is d-closed(F(d)-

closed) subset of X.)

Then pairs (A,S) has a point of coincidence u and the pair (B,T ) has a point of coincidence w.
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Proof. Since the pair (B,T ) enjoys the property (E.A)), there exists a sequence {Xn} ⊂ X such

that lim
n→∞

B(xn) = lim
n→∞

T (xn) = t ∈ X .. Since B(X)⊂ S(X), for each xn there exists yn such that

Bxn = Syn. Thus in all Bxn→ t,Syn→ t and T xn→ t. Now we assert that Ayn→ t. Suppose, to

obtain a contradiction in each case.

Case (i) Aym = Bxm for only finitely many m.

Let Aym 6= Bxm for all m≥ n0, where n0 is a positive integer. Then for m≥ n0,

ψ(d(Aym,Bxm))≤ F(ψ(max{d(Sym,Aym),d(T xm,Bxm),d(Sym,T xm)}),

φ(max{d(Sym,Aym),d(T xm,Bxm),d(Sym,T xm)}))

= F(ψ(max{d(Bxm,Aym),d(T xm,Bxm),d(Bxm,T xm)}),

φ(max{d(Bxm,Aym),d(T xm,Bxm),d(Bxm,T xm)}))

= F(ψ(max{d(Bxm,Aym),d(T xm,Bxm)}),

φ(max{d(Bxm,Aym),d(T xm,Bxm)}))

≤ ψ(max{d(Bxm,Aym),d(T xm,Bxm)}).

Hence max{d(Bxm,Aym),d(Bxm,T xm)}= d(Bxm,Aym). It follows that

ψ(d(Aym,Bxm))≤ F(ψ(d(Bxm,Aym)),φ(d(Bxm,Aym))).

So ψ(d(Bxm,Aym)) = 0, or φ(d(Bxm,Aym)) = 0. Therefore, we have d(Bxm,Aym) = 0, which

is a contradiction. Hence max{d(Bxm,Aym),d(Bxm,T xm)}= d(Bxm,T xm). This implies that

ψ(d(Aym,Bxm))≤ F(ψ(d(Bxm,Aym)),φ(d(Bxm,Aym)))≤ ψ(d(Bxm,Aym)).

Hence, we have

d(Aym,Bxm)≤ d(Bxm,Aym).

Letting m→ ∞ and using C2, we get

limsup
m→∞

d(Aym,Bxm)≤ lim
m→∞

d(Bxm,T xm)

= 0 by (C2).

From the fact that limBxm = limT xm = t, we have limsupd(Aym,Bxm) = 0, which implies

limd(Aym,Bxm) = 0. This implies limAym = limBxm = t by C1. Therefore limAym = t.
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Case (ii) Suppose Aym = Bxm for infinitely many values of m. Let the sequence K = {k1 <

k2 < k3 < ...} enjoying the property that Ayki = Bxki for i = 1,2... and J = { j1 < j2 < j3 < ...}

have the property that Ay ji 6=Bx jifor j = 1,2... and let K ∪J =N. Then the sequence Ayki→ t

since the sequence Bxki → t. If J is a finite set then we may suppose J = /0 and conclude

Aym→ t. Otherwise we can conclude that Ay ji → t as in case (i). Since K ∪J = N and since

Ayki → t and also Ay ji → t, It is clear that Aym→ t.

Suppose that S(X) is a d-closed subset of X then Syn→ t and one can find a point u ∈ X such

that Su = t. Now we suppose that Au 6= Su. Then

ψ(d(Au,Bxn)≤F(ψ(max{d(Su,Au),d(T xn,Bxn),d(Su,T xn)}),

φ(max{d(Su,Au),d(T xn,Bxn),d(Su,T xn)}))),

which on letting n→ ∞ yields

ψ(d(Au,Su))≤ F(ψ(d(Su,Au)),φ(d(Su,Au))).

So ψ(d(Su,Au)) = 0, or φ(d(Su,Au)) = 0. Therefore d(Su,Au) = 0, which is a contradiction.

Hence Au = Su. Also A(X) ⊂ T (X), there exists w ∈ X such that Au = Tw. We assert that

Tw = Bw. If not, then using inequality (3) of Theorem 2.7, one gets

ψ(d(Au,Bw)) ≤ F(ψ(max{d(Su,Au),d(Tw,Bw),d(Su,Tw)}),

φ(max{d(Su,Au),d(Tw,Bw),d(Su,Tw)}))

= F(ψ(d(Tw,Bw)),φ(d(Tw,Bw))

= F(ψ(d(Au,Bw)),φ(d(Au,Bw)).

It follows that ψ(d(Au,Bw)) = 0, or φ(d(Au,Bw)) = 0. Therefore d(Au,Bw) = 0, which is a

contradiction. Hence Au = Su = Bw = Tw. This shows that the pairs (A,S) and (B,T ) have a

point of coincidence u&w. The proof is similar if we consider the case when pair (A,S) enjoys

property (E.A), and T (X) is d-closed subset of X . Hence it is omitted. This completes the proof

of the theorem.

Theorem 2.9. In the setting of Theorem 2.7 , A,B,S and T have a unique common fixed point

provided one adds the weak compatibility of the pair (A,S) (or weak compatibility of the pair



FIXED POINT THEOREMS VIA C-CLASS FUNCTIONS IN SYMMETRIC SPACES 9

(B,T ) and satisfying the contractive condition (3) of Theorem 2.7 for x 6= y ∈ X ,

ψ(d(Ax,By))≤ F(ψ(m(x,y)),φ(m(x,y))),

where m(x,y) = max{d(Sx,Ay),d(Ty,By),d(Sx,Ty)},

Proof. In view of Theorem 2.7, one concludes that Au= Su= Bw= Tw. Now the weak compat-

ibility of (A,S) implies that ASu = SAu and AAu = ASu = SAu = SSu. Suppose that Au 6= AAu

then using (3) 0f Theorem 2.7, one gets

d(Au,AAu) = d(AAu,Bw)

≤ F(ψ(max{d(SAu,AAu),d(Tw,Bw),d(SAu,Tw)}),

,φ(max{d(SAu,AAu),d(Tw,Bw),d(SAu,Tw)}))

= F(ψ(d(Au,AAu)),ϕ(d(Au,AAu)))

It follows that ψ(d(Au,AAu)) = 0, or φ(d(Au,AAu)) = 0. Therefore d(Au,AAu) = 0, which is

a contradiction. Thus Au = AAu = SAu. Then Au is the common fixed point of A and S. Also

Au is a common fixed point of the pair (B,T ). Uniqueness of the common fixed point follows

easily. The proof is similar in the other case. This completes the proof.

Corollary 2.10. Let f be self map of a symmetric (semi-metric) space that enjoys W3 (the

Hausdorffness of F(d)) and satisfying d( f x, f y)≤ F(ψ(m(x,y)),φ(m(x,y))), where m(x,y) =

max{d(x, f x),d(y, f y),d(x,y).} Then f has a unique fixed point.

Proof. Take A = B = f and S = T = I an identity mapping in Theorem 2.8, and follow the

similar proof as that in Theorem 2.8, we find the desired conclusion immediately.

3. Common fixed point theorems via a family of C-class functions

Definition 3.1. [11] Let X be a non-empty set and {dα : α ∈ (0,1]} a family of mapping dα of

X×X into R+. Then (X ,dα) is called a generating space of symmetric family if it satisfied the

following conditions for any x,y ∈ X .

(i) dα(x,y) = 0 if and only if x = y ∀α ∈ (0,1];

(ii) dα(x,y) = dα(y,x) ∀α ∈ (0,1].
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Definition 3.2. A pair (A,χ) of self mappings of a Gs-family (X ,dα) is said to satisfy the

common limit range of χ property, abbreviated as (CLRχ)-property, if there exists a sequence

{xn} in X such that limn→∞ Axn = limn→∞ χxn = η , where η ∈ χ(X).

Definition 3.3. Two pairs (A,χ) and (B,ϑ) of self mappings of a Gs-family (X ,dα) is said to

satisfy the common limit range of χ andϑ property, abbreviated as (CLRχϑ )-property, if there

exist two sequence {xn} and {yn} in X such that,

lim
n→∞

Axn = lim
n→∞

χxn = lim
n→∞

Byn = lim
n→∞

ϑyn = η , where η ∈ χ(X)∩ϑ(X).

Also, let Φ denote the set of all increasing functions ϒ : [0,+∞)→ [0,+∞) that satisfy the below

conditions

(1) ϒ is lower semi-continuous on [0,+∞);

(2) ϒ(0)≥ 0;

(3) ϒ(λ )> 0 for each λ > 0.

Theorem 3.4. Let A,B,χ and ϑ be self mappings of a Gs-family (X ,dα). Suppose that the

following criteria hold.

(1) the pair (A,χ) satisfies the (CLRχ)-property (or the pair (B,ϑ) satisfies the (CLRϑ )-

property).

(2) A(X)⊂ χ(X) (or B(X)⊂ ϑ(X)).

(3) ϑ(X) (or χ(X)) is a closed subset of X .

(4) {Byn} converges for every sequence {yn} in X whenever ϑyn converges (or {Axn} con-

verges for every sequence {xn} in X whenever χxn converges).

(5) there exists ϒ ∈Φ such that

dα (Ax,By)∫
0

φ(t)dt ≤ F(M(x,y),ϒ(M(x,y))),∀x,y ∈ X , (3.1)
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where M(x,y) =
max{dα (By,χx), k

2 [dα (χx,ϑy)+dα (By,ϑy)], k
2 [dα (By,χx)+dα (Ax,ϑy)]}∫

0
φ(t)dt

and φ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable such that

ε∫
0

φ(t)dt > 0, (3.2)

for all ε > 0 and 1≤ k < 2.

Then the pairs (A,χ) and (B,ϑ) satisfies (CLRχϑ )-property and have a coincidence point.

Moreover, A,B,χ and ϑ have a unique common fixed point if both the pairs are weakly com-

patible.

Proof. From given hypothesis, the pair (A,χ) satisfies the (CLRχ)-property. Thus there exists

a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

χxn = η , where η ∈ χ(X).

From the statement of the theorem, we have A(X)⊂ χ(X) (ϑ(X) is closed subset of X ,) so for

each {xn} ⊂ X , there exists a sequence {yn} ⊂ X such that Axn = ϑyn.

Hence lim
n→∞

ϑyn = lim
n→∞

Axn = η . Since ϑ(X) is closed, η ∈ χ(X). Therefore η ∈ χ(X)∩ϑ(X).

Thus we have Axn → η , χxn → η and ϑyn → η as n→ ∞. Again from the statement of the

theorem, the sequences Byn converges.

Now we will prove that the pairs (A,χ) and (B,ϑ) satisfies (CLRχϑ )-property. And in all we

need to show that Byn→ η as n→ ∞. If we take xn instead of x and yn instead of y, we get

dα (Axn,Byn)∫
0

φ(t)dt ≤ F(M(xn,yn),ϒ(M(xn,yn))) (3.3)

where M(xn,yn) =
max{dα (Byn,χxn),

k
2 [dα (χxn,ϑyn)+dα (Byn,ϑyn)],

k
2 [dα (Byn,χxn)+dα (Axn,ϑyn)]}∫

0
φ(t)dt. Let

us assume that Byn → ξ (6= η) for t > 0 as n→ ∞. By taking limit as n→ ∞ in (3.3), we

get
dα (η ,ξ )∫

0

φ(t)dt ≤ F( lim
n→∞

M(xn,yn),ϒ( lim
n→∞

M(xn,yn))), (3.4)
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where

lim
n→∞

M(xn,yn) =

max{dα (ξ ,η), k
2 [dα (η ,η)+dα (ξ ,η)], k

2 [dα (ξ ,η)+dα (η ,η)]}∫
0

φ(t)dt

=

max{dα (ξ ,η), k
2 dα (ξ ,η)}∫

0

φ(t)dt

=

dα (ξ ,η)∫
0

φ(t)dt

(3.5)

since 1≤ k < 2. Hence from (3.5), we get

dα (ξ ,η)∫
0

φ(t)dt ≤ F(

dα (ξ ,η)∫
0

φ(t)dt,ϒ(

dα (ξ ,η)∫
0

φ(t)dt)),

which implies
dα (ξ ,η)∫

0

φ(t)dt = 0 or ϒ(

dα (ξ ,η)∫
0

φ(t)dt) = 0.

From the definition of φ ,ϒ, dα(ξ ,η) = 0 or equivalently ξ = η , which contradicts to ξ 6= η .

Hence (A,χ) and (B,ϑ) share the (CLRχϑ )-property. Since the pairs (A,χ) and (B,ϑ) satisfies

the (CLRχ)-property, then there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

χxn = lim
n→∞

Byn = lim
n→∞

ϑyn = η , where η ∈ χ(X)∩ϑ(X).

As η ∈ χ(X), there exists a point ` ∈ X such that χ`= η . Now we prove that A`= η . In order

to prove this, let A` 6= η . Note that

dα (A`,Byn)∫
0

φ(t)dt ≤ F(M(`,yn),ϒ(M(`,yn))), (3.6)

where M(`,yn)=
max{dα (Byn,χ`),

k
2 [dα (χ`,ϑyn)+dα (Byn,ϑyn)],

k
2 [dα (Byn,χ`)+dα (A`,ϑyn)]}∫

0
φ(t)dt. By letting

n→ ∞ in (3.6), we get

dα (A`,η)∫
0

φ(t)dt ≤ F( lim
n→∞

M(`,yn),ϒ( lim
n→∞

M(`,yn))), (3.7)
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where,

lim
n→∞

M(`,yn) =

max{dα (η ,S`), k
2 [dα (χ`,η)+dα (η ,η)], k

2 [dα (η ,χ`)+dα (A`,η)]}∫
0

φ(t)dt

=

k
2 dα (A`,η)∫

0

φ(t)dt

(3.8)

From (3.7), we find that

dα (A`,η)∫
0

φ(t)dt ≤ F(

k
2 dα (A`,η)∫

0

φ(t)dt,ϒ(

k
2 dα (A`,η)∫

0

φ(t)dt))

≤ F(

dα (A`,η)∫
0

φ(t)dt,ϒ(

k
2 dα (A`,η)∫

0

φ(t)dt)),

(3.9)

which yields A`= η . Therefore χ`= A`= η . This implies that ` is a coincidence point of the

pair (A,χ). As η ∈ ϑ(X), there exists a point η1 ∈ X such that ϑη1 = η . On the other hand,

we have
dα (Axn,Bη1)∫

0

φ(t)dt ≤ F(M(xn,η1),ϒ(M(xn,η1))), (3.10)

where,

M(xn,η1) =

max{dα (Bη1,χxn),
k
2 [dα (χxn,ϑη1)+dα (Bη1,ϑη1)],

k
2 [dα (Bη1,χxn)+dα (Axn,ϑη1)]}∫

0

φ(t)dt

=

max{dα (Bη1,η), k
2 [dα (η ,η)+dα (Bη1,η)], k

2 [dα (Bη1,η)+dα (η ,η)]}∫
0

φ(t)dt

=

dα (Bη1,η)∫
0

φ(t)dt

(3.11)

Equation (3.10) yields

dα (η ,Bη1)∫
0

φ(t)dt ≤ F(

dα (Bη1,η)∫
0

φ(t)dt,ϒ(

dα (Bη1,η)∫
0

φ(t)dt)).
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Thus
dα (Bη1,η)∫

0
φ(t)dt = 0, or ϒ(

dα (Bη1,η)∫
0

φ(t)dt)= 0. From the property of φ ,ϒ, dα(Bη1,η)= 0,

which yields Bη1 = η . Thus Bη1 = ϑη1 = η , which shows that η1 is a coincidence point of the

pair (B,ϑ). Since the pair (A,χ) and (B,ϑ) are weakly compatible, A` = S` and Bη1 = ϑη1.

Therefore Aη = Aχ`= χA`= χη and Bη = Bϑη1 = ϑBη1 = ϑη . Note that

dα (Aη ,Bη1)∫
0

φ(t)dt ≤ F(M(η ,η1),ϒ(M(η ,η1))), (3.12)

where,

M(η ,η1) =

max{dα (Bη1,χη), k
2 [dα (χη ,ϑη1)+dα (Bη1,ϑη1)],

k
2 [dα (Bη1,χη)+dα (Aη ,ϑη1)]}∫

0

φ(t)dt

=

max{dα (η ,Aη), k
2 [dα (Aη ,η)+dα (η ,η)], k

2 [dα (η ,Aη)+dα (Aη ,η)]}∫
0

φ(t)dt

=

dα (η ,Aη)∫
0

φ(t)dt

(3.13)

From (3.12), we get

dα (Aη ,η)∫
0

φ(t)dt ≤ F(

dα (η ,Aη)∫
0

φ(t)dt,ϒ(

dα (η ,Aη)∫
0

φ(t)dt)).

It follows that
dα (η ,Aη)∫

0
φ(t)dt = 0, or ϒ(

dα (η ,Aη)∫
0

φ(t)dt) = 0. Therefore Aη = η . Thus Aη =

χη = η and therefore η is a common fixed point of the pair (A,χ). If we take x = ` and y = η

in (3.1), we get

dα (A`,Bη)∫
0

φ(t)dt ≤ F(M(`,η),ϒ(M(`,η))), (3.14)



FIXED POINT THEOREMS VIA C-CLASS FUNCTIONS IN SYMMETRIC SPACES 15

where,

M(`,η) =

max{dα (Bη ,χ`), k
2 [dα (χ`,ϑη)+dα (Bη ,ϑη)], k

2 [dα (Bη ,χ`)+dα (A`,χη)]}∫
0

φ(t)dt

=

max{dα (Bη ,η), k
2 [dα (η ,χη)+dα (χη ,χη)], k

2 [dα (Bη ,η)+dα (η ,Bη)]}∫
0

φ(t)dt

=

dα (Bη ,η)∫
0

φ(t)dt

(3.15)

From (3.14), we get

dα (η ,Bη)∫
0

φ(t)dt ≤ F(

dα (η ,Bη)∫
0

φ(t)dt,ϒ(

dα (η ,Bη)∫
0

φ(t)dt)).

Thus
dα (η ,Bη)∫

0
φ(t)dt = 0, ,ϒ(

dα (η ,Bη)∫
0

φ(t)dt) = 0. Therefore η = Bη . Which implies Bη =

χη = η . Therefore η is a common fixed point of A,B,χ and ϑ . In order to prove unique-

ness, suppose z be another common fixed point of A,B,χ and ϑ . i.e., Az = Bz = ϑz = χz = z.

Putting x = z,y = η in (3.1), we have

dα (Az,Bη)∫
0

φ(t)dt ≤ F(M(z,η),ϒ(M(z,η))), (3.16)

where,

M(z,η) =

max{dα (Bη ,χz), k
2 [dα (χz,ϑη)+dα (Bη ,ϑη)], k

2 [dα (Bη ,χz)+dα (Az,ϑη)]}∫
0

φ(t)dt

=

max{dα (η ,z), k
2 [dα (z,η)+dα (η ,η)], k

2 [dα (η ,z)+dα (z,η)]}∫
0

φ(t)dt

=

dα (η ,z)∫
0

φ(t)dt.

From (3.16), we get

dα (z,η)∫
0

φ(t)dt ≤ F(

dα (z,η)∫
0

φ(t)dt,ϒ(

dα (z,η)∫
0

φ(t)dt)).
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Thus
dα (z,η)∫

0
φ(t)dt = 0, orϒ(

dα (z,η)∫
0

φ(t)dt) = 0. Therefore z = η . Hence A,B,χ and ϑ have a

unique common fixed point.
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