Communications in Optimization Theory

EVEN TUPLED COINCIDENCE AND COMMON FIXED POINT RESULTS FOR WEAKLY CONTRACTIVE MAPPINGS IN COMPLETE METRIC SPACES VIA NEW FUNCTIONS

ANUPAM SHARMA ${ }^{1, *}$, ARSLAN HOJAT ANSARI ${ }^{2}$, MOHAMMAD IMDAD ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India
${ }^{2}$ Department of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran
${ }^{3}$ Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract

In this paper, we prove results on even tupled coincidence and common fixed points in ordered complete metric spaces for a pair of weakly contractive compatible mappings under some new control functions. Moreover, we also illustrate our main result with an example in arbitrary even order case.

Keywords. Partially ordered set; Control function; Compatible mapping; Mixed g-monotone property; n-tupled coincidence point.

2010 Mathematics Subject Classification. 47H10, 55M20.

1. Introduction

Branciari [7] established a fixed point result for an integral-type inequality, which is a generalization of Banach contraction principle. Vijayaraju et al. [27] obtained a general principle, which made it possible to prove many fixed point theorems for pairs of integral type maps. Kada et al. [14] defined the concept of w-distance in a metric space and studied some fixed point

[^0]Received July 24, 2016; Accepted November 19, 2016.
theorems. Afterwards, Razani et al. [25] proved a fixed point theorem which is a new version of the main theorem in [7], by considering the concept of the w-distance, as follows:

Theorem 1.1. ([25]) Let p be a w-distance on a complete metric space (X, d). Let ϕ be nondecreasing, continuous and $\phi(\varepsilon)>0$ for each $\varepsilon>0$ and ψ be nondecreasing, right continuous and $\psi(t)<t$ for all $t>0$. Suppose T is a (ϕ, ψ, p)-contractive map on X. Then T has a unique fixed point in X. Moreover, $\lim _{n \rightarrow \infty} T^{n} x$ is a fixed point of T for each $x \in X$.

The investigation of fixed points in ordered metric spaces is a relatively new development which appears to have its origin in the paper of Ran and Reurings [24] which was well complimented by Nieto and López [22]. The concept of multi-dimensional fixed point was introduced by Guo and Lakshmikantham [10]. In [6], Bhaskar and Lakshmikantham proved some coupled fixed point theorems for a mapping $F: X^{2} \rightarrow X$ in ordered complete metric space. In this continuation, Lakshmikantham and Ćirić [20] generalized these results for non-linear ϕ contraction mapping by introducing two ideas namely: coupled coincidence point and mixed g-monotone property. In an attempt to extend the definition from X^{2} to X^{3}, Berinde and Borcut [5] introduced the concept of tripled fixed point and utilize the same to prove some tripled fixed point theorems. After that, Karapınar [15] introduced the quadrupled fixed point to prove some quadrupled fixed point theorems for nonlinear contraction mappings satisfying mixed g monotone property; see $[16,17]$ and the references therein.

Recently, Samet and Vetro [26] extended the idea of coupled as well as quadrupled fixed point to higher dimensions by introducing the notion of fixed point of n-order (or n-tupled fixed point, where $n \in \mathbb{N}$ and $n \geq 3$) and presented some n-tupled fixed point results in complete metric spaces, using a new concept of f-invariant set. Here it can be pointed out that the notion of tripled fixed point due to Berinde and Borcut [5] is different from the one defined by Samet and Vetro [26] for $n=3$ in the case of ordered metric spaces in order to keep the mixed monotone property working. Recently, Imdad et al. [11] extended the idea of mixed g-monotone property to the mapping $F: X^{n} \rightarrow X$ (where n is even natural number) and proved an even-tupled coincidence point theorem for nonlinear contraction mappings satisfying mixed g-monotone property.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A relation ' \preccurlyeq ' on X is said to be a partial order if the following properties are satisfied:
(i) reflexive: $x \preccurlyeq x$ for all $x \in X$,
(ii) anti-symmetric: $x \preccurlyeq y$ and $y \preccurlyeq x$ implies $x=y$,
(iii) transitive: $x \preccurlyeq y$ and $y \preccurlyeq z$ implies $x \preccurlyeq z$ for all $x, y, z \in X$.

A non-empty set X together with a partial order ' \preccurlyeq ' is said to be an ordered set and we denote it by (X, \preccurlyeq).

Definition 2.2. Let (X, \preccurlyeq) be an ordered set. Any two elements x and y are said to be comparable elements in X if either $x \preccurlyeq y$ or $y \preccurlyeq x$.

Definition 2.3. ([23]) A triplet (X, d, \preccurlyeq) is called an ordered metric space if (X, d) is a metric space and (X, \preccurlyeq) is an ordered set. Moreover, if d is a complete metric on X, then we say that (X, d, \preccurlyeq) is an ordered complete metric space.

Throughout the paper, n stands for a general even natural number. Let us denote by X^{n} the product space $X \times X \times \ldots \times X$ of n identical copies of X.

Definition 2.4. ([11]) Let (X, \preccurlyeq) be an ordered set and $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ two mappings. Then F is said to have the mixed g-monotone property if F is g-nondecreasing in its odd position arguments and g-nonincreasing in its even position arguments, that is, for $x^{1}, x^{2}, x^{3}, \ldots, x^{n} \in X$, if
for all $x_{1}^{1}, x_{2}^{1} \in X, g x_{1}^{1} \preccurlyeq g x_{2}^{1} \Rightarrow F\left(x_{1}^{1}, x^{2}, x^{3}, \ldots, x^{n}\right) \preccurlyeq F\left(x_{2}^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)$,
for all $x_{1}^{2}, x_{2}^{2} \in X, g x_{1}^{2} \preccurlyeq g x_{2}^{2} \Rightarrow F\left(x^{1}, x_{2}^{2}, x^{3}, \ldots, x^{n}\right) \preccurlyeq F\left(x^{1}, x_{1}^{2}, x^{3}, \ldots, x^{n}\right)$, for all $x_{1}^{3}, x_{2}^{3} \in X, g x_{1}^{3} \preccurlyeq g x_{2}^{3} \Rightarrow F\left(x^{1}, x^{2}, x_{1}^{3}, \ldots, x^{n}\right) \preccurlyeq F\left(x^{1}, x^{2}, x_{2}^{3}, \ldots, x^{n}\right)$,
for all $x_{1}^{n}, x_{2}^{n} \in X, g x_{1}^{n} \preccurlyeq g x_{2}^{n} \Rightarrow F\left(x^{1}, x^{2}, x^{3}, \ldots, x_{2}^{n}\right) \preccurlyeq F\left(x^{1}, x^{2}, x^{3}, \ldots, x_{1}^{n}\right)$.
For $g=I$ (identity mapping), Definition 2.4 reduces to mixed monotone property (for details see [11]).

Definition 2.5. ([26]) An element $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in X^{n}$ is called an n-tupled fixed point of the mapping $F: X^{n} \rightarrow X$ if

$$
\left\{\begin{array}{l}
F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)=x^{1} \\
F\left(x^{2}, x^{3}, \ldots, x^{n}, x^{1}\right)=x^{2}, \\
F\left(x^{3}, \ldots, x^{n}, x^{1}, x^{2}\right)=x^{3} \\
\vdots \\
F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)=x^{n}
\end{array}\right.
$$

Example 2.6. Let (R, d) be a partially ordered metric space under natural setting and $F: R^{n} \rightarrow$ R a mapping defined by $F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\sin \left(x^{1}, x^{2}, \ldots, x^{n}\right)$, for any $x^{1}, x^{2}, \ldots, x^{n} \in R$. Then $(0,0, \ldots, 0)$ is an n-tupled fixed point of F.

Definition 2.7. ([11]) An element $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in X^{n}$ is called an n-tupled coincidence point of mappings $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ if

$$
\left\{\begin{array}{l}
F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)=g\left(x^{1}\right), \\
F\left(x^{2}, x^{3}, \ldots, x^{n}, x^{1}\right)=g\left(x^{2}\right), \\
F\left(x^{3}, \ldots, x^{n}, x^{1}, x^{2}\right)=g\left(x^{3}\right), \\
\vdots \\
F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)=g\left(x^{n}\right)
\end{array}\right.
$$

Example 2.8. Let (R, d) be a partially ordered metric space under natural setting and F : $R^{n} \rightarrow R$ be a mapping defined by $F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\frac{x^{1}+x^{2}+\ldots+x^{n}}{n}$, for any $x^{1}, x^{2}, \ldots, x^{n} \in R$ while $g: R \rightarrow R$ is defined as $g(x)=\frac{x}{2}$. Then $(0,0, \ldots, 0)$ is an n-tupled coincidence point of F and g.

Remark 2.9. For $n=2$, Definitions 2.5 and 2.6 yield the definitions of coupled fixed point and coupled coincidence point respectively while on the other hand, for $n=4$ these definitions yield the definitions of quadrupled fixed point and quadrupled coincidence point respectively.

Definition 2.10. An element $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in X^{n}$ is called an n-tupled common fixed point of $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ if

$$
\left\{\begin{array}{l}
F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)=g\left(x^{1}\right)=x^{1}, \\
F\left(x^{2}, x^{3}, \ldots, x^{n}, x^{1}\right)=g\left(x^{2}\right)=x^{2}, \\
F\left(x^{3}, \ldots, x^{n}, x^{1}, x^{2}\right)=g\left(x^{3}\right)=x^{3}, \\
\vdots \\
F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)=g\left(x^{n}\right)=x^{n}
\end{array}\right.
$$

Definition 2.11. Let $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two mappings. Then F and g are said to be compatible if

$$
\left\{\begin{array}{l}
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right)\right), F\left(g x_{m}^{1}, g x_{m}^{2}, g x_{m}^{3}, \ldots, g x_{m}^{n}\right)\right)=0 \\
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right), F\left(g x_{m}^{2}, g x_{m}^{3}, \ldots, g x_{m}^{n}, x_{m}^{1}\right)\right)=0 \\
\vdots \\
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)\right), F\left(g x_{m}^{n}, g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n-1}\right)\right)=0
\end{array}\right.
$$

where $\left\{x_{m}^{1}\right\},\left\{x_{m}^{2}\right\}, \ldots,\left\{x_{m}^{n}\right\}$ are sequences in X such that

$$
\left\{\begin{array}{l}
\lim _{m \rightarrow \infty} F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{1}\right)=x^{1} \\
\lim _{m \rightarrow \infty} F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{2}\right)=x^{2} \\
\vdots \\
\lim _{m \rightarrow \infty} F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{n}\right)=x^{n}
\end{array}\right.
$$

for some $x^{1}, x^{2}, \ldots, x^{n} \in X$ are satisfied.
Definition 2.12. ([18]) A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied;
(a) ψ is monotonically increasing and continuous;
(b) $\psi(t)=0$ if and only if $t=0$.

Definition 2.13. A function $\phi:[0, \infty) \rightarrow[0, \infty)$ is called an ultra-altering distance function if the following properties are satisfied;
(a) ϕ is continuous;
(b) $\phi(0) \geq 0$, and $\phi(\varepsilon)>0$ for each $\varepsilon>0$.

Now we state the main result of Choudhury et al. [9].
Theorem 2.14. Let (X, d, \preccurlyeq) be a complete ordered metric space. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous function with $\varphi(t)=0$ if and only if $t=0$ while ψ an altering distance function. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property on X and

$$
\psi(d(F(x, y), F(u, v))) \leq \psi(\max \{d(g x, g u), d(g y, g v)\})-\varphi(\max \{d(g x, g u), d(g y, g v)\})
$$

for all $x, y, u, v \in X$ for which $g u \preccurlyeq g x$ and $g y \preccurlyeq g v$. Suppose that $F(X \times X) \subseteq g(X), g$ is continuous and F and g are compatible. Also, suppose that
(a) F is continuous or
(b) X has the following properties:
(i) if a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $g\left(x_{n}\right) \preccurlyeq g(x)$ for all $n \geq 0$;
(ii) if a nonincreasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $g(y) \preccurlyeq g\left(y_{n}\right)$ for all $n \geq 0$.

If there exist $x_{0}, y_{0} \in X$ such that $g\left(x_{0}\right) \preccurlyeq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preccurlyeq g\left(y_{0}\right)$, then there exist $x, y \in X$ such that $g(x)=F(x, y)$ and $g(y)=F(y, x)$, i.e., F and g have a coupled coincidence point in X.

Ansari [4] introduced the concept of C-class functions which cover a large class of contractive conditions.

Definition 2.15. A continuous function $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called a C-function if for any $s, t \in$ $[0, \infty)$, the following conditions hold:
(1) $f(s, t) \leq s$;
(2) $f(s, t)=s$ implies that either $s=0$ or $t=0$.

An extra condition on f is that $f(0,0)=0$ could be imposed in some cases if required. The letter \mathscr{C} denotes the class of all C-functions. The following example shows that the class C is nonempty:

Example 2.16. Define $f:[0, \infty)^{2} \rightarrow \mathscr{R}$ by
(1) $f(s, t)=s-t$,
(2) $f(s, t)=\frac{s}{(1+t)^{r}}$ for some $r \in(0, \infty)$,
(3) $f(s, t)=\log \left(t+a^{s}\right) /(1+t)$, for some $a>1$,
(4) $f(s, t)=\ln \left(1+a^{s}\right) / 2$, for $a>e$. Indeed $f(s, 1)=s$ implies that $s=0$,
(5) $f(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1$, for $r \in(0, \infty)$,
(6) $f(s, t)=s \log _{t+a} a$, for $a>1$,
(7) $f(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right)$,
(8) $f(s, t)=s \beta(s)$, where $\beta:[0, \infty) \rightarrow[0,1)$ and semi-continuous,
(9) $f(s, t)=s-\frac{t}{k+t}$,
(10) $f(s, t)=s-\varphi(s)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0$ if and only if $t=0$,
(11) $f(s, t)=\operatorname{sh}(s, t)$, where $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(s, t)<1$ for all $t, s>0$,
(12) $f(s, t)=s-\left(\frac{2+t}{1+t}\right) t$,
(13) $f(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}$,
(14) $f(s, t)=\phi(s)$, where $\phi:[0, \infty) \rightarrow[0, \infty)$ is an upper semi-continuous function such that $\phi(0)=0$ and $\phi(t)<t$ for $t>0$,
(15) $f(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty)$, for all $s, t \in[0, \infty)$.

Then f is an element of C.

3. Main results

Now, we are in a position to prove our main results.
Theorem 3.1. Let (X, d, \preccurlyeq) be a complete ordered metric space. Let φ be an ultra-altering distance function, ψ an altering distance function and f a C-class function. Let $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property on X and

$$
\begin{gather*}
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right)\right) \leq f\left(\psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right),\right. \\
\left.\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)\right) \tag{1}
\end{gather*}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $g y^{1} \preccurlyeq g x^{1}, g x^{2} \preccurlyeq g y^{2}, g y^{3} \preccurlyeq g x^{3}, \ldots, g x^{n} \preccurlyeq g y^{n}$. Suppose that $F\left(X^{n}\right) \subseteq g(X), g$ is continuous and F and g are compatible. Also, suppose that
(a) F is continuous or
(b) X has the following properties:
(i) if nondecreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g\left(x_{m}\right) \preccurlyeq g(x)$ for all $m \geq 0$;
(ii) if nonincreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g(x) \preccurlyeq g\left(x_{m}\right)$ for all $m \geq 0$.

If there exist $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that

$$
\left\{\begin{array}{l}
g\left(x_{0}^{1}\right) \preccurlyeq F\left(x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}\right), \tag{2}\\
F\left(x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}\right) \preccurlyeq g\left(x_{0}^{2}\right), \\
g\left(x_{0}^{3}\right) \preccurlyeq F\left(x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}, x_{0}^{2}\right), \\
\vdots \\
F\left(x_{0}^{n}, x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n-1}\right) \preccurlyeq g\left(x_{0}^{n}\right),
\end{array}\right.
$$

then F and g have an n-tupled coincidence point in X.
Proof. Let $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that (2) holds. Since $F\left(X^{n}\right) \subseteq g(X)$, we can choose $x_{1}^{1}, x_{1}^{2}, x_{1}^{3}, \ldots, x_{1}^{n} \in X$ such that

$$
\left\{\begin{array}{l}
g\left(x_{1}^{1}\right)=F\left(x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}\right) \tag{3}\\
g\left(x_{1}^{2}\right)=F\left(x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}\right) \\
g\left(x_{1}^{3}\right)=F\left(x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}, x_{0}^{2}\right) \\
\vdots \\
g\left(x_{1}^{n}\right)=F\left(x_{0}^{n}, x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n-1}\right)
\end{array}\right.
$$

As earlier, one can also choose $x_{2}^{1}, x_{2}^{2}, x_{2}^{3}, \ldots, x_{2}^{n} \in X$ such that

$$
\left\{\begin{array}{l}
g\left(x_{2}^{1}\right)=F\left(x_{1}^{1}, x_{1}^{2}, x_{1}^{3}, \ldots, x_{1}^{n}\right) \\
g\left(x_{2}^{2}\right)=F\left(x_{1}^{2}, x_{1}^{3}, \ldots, x_{1}^{n}, x_{1}^{1}\right) \\
g\left(x_{2}^{3}\right)=F\left(x_{1}^{3}, \ldots, x_{1}^{n}, x_{1}^{1}, x_{1}^{2}\right), \\
\vdots \\
g\left(x_{2}^{n}\right)=F\left(x_{1}^{n}, x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{n-1}\right)
\end{array}\right.
$$

Continuing this process, we can construct sequences $\left\{x_{m}^{1}\right\},\left\{x_{m}^{2}\right\}, \ldots,\left\{x_{m}^{n}\right\},(m \geq 0)$ such that

$$
\left\{\begin{array}{l}
g\left(x_{m+1}^{1}\right)=F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right) \tag{4}\\
g\left(x_{m+1}^{2}\right)=F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right) \\
g\left(x_{m+1}^{3}\right)=F\left(x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}, x_{m}^{2}\right) \\
\vdots \\
g\left(x_{m+1}^{n}\right)=F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)
\end{array}\right.
$$

In what follows, we shall prove that for all $m \geq 0$,

$$
\begin{equation*}
g x_{m}^{1} \preccurlyeq g x_{m+1}^{1}, g x_{m+1}^{2} \preccurlyeq g x_{m}^{2}, g x_{m}^{3} \preccurlyeq g x_{m+1}^{3}, \ldots, g x_{m+1}^{n} \preccurlyeq g x_{m}^{n} . \tag{5}
\end{equation*}
$$

Owing to (2) and (3), we have

$$
g x_{0}^{1} \preccurlyeq g x_{1}^{1}, g x_{1}^{2} \preccurlyeq g x_{0}^{2}, g x_{0}^{3} \preccurlyeq g x_{1}^{3}, \ldots, g x_{1}^{n} \preccurlyeq g x_{0}^{n},
$$

that is, (5) holds for $m=0$. Suppose that (5) holds for some $m>0$. As F has the mixed g monotone property, we have from (4) that

$$
\begin{aligned}
g x_{m+1}^{1}=F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right) & \preccurlyeq F\left(x_{m+1}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right) \\
& \preccurlyeq F\left(x_{m+1}^{1}, x_{m+1}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right) \\
& \preccurlyeq F\left(x_{m+1}^{1}, x_{m+1}^{2}, x_{m+1}^{3}, \ldots, x_{m}^{n}\right) \\
& \preccurlyeq F\left(x_{m+1}^{1}, x_{m+1}^{2}, x_{m+1}^{3}, \ldots, x_{m+1}^{n}\right)=g x_{m+2}^{1}
\end{aligned}
$$

$$
\begin{aligned}
g x_{m+2}^{2}=F\left(x_{m+1}^{2}, x_{m+1}^{3}, \ldots, x_{m+1}^{n}, x_{m+1}^{1}\right) & \preccurlyeq F\left(x_{m+1}^{2}, x_{m+1}^{3}, \ldots, x_{m+1}^{n}, x_{m}^{1}\right) \\
& \preccurlyeq F\left(x_{m+1}^{2}, x_{m+1}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right) \\
& \preccurlyeq F\left(x_{m+1}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right) \\
& \preccurlyeq F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right)=g x_{m+1}^{2}
\end{aligned}
$$

Also for the same reason, we have

$$
\begin{aligned}
g x_{m+1}^{3}=F\left(x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}, x_{m}^{2}\right) & \preccurlyeq F\left(x_{m+1}^{3}, \ldots, x_{m+1}^{n}, x_{m+1}^{1}, x_{m+1}^{2}\right)=g x_{m+2}^{3} \\
& \vdots \\
g x_{m+2}^{n}=F\left(x_{m+1}^{n}, x_{m+1}^{1}, x_{m+1}^{2}, \ldots, x_{m+1}^{n-1}\right) & \preccurlyeq F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)=g x_{m+1}^{n} .
\end{aligned}
$$

Hence by mathematical induction it follows that (5) holds for all $m \geq 0$. Therefore

$$
\left\{\begin{array}{l}
g x_{0}^{1} \preccurlyeq g x_{1}^{1} \preccurlyeq g x_{2}^{1} \preccurlyeq \ldots \preccurlyeq g x_{m}^{1} \preccurlyeq g x_{m+1}^{1} \preccurlyeq \ldots \tag{6}\\
\ldots g x_{m+1}^{2} \preccurlyeq g x_{m}^{2} \preccurlyeq \ldots \preccurlyeq g x_{2}^{2} \preccurlyeq g x_{1}^{2} \preccurlyeq g x_{0}^{2} \\
g x_{0}^{3} \preccurlyeq g x_{1}^{3} \preccurlyeq g x_{2}^{3} \preccurlyeq \ldots \preccurlyeq g x_{m}^{3} \preccurlyeq g x_{m+1}^{3} \ldots \\
\vdots \\
\ldots g x_{m+1}^{n} \preccurlyeq g x_{m}^{n} \preccurlyeq \ldots \preccurlyeq g x_{2}^{n} \preccurlyeq g x_{1}^{n} \preccurlyeq g x_{0}^{n} .
\end{array}\right.
$$

Let

$$
R_{m}=\max \left\{d\left(g x_{m+1}^{1}, g x_{m}^{1}\right), d\left(g x_{m+1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m+1}^{n}, g x_{m}^{n}\right)\right\}
$$

Using (6), we have,

$$
\begin{aligned}
\psi\left(d\left(g x_{m}^{1}, g x_{m+1}^{1}\right)\right)= & \psi\left(d\left(F\left(x_{m-1}^{1}, x_{m-1}^{2}, x_{m-1}^{3}, \ldots, x_{m-1}^{n}\right), F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n}, g x_{m}^{n}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n}, g x_{m}^{n}\right)\right\}\right)\right), \\
\psi\left(d\left(g x_{m}^{2}, g x_{m+1}^{2}\right)\right)= & \psi\left(d\left(F\left(x_{m-1}^{2}, x_{m-1}^{3}, \ldots, x_{m-1}^{n}, x_{m-1}^{1}\right), F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n}, g x_{m}^{n}\right), d\left(g x_{m-1}^{1}, g x_{m}^{1}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n}, g x_{m}^{n}\right), d\left(g x_{m-1}^{1}, g x_{m}^{1}\right)\right\}\right)\right)
\end{aligned}
$$

Similarly, we can inductively write

$$
\begin{aligned}
\psi\left(d\left(g x_{m}^{n}, g x_{m+1}^{n}\right)\right)= & \psi\left(d\left(F\left(x_{m-1}^{n}, x_{m-1}^{1}, x_{m-1}^{2}, \ldots, x_{m-1}^{n-1}\right), F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m-1}^{n}, g x_{m}^{n}\right), d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), \ldots, d\left(g x_{m-1}^{n-1}, g x_{m}^{n-1}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m-1}^{n}, g x_{m}^{n}\right), d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), \ldots, d\left(g x_{m-1}^{n-1}, g x_{m}^{n-1}\right)\right\}\right)\right) .
\end{aligned}
$$

From above inequalities and monotone property of ψ, we have

$$
\begin{aligned}
& \psi\left(\max \left\{d\left(g x_{m+1}^{1}, g x_{m}^{1}\right), d\left(g x_{m+1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m+1}^{n}, g x_{m}^{n}\right)\right\}\right) \\
= & \max \left\{\psi d\left(g x_{m+1}^{1}, g x_{m}^{1}\right), \psi d\left(g x_{m+1}^{2}, g x_{m}^{2}\right), \ldots, \psi d\left(g x_{m+1}^{n}, g x_{m}^{n}\right)\right\} \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n-1}, g x_{m}^{n-1}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m-1}^{1}, g x_{m}^{1}\right), d\left(g x_{m-1}^{2}, g x_{m}^{2}\right), \ldots, d\left(g x_{m-1}^{n-1}, g x_{m}^{n-1}\right)\right\}\right)\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\psi\left(R_{m}\right) \leq f\left(\psi\left(R_{m-1}\right), \varphi\left(R_{m-1}\right)\right) \tag{7}
\end{equation*}
$$

Using the property of ψ, we have $\psi\left(R_{m}\right) \leq \psi\left(R_{m-1}\right)$, which implies that $R_{m} \leq R_{m-1}$ (by the property of $\psi)$. Therefore $\left\{R_{m}\right\}$ is a monotonically decreasing sequence of nonnegative real numbers. Hence there exists $r \geq 0$ such that $R_{m} \rightarrow r$ as $m \rightarrow \infty$. Taking the limit as $m \rightarrow \infty$ in (7). Then by the continuities of ψ and φ, we have

$$
\psi(r) \leq \psi(r)-\varphi(r)
$$

which is a contradiction unless $r=0$. Therefore

$$
\begin{equation*}
R_{m} \rightarrow 0 \text { as } m \rightarrow \infty, \tag{8}
\end{equation*}
$$

so that

$$
\lim _{m \rightarrow \infty} d\left(g x_{m-1}^{1}, g x_{m}^{1}\right)=0, \lim _{m \rightarrow \infty} d\left(g x_{m-1}^{2}, g x_{m}^{2}\right)=0, \ldots, \lim _{m \rightarrow \infty} d\left(g x_{m-1}^{n}, g x_{m}^{n}\right)=0
$$

Next, we show that $\left\{g x_{m}^{1}\right\},\left\{g x_{m}^{2}\right\}, \ldots,\left\{g x_{m}^{n}\right\}$ are Cauchy sequences. If possible suppose that at least one of $\left\{g x_{m}^{1}\right\},\left\{g x_{m}^{2}\right\}, \ldots,\left\{g x_{m}^{n}\right\}$ is not a Cauchy sequence. Then there exists an $\varepsilon>0$ and
sequences of positive integers $\{m(k)\}$ and $\{t(k)\}$ such that for all positive integers $k, t(k)>$ $m(k)>k$,

$$
D_{k}=\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\} \geq \varepsilon
$$

and

$$
\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)-1}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)-1}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)-1}^{n}\right)\right\}<\varepsilon
$$

Now,

$$
\begin{aligned}
\varepsilon \leq D_{k}= & \max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\} \\
\leq & \max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)-1)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)-1)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)-1)}^{n}\right)\right\} \\
& +\max \left\{d\left(g x_{t(k)-1}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{t(k)-1}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{t(k)-1}^{n}, g x_{t(k)}^{n}\right)\right\},
\end{aligned}
$$

that is,

$$
\varepsilon \leq D_{k}=\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\} \leq \varepsilon+R_{t(k)-1}
$$

Letting $k \rightarrow \infty$ in above inequality and using (8), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} D_{k}=\lim _{k \rightarrow \infty} \max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\}=\varepsilon \tag{9}
\end{equation*}
$$

Again,

$$
\begin{aligned}
D_{k+1}= & \max \left\{d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right), d\left(g x_{m(k)+1}^{2}, g x_{t(k)+1}^{2}\right), \ldots, d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right\} \\
\leq & \max \left\{d\left(g x_{m(k)+1}^{1}, g x_{m(k)}^{1}\right), d\left(g x_{m(k)+1}^{2}, g x_{m(k)}^{2}\right), \ldots, d\left(g x_{m(k)+1}^{n}, g x_{m(k)}^{n}\right)\right\} \\
& +\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\} \\
& +\max \left\{d\left(g x_{t(k)}^{1}, g x_{t(k)+1}^{1}\right), d\left(g x_{t(k)}^{2}, g x_{t(k)+1}^{2}\right), \ldots, d\left(g x_{t(k)}^{n}, g x_{t(k)+1}^{n}\right\}\right) \\
= & R_{m(k)}+D_{k}+R_{t(k)}
\end{aligned}
$$

and

$$
D_{k} \leq R_{m(k)}+D_{k+1}+R_{t(k)}
$$

Letting $k \rightarrow \infty$ in the preceding inequality, using (8) and (9) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} D_{k+1}=\lim _{k \rightarrow \infty} \max \left\{d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right), \ldots, d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right\}=\varepsilon \tag{10}
\end{equation*}
$$

Since $t(k)>m(k)$ and

$$
g x_{m(k)}^{1} \preccurlyeq g x_{t(k)}^{1}, g x_{t(k)}^{2} \preccurlyeq g x_{m(k)}^{2}, g x_{m(k)}^{3} \preccurlyeq g x_{t(k)}^{3}, \ldots, g x_{t(k)}^{n} \preccurlyeq g x_{m(k)}^{n},
$$

therefore owing to (1) and (4), we have

$$
\begin{aligned}
\psi\left(d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right)\right)= & \psi\left(d\left(F\left(x_{m(k)}^{1}, x_{m(k)}^{2}, \ldots, x_{m(k)}^{n}\right), F\left(x_{t(k)}^{1}, x_{t(k)}^{2}, \ldots, x_{t(k)}^{n}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right), \ldots, d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right)\right\}\right)\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\psi\left(d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right)\right) \leq \psi\left(D_{k}\right)-\varphi\left(D_{k}\right) \tag{11}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\psi\left(d\left(g x_{m(k)+1}^{2}, g x_{t(k)+1}^{2}\right)\right)= & \psi\left(d\left(F\left(x_{m(k)}^{2}, \ldots, x_{m(k)}^{n}, x_{m(k)}^{1}\right), F\left(x_{t(k)}^{2}, \ldots, x_{t(k)}^{n}, x_{t(k)}^{1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m(k)}^{2}, g x_{t(k)}^{2}\right), \ldots, d\left(g x_{m(k)}^{1}, g x_{t(k)}^{1}\right)\right\}\right)\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\psi\left(d\left(g x_{m(k)+1}^{2}, g x_{t(k)+1}^{2}\right)\right) \leq \psi\left(D_{k}\right)-\varphi\left(D_{k}\right) \tag{12}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\psi\left(d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right)= & \psi\left(d\left(F\left(x_{m(k)}^{n}, x_{m(k)}^{1}, \ldots, x_{m(k)}^{n-1}\right), F\left(x_{t(k)}^{n}, x_{t(k)}^{1}, \ldots, x_{t(k)}^{n-1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right), \ldots, d\left(g x_{m(k)}^{n-1}, g x_{t(k)}^{n-1}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x_{m(k)}^{n}, g x_{t(k)}^{n}\right), \ldots, d\left(g x_{m(k)}^{n-1}, g x_{t(k)}^{n-1}\right)\right\}\right)\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\psi\left(d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right) \leq \psi\left(D_{k}\right)-\varphi\left(D_{k}\right) . \tag{13}
\end{equation*}
$$

Using (11)-(13) along with monotone property of ψ, we have,

$$
\begin{aligned}
\psi\left(D_{k+1}\right) & =\psi\left(\max \left\{d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right), \ldots, d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right\}\right) \\
& =\max \left\{\psi d\left(g x_{m(k)+1}^{1}, g x_{t(k)+1}^{1}\right), \ldots, \psi d\left(g x_{m(k)+1}^{n}, g x_{t(k)+1}^{n}\right)\right\} \\
& =f\left(\psi\left(D_{k}\right), \varphi\left(D_{k}\right)\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequality, using (9), (10) and the continuities of ψ and φ, we have

$$
\psi(\varepsilon) \leq f(\psi(\varepsilon), \varphi(\varepsilon))
$$

therefore $\psi(\varepsilon)=0$ or $\varphi(\varepsilon)=0$, then $\varepsilon=0$ which is a contradiction. Thus $\left\{g x_{m}^{1}\right\},\left\{g x_{m}^{2}\right\}, \ldots$, $\left\{g x_{m}^{n}\right\}$ are Cauchy sequences in X. From the completeness of X, there exist $x^{1}, x^{2}, \ldots, x^{n} \in X$ such that

$$
\left\{\begin{array}{l}
\lim _{m \rightarrow \infty} F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{1}\right)=x^{1} \tag{14}\\
\lim _{m \rightarrow \infty} F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{2}\right)=x^{2} \\
\lim _{m \rightarrow \infty} F\left(x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}, x_{m}^{2}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{3}\right)=x^{3} \\
\vdots \\
\lim _{m \rightarrow \infty} F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)=\lim _{m \rightarrow \infty} g\left(x_{m}^{n}\right)=x^{n}
\end{array}\right.
$$

for some $x^{1}, x^{2}, \ldots, x^{n} \in X$ are satisfied. Since F and g are compatible, we have from (14) that

$$
\left\{\begin{array}{l}
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right)\right), F\left(g x_{m}^{1}, g x_{m}^{2}, g x_{m}^{3}, \ldots, g x_{m}^{n}\right)\right)=0 \tag{15}\\
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1},\right)\right), F\left(g x_{m}^{2}, g x_{m}^{3}, \ldots, g x_{m}^{n}, g x_{m}^{1}\right)\right)=0 \\
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}, x_{m}^{2}\right)\right), F\left(g x_{m}^{3}, \ldots, g x_{m}^{n}, g x_{m}^{1}, g x_{m}^{2}\right)\right)=0 \\
\vdots \\
\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right)\right), F\left(g x_{m}^{n}, g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n-1}\right)\right)=0
\end{array}\right.
$$

Let condition (a) holds. Then for all $m \geq 0$, we have

$$
\begin{aligned}
d\left(g x^{1}, F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right) \leq & d\left(g x^{1}, g\left(F\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right)\right) \\
& +d\left(g\left(F\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right), F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right)
\end{aligned}
$$

Taking $m \rightarrow \infty$ in above inequality, using (14), (15) and continuities of F and g, we have

$$
d\left(g x^{1}, F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)\right)=0 ; \text { that is, } g x^{1}=F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right) .
$$

Continuing this process, we obtain that

$$
\begin{gathered}
d\left(g x^{2}, F\left(x^{2}, x^{3}, \ldots, x^{n}, x^{1}\right)\right)=0 \text {; that is } g x^{2}=F\left(x^{2}, x^{3}, \ldots, x^{n}, x^{1}\right) . \\
\vdots \\
d\left(g x^{n}, F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)\right)=0 \text {; that is } g x^{n}=F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right) .
\end{gathered}
$$

Hence the element $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in X^{n}$ is an n-tupled coincidence point of the mappings F : $X^{n} \rightarrow X$ and $g: X \rightarrow X$. Next, we suppose that condition (b) holds. From (6) and (14), we have

$$
\begin{equation*}
g g x_{m}^{1} \preccurlyeq g x^{1}, g x^{2} \preccurlyeq g g x_{m}^{2}, g g x_{m}^{3} \preccurlyeq g x^{3}, \ldots, g x^{n} \preccurlyeq g g x_{m}^{n} . \tag{16}
\end{equation*}
$$

Since F and g are compatible and g is continuous, by (14) and (15) we have

$$
\left\{\begin{array}{l}
\lim _{m \rightarrow \infty} g g x_{m}^{1}=g x^{1}=\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right)=\lim _{m \rightarrow \infty} F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right. \tag{17}\\
\lim _{m \rightarrow \infty} g g x_{m}^{2}=g x^{2}=\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)=\lim _{m \rightarrow \infty} F\left(g x_{m}^{2}, \ldots, g x_{m}^{n}, g x_{m}^{1}\right)\right. \\
\lim _{m \rightarrow \infty} g g x_{m}^{3}=g x^{3}=\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{3}, \ldots, x_{m}^{1}, x_{m}^{2}\right)\right)=\lim _{m \rightarrow \infty} F\left(g x_{m}^{3}, \ldots, g x_{m}^{1}, g x_{m}^{2}\right)\right. \\
\vdots \\
\lim _{m \rightarrow \infty} g g x_{m}^{n}=g x^{n}=\lim _{m \rightarrow \infty} d\left(g\left(F\left(x_{m}^{n}, x_{m}^{1}, \ldots, x_{m}^{n-1}\right)\right)=\lim _{m \rightarrow \infty} F\left(g x_{m}^{n}, g x_{m}^{1}, \ldots, g x_{m}^{n-1}\right)\right.
\end{array}\right.
$$

Now, using triangle inequality, we have

$$
d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g x^{1}\right) \leq d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g g x_{m+1}^{1}\right)+d\left(g g x_{m+1}^{1}, g x^{1}\right)
$$

that is,

$$
d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g x^{1}\right) \leq d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g\left(F\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right)+d\left(g g x_{m+1}^{1}, g x^{1}\right)\right.
$$

Taking $m \rightarrow \infty$ in the above inequality and using (17) we have

$$
\begin{aligned}
d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g x^{1}\right) \leq & \lim _{m \rightarrow \infty} d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g\left(F\left(x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n}\right)\right)\right. \\
& +\lim _{m \rightarrow \infty} d\left(g g x_{m+1}^{1}, g x^{1}\right) \\
= & \lim _{m \rightarrow \infty} d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right)
\end{aligned}
$$

Since ψ is continuous and monotonically increasing, from the above inequality we have

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g x^{1}\right)\right) & \leq \psi\left(\lim _{m \rightarrow \infty} d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right)\right) \\
& =\lim _{m \rightarrow \infty} \psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(g x_{m}^{1}, g x_{m}^{2}, \ldots, g x_{m}^{n}\right)\right)\right)
\end{aligned}
$$

By (1) and (16), we have

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), g x^{1}\right)\right) \leq & \lim _{m \rightarrow \infty} f\left(\left[\psi\left(\max \left\{d\left(g x^{1}, g g x_{m}^{1}\right), \ldots, d\left(g x^{n}, g g x_{m}^{n}\right)\right\}\right),\right.\right. \\
& \left.\left.\varphi\left(\max \left\{d\left(g x^{1}, g g x_{m}^{1}\right), d\left(g x^{2}, g g x_{m}^{2}\right), \ldots, d\left(g x^{n}, g g x_{m}^{n}\right)\right\}\right)\right]\right) .
\end{aligned}
$$

Using (17) and the properties of ψ and φ we have

$$
\psi\left(d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), g x^{1}\right)\right)=0
$$

which implies that

$$
d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), g x^{1}\right)=0, \text { that is } F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)=g x^{1}
$$

Again, we have

$$
d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right) \leq d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g g x_{m+1}^{2}\right)+d\left(g g x_{m+1}^{2}, g x^{2}\right)
$$

that is,

$$
d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right) \leq d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right)+d\left(g g x_{m+1}^{2}, g x^{2}\right)
$$

Taking $m \rightarrow \infty$ in the above inequality, using (17) we have

$$
\begin{aligned}
d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right) \leq & \lim _{m \rightarrow \infty} d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right) \\
& +\lim _{m \rightarrow \infty} d\left(g g x_{m+1}^{2}, g x^{2}\right) \\
= & \lim _{m \rightarrow \infty} d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right)
\end{aligned}
$$

Since ψ is continuous and monotonically increasing, from the above inequality we have

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right)\right) & \leq \psi\left(\lim _{m \rightarrow \infty} d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right)\right) \\
& =\lim _{m \rightarrow \infty} \psi\left(d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g\left(F\left(x_{m}^{2}, \ldots, x_{m}^{n}, x_{m}^{1}\right)\right)\right)\right)
\end{aligned}
$$

By (1) and (16), we have

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right)\right) \leq & \lim _{m \rightarrow \infty} f\left(\left[\psi\left(\max \left\{d\left(g x^{2}, g g x_{m}^{2}\right), \ldots, d\left(g x^{1}, g g x_{m}^{1}\right)\right\}\right),\right.\right. \\
& \left.\left.\varphi\left(\max \left\{d\left(g x^{2}, g g x_{m}^{2}\right), \ldots, d\left(g x^{n}, g g x_{m}^{n}\right), d\left(g x^{1}, g g x_{m}^{1}\right)\right\}\right)\right]\right)
\end{aligned}
$$

Using (17) and the properties of ψ and φ, we have

$$
\psi\left(d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right)\right)=0
$$

which implies that

$$
d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), g x^{2}\right)=0 \text {, that is } F\left(x^{2}, \ldots, x^{n}, x^{1}\right)=g x^{2} .
$$

Continuing in this way, we get

$$
d\left(F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right), g x^{n}\right)=0 \text {, that is } F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)=g x^{n} .
$$

Hence the element $\left(x^{1}, x^{2}, \ldots, x^{n}\right) \in X^{n}$ is an n-tupled coincidence point of mappings F and g. This completes the proof of the theorem.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for real $\left(x^{1}, x^{2}, \ldots\right.$, $\left.x^{n}\right),\left(y^{1}, y^{2}, \ldots, y^{n}\right) \in X^{n}$ there exists, $\left(z^{1}, z^{2}, \ldots, z^{n}\right) \in X^{n}$ such that $\left(F\left(z^{1}, z^{2}, \ldots, z^{n}\right), F\left(z^{2}, \ldots, z^{n}, z^{1}\right)\right.$ $\left., \ldots, F\left(z^{n}, z^{1}, \ldots, z^{n-1}\right)\right)$ is comparable to $\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(x^{2}, \ldots, x^{n}, x^{1}\right), \ldots, F\left(x^{n}, x^{1}, \ldots, x^{n-1}\right)\right)$ and $\left(F\left(y^{1}, y^{2}, \ldots, y^{n}\right), F\left(y^{2}, \ldots, y^{n}, y^{1}\right), \ldots, F\left(y^{n}, y^{1}, \ldots, y^{n-1}\right)\right)$. Then F and g have a unique n tupled common fixed point.

Proof. The set of n-tupled coincidence points of F and g is non-empty due to Theorem 3.1. Assume now, $\left(x^{1}, x^{2}, \ldots, x^{n}\right),\left(y^{1}, y^{2}, \ldots, y^{n}\right)$ are two n-tupled coincidence points, that is,

$$
\begin{gathered}
F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=g\left(x^{1}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)=g\left(y^{1}\right), \\
F\left(x^{2}, \ldots, x^{n}, x^{1}\right)=g\left(x^{2}\right), F\left(y^{2}, \ldots, y^{n}, y^{1}\right)=g\left(y^{2}\right), \\
\vdots \\
F\left(x^{n}, x^{1}, \ldots, x^{n-1}\right)=g\left(x^{n}\right), F\left(y^{n}, y^{1}, \ldots, y^{n-1}\right)=g\left(y^{n}\right) .
\end{gathered}
$$

Now, we show that

$$
\begin{equation*}
g\left(x^{1}\right)=g\left(y^{1}\right), g\left(x^{2}\right)=g\left(y^{2}\right), \ldots, g\left(x^{n}\right)=g\left(y^{n}\right) \tag{18}
\end{equation*}
$$

By assumption, there exists $\left(z^{1}, z^{2}, \ldots, z^{n}\right) \in X^{n}$ such that $\left(F\left(z^{1}, z^{2}, \ldots, z^{n}\right), F\left(z^{2}, \ldots, z^{n}, z^{1}\right), \ldots\right.$, $\left.F\left(z^{n}, z^{1}, \ldots, z^{n-1}\right)\right)$ is comparable to $\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(x^{2}, \ldots, x^{n}, x^{1}\right), \ldots, F\left(x^{n}, x^{1}, \ldots, x^{n-1}\right)\right)$ and
$\left(F\left(y^{1}, y^{2}, \ldots, y^{n}\right), F\left(y^{2}, \ldots, y^{n}, y^{1}\right), \ldots, F\left(y^{n}, y^{1}, \ldots, y^{n-1}\right)\right) . \operatorname{Put} z_{0}^{1}=z^{1}, z_{0}^{2}=z^{2}, \ldots, z_{0}^{n}=z^{n}$ and choose $z_{1}^{1}, z_{1}^{2}, \ldots, z_{1}^{n} \in X$ such that

$$
\begin{gathered}
g\left(z_{1}^{1}\right)=F\left(z_{0}^{1}, z_{0}^{2}, z_{0}^{3}, \ldots, z_{0}^{n}\right) \\
g\left(z_{1}^{2}\right)=F\left(z_{0}^{2}, z_{0}^{3}, \ldots, z_{0}^{n}, z_{0}^{1}\right) \\
\vdots \\
g\left(z_{1}^{n}\right)=F\left(z_{0}^{n}, z_{0}^{1}, z_{0}^{2}, \ldots, z_{0}^{n-1}\right)
\end{gathered}
$$

Further define sequences $\left\{g\left(z_{m}^{1}\right)\right\},\left\{g\left(z_{m}^{2}\right)\right\}, \ldots,\left\{g\left(z_{m}^{n}\right)\right\}$ such that

$$
\begin{gathered}
g\left(z_{m+1}^{1}\right)=F\left(z_{m}^{1}, z_{m}^{2}, z_{m}^{3}, \ldots, z_{m}^{n}\right) \\
g\left(z_{m+1}^{2}\right)=F\left(z_{m}^{2}, z_{m}^{3}, \ldots, z_{m}^{n}, z_{m}^{1}\right) \\
\vdots \\
g\left(z_{m+1}^{n}\right)=F\left(z_{m}^{n}, z_{m}^{1}, z_{m}^{2}, \ldots, z_{m}^{n-1}\right)
\end{gathered}
$$

Further set $x_{0}^{1}=x^{1}, x_{0}^{2}=x^{2}, \ldots, x_{0}^{n}=x^{n}$ and $y_{0}^{1}=y^{1}, y_{0}^{2}=y^{2}, \ldots, y_{0}^{n}=y^{n}$. In the same way, define the sequences $\left\{g\left(x_{m}^{1}\right)\right\},\left\{g\left(x_{m}^{2}\right)\right\}, \ldots,\left\{g\left(x_{m}^{n}\right)\right\}$ and $\left\{g\left(y_{m}^{1}\right)\right\},\left\{g\left(y_{m}^{2}\right)\right\}, \ldots,\left\{g\left(y_{m}^{n}\right)\right\}$. Then it is easy to show that

$$
\begin{gathered}
g\left(x_{m+1}^{1}\right)=F\left(x_{m}^{1}, x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}\right), g\left(y_{m+1}^{1}\right)=F\left(y_{m}^{1}, y_{m}^{2}, y_{m}^{3}, \ldots, y_{m}^{n}\right), \\
g\left(x_{m+1}^{2}\right)=F\left(x_{m}^{2}, x_{m}^{3}, \ldots, x_{m}^{n}, x_{m}^{1}\right), g\left(y_{m+1}^{2}\right)=F\left(y_{m}^{2}, y_{m}^{3}, \ldots, y_{m}^{n}, y_{m}^{1}\right), \\
\vdots \\
g\left(x_{m+1}^{n}\right)=F\left(x_{m}^{n}, x_{m}^{1}, x_{m}^{2}, \ldots, x_{m}^{n-1}\right), g\left(y_{m+1}^{n}\right)=F\left(y_{m}^{n}, y_{m}^{1}, y_{m}^{2}, \ldots, y_{m}^{n-1}\right) .
\end{gathered}
$$

Since $\left(F\left(x^{1}, \ldots, x^{n}\right), F\left(x^{2}, \ldots, x^{n}, x^{1}\right), \ldots, F\left(x^{n}, x^{1}, \ldots, x^{n-1}\right)\right)=\left(g\left(x_{1}^{1}\right), \ldots, g\left(x_{1}^{n}\right)\right)=\left(g\left(x^{1}\right), \ldots, g\left(x^{n}\right)\right)$ and
$\left(F\left(z^{1}, z^{2}, \ldots, z^{n}\right), F\left(z^{2}, \ldots, z^{n}, z^{1}\right), \ldots, F\left(z^{n}, z^{1}, \ldots, z^{n-1}\right)\right)=\left(g\left(z_{1}^{1}\right), g\left(z_{1}^{2}\right), \ldots, g\left(z_{1}^{n}\right)\right)$ are comparable, we have

$$
g\left(x^{1}\right) \preccurlyeq g\left(z_{1}^{1}\right), g\left(z_{1}^{2}\right) \preccurlyeq g\left(x^{2}\right), g\left(x^{3}\right) \preccurlyeq g\left(z_{1}^{3}\right), \ldots, g\left(z_{1}^{n}\right) \preccurlyeq g\left(x^{n}\right) .
$$

It is easy to show that $g\left(x_{1}^{1}\right), g\left(x_{1}^{2}\right), \ldots, g\left(x_{1}^{n}\right)$ and $g\left(z_{m}^{1}\right), g\left(z_{m}^{2}\right), \ldots, g\left(z_{m}^{n}\right)$ are comparable, that is, for all $m \geq 1$,

$$
g\left(x^{1}\right) \preccurlyeq g\left(z_{m}^{1}\right), g\left(z_{m}^{2}\right) \preccurlyeq g\left(x^{2}\right), \ldots, g\left(z_{m}^{n}\right) \preccurlyeq g\left(x^{n}\right) .
$$

From (1), we have

$$
\begin{aligned}
\psi\left(d\left(g\left(x^{1}\right), g\left(z_{m+1}^{1}\right)\right)\right)= & \psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(z_{m}^{1}, z_{m}^{2}, \ldots, z_{m}^{n}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right), \ldots, d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right), \ldots, d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right)\right\}\right)\right), \\
\psi\left(d\left(g\left(x^{2}\right), g\left(z_{m+1}^{2}\right)\right)\right)= & \psi\left(d\left(F\left(x^{2}, \ldots, x^{n}, x^{1}\right), F\left(z_{m}^{2}, \ldots, z_{m}^{n}, z_{m}^{1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g\left(z_{m}^{2}\right), g\left(x^{2}\right)\right), \ldots, d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g\left(z_{m}^{2}\right), g\left(x^{2}\right)\right), \ldots, d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right)\right\}\right)\right), \\
\psi\left(d\left(g\left(x^{n}\right), g\left(z_{m+1}^{n}\right)\right)\right)= & \psi\left(d\left(F\left(x^{n}, x^{1}, \ldots, x^{n-1}\right), F\left(z_{m}^{n}, z_{m}^{1}, \ldots, z_{m}^{n-1}\right)\right)\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right), \ldots, d\left(g\left(z_{m}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right), \ldots, d\left(g\left(z_{m}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right)\right) .
\end{aligned}
$$

From above inequalities and monotone property of ψ, we have

$$
\begin{aligned}
& \psi\left(\max \left\{d\left(g\left(z_{m+1}^{n}\right), g\left(x^{n}\right)\right), d\left(g\left(x^{1}\right), g\left(z_{m+1}^{1}\right)\right), \ldots, d\left(g\left(z_{m+1}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right) \\
= & \left.\max \left\{\psi d\left(g\left(z_{m+1}^{n}\right), g\left(x^{n}\right)\right), \psi d\left(g\left(x^{1}\right), g\left(z_{m+1}^{1}\right)\right), \ldots, \psi d\left(g\left(z_{m+1}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right) \\
\leq & f\left(\psi\left(\max \left\{d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right), d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right), \ldots, d\left(g\left(z_{m}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g\left(z_{m}^{n}\right), g\left(x^{n}\right)\right), d\left(g\left(x^{1}\right), g\left(z_{m}^{1}\right)\right), \ldots, d\left(g\left(z_{m}^{n-1}\right), g\left(x^{n-1}\right)\right)\right\}\right)\right) .
\end{aligned}
$$

Let

$$
R_{m}=\max \left\{d\left(g\left(z_{m+1}^{1}\right), g\left(x^{1}\right)\right), d\left(g\left(x^{2}\right), g\left(z_{m+1}^{2}\right)\right),, \ldots, d\left(g\left(z_{m+1}^{n}\right), g\left(x^{n}\right)\right)\right\}
$$

It follows that

$$
\begin{equation*}
\psi\left(R_{m}\right) \leq f\left(\psi\left(R_{m-1}\right), \varphi\left(R_{m-1}\right)\right) \tag{19}
\end{equation*}
$$

Using the property of ψ, we have

$$
\psi\left(R_{m}\right) \leq \psi\left(R_{m-1}\right) \Rightarrow R_{m} \leq R_{m-1}
$$

Therefore $\left\{R_{m}\right\}$ is a monotone decreasing sequence of nonnegative real numbers. Hence there exists $r \geq 0$ such that $R_{m} \rightarrow r$ as $m \rightarrow \infty$. Taking the limit as $m \rightarrow \infty$ in (19), we have

$$
\psi(r) \leq f(\psi(r), \varphi(r))
$$

which is a contradiction unless $r=0$. Therefore $R_{m} \rightarrow 0$ as $m \rightarrow \infty$. Then

$$
\lim _{m \rightarrow \infty} d\left(g\left(z_{m+1}^{1}\right), g\left(x^{1}\right)\right)=0, \lim _{m \rightarrow \infty} d\left(g\left(x^{2}\right), g\left(z_{m+1}^{2}\right)\right)=0, \ldots, \lim _{m \rightarrow \infty} d\left(g\left(z_{m+1}^{n}\right), g\left(x^{n}\right)\right)=0
$$

Similarly, we can prove that

$$
\lim _{m \rightarrow \infty} d\left(g\left(z_{m+1}^{1}\right), g\left(y^{1}\right)\right)=0, \lim _{m \rightarrow \infty} d\left(g\left(y^{2}\right), g\left(z_{m+1}^{2}\right)\right)=0, \ldots, \lim _{m \rightarrow \infty} d\left(g\left(z_{m+1}^{n}\right), g\left(y^{n}\right)\right)=0 .
$$

On using the triangle inequality, we have

$$
\begin{gathered}
d\left(g x^{1}, g y^{1}\right) \leq d\left(g x^{1}, g z_{m+1}^{1}\right)+d\left(g z_{m+1}^{1}, g y^{1}\right) \rightarrow 0 \text { as } m \rightarrow \infty, \\
d\left(g x^{2}, g y^{2}\right) \leq d\left(g x^{2}, g z_{m+1}^{2}\right)+d\left(g z_{m+1}^{2}, g y^{2}\right) \rightarrow 0 \text { as } m \rightarrow \infty, \\
\vdots \\
d\left(g x^{n}, g y^{n}\right) \leq d\left(g x^{n}, g z_{m+1}^{n}\right)+d\left(g z_{m+1}^{n}, g y^{n}\right) \rightarrow 0 \text { as } m \rightarrow \infty .
\end{gathered}
$$

Hence, we have

$$
\begin{equation*}
g x^{1}=g y^{1}, \ldots, g x^{n}=g y^{n} . \tag{20}
\end{equation*}
$$

Since

$$
F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=g\left(x^{1}\right), F\left(x^{2}, \ldots, x^{n}, x^{1}\right)=g\left(x^{2}\right), \ldots, F\left(x^{n}, x^{1}, x^{2}, \ldots, x^{n-1}\right)=g\left(x^{n}\right)
$$

and F and g are compatible, we have

$$
\begin{gathered}
F\left(g x^{1}, g x^{2}, \ldots, g x^{n}\right)=g g\left(x^{1}\right), F\left(g x^{2}, \ldots, g x^{n}, g x^{1}\right)=g g\left(x^{2}\right), \ldots, \\
F\left(g x^{n}, g x^{1}, \ldots, g x^{n-1}\right)=g g\left(x^{n}\right)
\end{gathered}
$$

Writing $g\left(x^{1}\right)=a^{1}, g\left(x^{2}\right)=a^{2}, \ldots, g\left(x^{n}\right)=a^{n}$, we have

$$
\left\{\begin{array}{l}
g\left(a^{1}\right)=F\left(a^{1}, a^{2}, a^{3}, \ldots, a^{n}\right) \tag{21}\\
g\left(a^{2}\right)=F\left(a^{2}, a^{3}, \ldots, a^{n}, a^{1}\right), \\
\vdots \\
g\left(a^{n}\right)=F\left(a^{n}, a^{1}, a^{2}, \ldots, a^{n-1}\right)
\end{array}\right.
$$

Thus $\left(a^{1}, a^{2}, a^{3}, \ldots, a^{n}\right)$ is an n-tupled coincidence point of F and g. Owing to (20) with $y^{1}=$ $a^{1}, y^{2}=a^{2}, \ldots, y^{n}=a^{n}$, it follows that

$$
g\left(x^{1}\right)=g\left(a^{1}\right), g\left(x^{2}\right)=g\left(a^{2}\right), \ldots, g\left(x^{n}\right)=g\left(a^{n}\right)
$$

that is,

$$
\begin{equation*}
g\left(a^{1}\right)=a^{1}, g\left(a^{2}\right)=a^{2}, \ldots, g\left(a^{n}\right)=a^{n} \tag{22}
\end{equation*}
$$

Using (21) and (22), we have

$$
\left\{\begin{array}{l}
a^{1}=g\left(a^{1}\right)=F\left(a^{1}, a^{2}, a^{3}, \ldots, a^{n}\right) \tag{23}\\
a^{2}=g\left(a^{2}\right)=F\left(a^{2}, a^{3}, \ldots, a^{n}, a^{1}\right) \\
\vdots \\
a^{n}=g\left(a^{n}\right)=F\left(a^{n}, a^{1}, a^{2}, \ldots, a^{n-1}\right)
\end{array}\right.
$$

Thus $\left(a^{1}, a^{2}, a^{3}, \ldots, a^{n}\right)$ is an n-tupled common fixed point of F and g. To prove the uniqueness, assume that $\left(b^{1}, b^{2}, \ldots, b^{n}\right)$ is another n-tupled common fixed point of F and g. In view of (20), we have

$$
\begin{gathered}
b^{1}=g\left(b^{1}\right)=g\left(a^{1}\right)=a^{1}, \\
b^{2}=g\left(b^{2}\right)=g\left(a^{2}\right)=a^{2}, \\
\vdots \\
b^{n}=g\left(b^{n}\right)=g\left(a^{n}\right)=a^{n} .
\end{gathered}
$$

This completes the proof of the theorem.
In Theorem 3.1, setting $f(s, t)=s-t, s, t \in(0, \infty)$, we obtain the following result.
Corollary 3.3. Let (X, d, \preccurlyeq) be a complete ordered metric space. Let φ be an ultra-altering distance function and ψ an altering distance function. Let $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property on X and

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right)\right) & \leq \psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right) \\
- & \left.\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)\right)
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $g y^{1} \preccurlyeq g x^{1}, g x^{2} \preccurlyeq g y^{2}, g y^{3} \preccurlyeq g x^{3}, \ldots, g x^{n} \preccurlyeq g y^{n}$. Suppose that $F\left(X^{n}\right) \subseteq g(X), g$ is continuous and F and g are compatible. Also, suppose that (a) F is continuous or
(b) X has the following properties:
(i) if nondecreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g\left(x_{m}\right) \preccurlyeq g(x)$ for all $m \geq 0$;
(ii) if nonincreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g(x) \preccurlyeq g\left(x_{m}\right)$ for all $m \geq 0$.

If there exist $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that (2) holds. Then F and g have an n-tupled coincidence point in X.

In Theorem 3.1, setting $f(s, t)=\frac{s}{(1+t)^{r}}, r \in(0, \infty), s, t \in(0, \infty)$, we obtain the following result.

Corollary 3.4. Let (X, d, \preccurlyeq) be a complete ordered metric space. Let φ be an ultra-altering distance function and ψ an altering distance function. Let $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property on X and

$$
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right)\right) \leq \frac{\psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)}{\left(1+\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)\right)^{r}}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ and $r \in(0, \infty)$ for which $g y^{1} \preccurlyeq g x^{1}, g x^{2} \preccurlyeq g y^{2}, g y^{3} \preccurlyeq g x^{3}, \ldots, g x^{n}$ $\preccurlyeq g y^{n}$. Suppose that $F\left(X^{n}\right) \subseteq g(X), g$ is continuous and F and f are compatible. Also, suppose that
(a) F is continuous or
(b) X has the following properties:
(i) if nondecreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g\left(x_{m}\right) \preccurlyeq g(x)$ for all $m \geq 0$;
(ii) if nonincreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g(x) \preccurlyeq g\left(x_{m}\right)$ for all $m \geq 0$.

If there exist $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that (2) holds. Then F and g have an n-tupled coincidence point in X.

In Theorem 3.1, setting $f(s, t)=s \log _{a+t} a, a>1, s, t \in(0, \infty)$ (f is a C-class function), we obtain the following result.

Corollary 3.5. Let (X, d, \preccurlyeq) be a complete ordered metric space. Let φ be an ultra-altering distance function and ψ an altering distance function. Let $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two
mappings such that F has the mixed g-monotone property on X and

$$
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right)\right) \leq \psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)
$$

$$
\log _{a+\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)} a
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $g y^{1} \preccurlyeq g x^{1}, g x^{2} \preccurlyeq g y^{2}, g y^{3} \preccurlyeq g x^{3}, \ldots, g x^{n} \preccurlyeq g y^{n}$. Suppose that $F\left(X^{n}\right) \subseteq g(X), g$ is continuous and F and g are compatible. Also, suppose that (a) F is continuous or
(b) X has the following properties:
(i) if nondecreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g\left(x_{m}\right) \preccurlyeq g(x)$ for all $m \geq 0$;
(ii) if nonincreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $g(x) \preccurlyeq g\left(x_{m}\right)$ for all $m \geq 0$.

If there exist $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that (2) holds. Then F and g have an n-tupled coincidence point in X.

Considering g to be an identity mapping in Theorem 3.1, we have the following result.
Corollary 3.6. Let (X, \preccurlyeq) be an ordered set. Suppose that there is a metric d on X such that (X, d) is a complete metric space. Let φ be an ultra-altering distance function and ψ be an altering distance function. Let $F: X^{n} \rightarrow X$ be a mapping having the mixed monotone property on X and f a C-class function and

$$
\begin{aligned}
\psi\left(d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right)\right) \leq & f\left(\psi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{n}, y^{n}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{n}, y^{n}\right)\right\}\right)\right)
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $y^{1} \preccurlyeq x^{1}, x^{2} \preccurlyeq y^{2}, y^{3} \preccurlyeq x^{3}, \ldots, x^{n} \preccurlyeq y^{n}$. Suppose that (a) F is continuous or
(b) X has the following properties:
(i) if nondecreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $x_{m} \preccurlyeq x$ for all $m \geq 0$;
(ii) if nonincreasing sequence $\left\{x_{m}\right\} \rightarrow x$, then $x \preccurlyeq x_{m}$ for all $m \geq 0$.

If there exist $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n} \in X$ such that

$$
\left\{\begin{array}{l}
x_{0}^{1} \preccurlyeq F\left(x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}\right), \tag{24}\\
F\left(x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}\right) \preccurlyeq x_{0}^{2}, \\
x_{0}^{3} \preccurlyeq F\left(x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}, x_{0}^{2}\right), \\
\vdots \\
F\left(x_{0}^{n}, x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n-1}\right) \preccurlyeq x_{0}^{n},
\end{array}\right.
$$

then F has an n-tupled fixed point in X.
Considering ψ and g to be identity mappings in Theorem 3.1, we have the following result.
Corollary 3.7. Let (X, \preccurlyeq) be an ordered set. Suppose that there is a metric d on X such that (X, d) is a complete metric space. Let φ be an ultra-altering distance function and faC-class function. Let $F: X^{n} \rightarrow X$ be a mapping having the mixed monotone property on X and

$$
\begin{aligned}
d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right) \leq & f\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{n}, y^{n}\right)\right\}\right. \\
& \left.\varphi\left(\max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{n}, y^{n}\right)\right\}\right)\right)
\end{aligned}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $y^{1} \preccurlyeq x^{1}, x^{2} \preccurlyeq y^{2}, y^{3} \preccurlyeq x^{3}, \ldots, x^{n} \preccurlyeq y^{n}$. Also in view of conditions (a) and (b) of Corollary 3.6, if (24) is satisfied, then F has an n-tupled fixed point in X.

Considering ψ and g to be identity mappings, $f(s, t)=s-t$ and $\varphi(t)=(1-k) t$, where $0 \leq k<1$ in Theorem 3.1, we have the following result.

Corollary 3.8. Let (X, \preccurlyeq) be an ordered set. Suppose that there is a metric d on X such that (X, d) is a complete metric space. Let $F: X^{n} \rightarrow X$ be a mapping having the mixed monotone property on X. Assume that there exists $k \in[0,1)$ with

$$
d\left(F\left(x^{1}, x^{2}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, \ldots, y^{n}\right)\right) \leq k \max \left\{d\left(x^{1}, y^{1}\right), d\left(x^{2}, y^{2}\right), \ldots, d\left(x^{n}, y^{n}\right)\right\}
$$

for all $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ for which $y^{1} \preccurlyeq x^{1}, x^{2} \preccurlyeq y^{2}, y^{3} \preccurlyeq x^{3}, \ldots, x^{n} \preccurlyeq y^{n}$. Also in view of conditions (a) and (b) of Corollary 3.6, if (24) is satisfied, then F has an n-tupled fixed point in X.

Remark 3.9. With $n=2$, Theorem 3.1 and Corollaries 3.3-3.8 respectively yield the results of Choudhury et al. [9]. However, from Theorem 3.2, we can deduce a unique coupled common fixed point theorem.

Example 3.10. Let $X=[0,1]$. Then (X, \preccurlyeq) is an ordered set with the natural ordering of real numbers. Let $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space with the required properties of Theorem 3.1. Define $g: X \rightarrow X$ by $g(x)=x^{2}$ for all $x \in X$ and $F: X^{n} \rightarrow X$ (wherein n is a fixed even integer) by

$$
F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\left\{\begin{array}{l}
\frac{\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\ldots \ldots+\left(x^{n-1}\right)^{2}-\left(x^{n}\right)^{2}}{n+1}, \text { if } x^{i+1} \preccurlyeq x^{i}, i=1,3, \ldots, n-1, \\
0 \\
\text { otherwise, }
\end{array}\right.
$$

for all $x^{1}, x^{2}, \ldots, x^{n} \in X$. Then F obeys the mixed g-monotone property. Now, define a function $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ by $f(s, t)=s-t, s, t \in[0, \infty)$. Then f is a C-class function. Let $\psi:[0, \infty) \rightarrow$ $[0, \infty)$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be defined respectively as follows:

$$
\psi(t)=t^{2} \text { and } \varphi(t)=\frac{2 n+1}{(n+1)^{2}} t^{2}, \text { for } t \in[0, \infty)
$$

Then ψ and φ have the properties mentioned in Theorem 3.1. Also F and f are compatible in X. Now choose $\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n}\right)=(0, c, 0, c, \ldots, c)(c>0)$. Then

$$
\left\{\begin{array}{l}
g\left(x_{0}^{1}\right)=g(0)=0=F\left(x_{0}^{1}, x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}\right)=g\left(x_{1}^{1}\right), \\
g\left(x_{1}^{2}\right)=F\left(x_{0}^{2}, x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}\right) \preceq c^{2}=g(c)=g\left(x_{0}^{2}\right), \\
g\left(x_{0}^{3}\right)=g(0)=0=F\left(x_{0}^{3}, \ldots, x_{0}^{n}, x_{0}^{1}, x_{0}^{2}\right)=g\left(x_{1}^{3}\right), \\
\vdots \\
g\left(x_{1}^{n}\right)=F\left(x_{0}^{n}, x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{n-1}\right) \preceq c^{2}=g(c)=g\left(x_{0}^{n}\right) .
\end{array}\right.
$$

We next verify inequality (1) (of Theorem 3.1). We take $x^{1}, x^{2}, \ldots, x^{n}, y^{1}, y^{2}, \ldots, y^{n} \in X$ such that

$$
g y^{1} \preceq g x^{1}, g x^{2} \preceq g y^{2}, g y^{3} \preceq g x^{3}, \ldots, g x^{n} \preceq g y^{n} .
$$

Let

$$
\begin{aligned}
M & =\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), d\left(g x^{3}, g y^{3}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\} \\
& =\max \left\{\left|\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right|,\left|\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right|,\left|\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right|, \ldots,\left|\left(x^{n}\right)^{2}-\left(y^{n}\right)^{2}\right|\right\}
\end{aligned}
$$

Then

$$
M \geq\left|\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right|, M \geq\left|\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right|, M \geq\left|\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right|, \ldots, M \geq\left|\left(x^{n}\right)^{2}-\left(y^{n}\right)^{2}\right|
$$

The following four cases arise:
Case I: Let $x^{1}, x^{2}, x^{3}, \ldots, x^{n}, y^{1}, y^{2}, y^{3}, \ldots, y^{n} \in X$ such that $x^{i+1} \preceq x^{i}, y^{i+1} \preceq y^{i}$ for $i=1,3, \ldots, n-1$.
Then

$$
\begin{aligned}
& d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, y^{3}, \ldots, y^{n}\right)\right) \\
= & d\left(\frac{\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\ldots-\left(x^{n}\right)^{2}}{n+1}, \frac{\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-\ldots-\left(y^{n}\right)^{2}}{n+1}\right) \\
= & \left|\frac{\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\ldots-\left(x^{n}\right)^{2}}{n+1}-\frac{\left(y^{1}\right)^{2}-\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}-\ldots .\left(y^{n}\right)^{2}}{n+1}\right| \\
= & \left|\frac{\left(\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right)-\left(\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right)+\left(\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right)-\ldots-\left(\left(x^{n}\right)^{2}-\left(y^{n}\right)^{2}\right)}{n+1}\right| \\
\leq & \frac{\left|\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right|+\left|\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right|+\left|\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right|+\ldots+\left|\left(x^{n}\right)^{2}-\left(y^{n}\right)^{2}\right|}{n+1} \\
& \leq \frac{n}{n+1} M .
\end{aligned}
$$

Case II: Let $x^{1}, x^{2}, x^{3}, \ldots, x^{n}, y^{1}, y^{2}, y^{3}, \ldots, y^{n} \in X$ such that $x^{i+1} \preceq x^{i}$ for $i=1,3, \ldots, n-1$ and $y^{i} \preceq y^{i+1}$ for at least one i. Then (for $y^{1} \preceq y^{2}$),

$$
\begin{aligned}
& d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, y^{3}, \ldots, y^{n}\right)\right) \\
= & d\left(\frac{\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\ldots-\left(x^{n}\right)^{2}}{n+1}, 0\right) \\
\leq & \left|\frac{\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\ldots .\left(x^{n}\right)^{2}+\left(y^{2}\right)^{2}-\left(y^{1}\right)^{2}}{n+1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\frac{\left(\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right)-\left(\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right)+\left(x^{3}\right)^{2}-\left(x^{4}\right)^{2}+\ldots-\left(x^{n}\right)^{2}}{n+1}\right| \\
& \vdots \\
& \leq \frac{\left|\left(x^{1}\right)^{2}-\left(y^{1}\right)^{2}\right|+\left|\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}\right|+\left|\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}\right|+\ldots+\left|\left(x^{n}\right)^{2}-\left(y^{n}\right)^{2}\right|}{n+1} \\
& \quad \leq \frac{n}{n+1} M .
\end{aligned}
$$

Case III: Let $x^{1}, x^{2}, x^{3}, \ldots, x^{n}, y^{1}, y^{2}, y^{3}, \ldots, y^{n} \in X$ such that $x^{i} \preceq x^{i+1}$ for at least one i and $y^{i+1} \preceq y^{i}$ for $i=1,3, \ldots, n-1$. Then arguing as in Case II, one verify inequality (1).

Case IV: Let $x^{1}, x^{2}, x^{3}, \ldots, x^{n}, y^{1}, y^{2}, y^{3}, \ldots, y^{n} \in X$ such that $x^{i} \preceq x^{i+1}, y^{i} \preceq y^{i+1}$ for at least one i. Then

$$
d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, y^{3}, \ldots, y^{n}\right)\right)=d(0,0) \leq \frac{n}{n+1} M
$$

In all above cases

$$
\begin{aligned}
\psi & \left(d\left(F\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right), F\left(y^{1}, y^{2}, y^{3}, \ldots, y^{n}\right)\right)\right) \\
\leq & \frac{n^{2}}{(n+1)^{2}} M^{2}=M^{2}-\frac{2 n+1}{(n+1)^{2}} M^{2} \\
= & \psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right) \\
& -\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right) \\
= & f\left(\psi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right),\right. \\
& \left.\varphi\left(\max \left\{d\left(g x^{1}, g y^{1}\right), d\left(g x^{2}, g y^{2}\right), \ldots, d\left(g x^{n}, g y^{n}\right)\right\}\right)\right)
\end{aligned}
$$

Hence all the conditions of Theorem 3.1 are satisfied and $(0,0,0, \ldots, 0)$ is an n-tupled coincidence point of F and g.

REFERENCES

[1] M. Abbas, A. R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comput. 217 (2011), 6328-6336.
[2] A. Alotaibi, S. Alsulami, Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory Appl. 2011 (2011), Article ID 44.
[3] S. M. Alsulami, A. Alotaibi, Coupled coincidence point theorems for compatible mappings in partially ordered metric spaces, Bull. Math. Anal. Appl. 2 (2012), 129-138.
[4] A. H. Ansari, Note on" φ - ψ-contractive type mappings and related fixed point, The 2 nd Regional Conference on Mathematics And Applications, PNU, (2014), 377-380.
[5] V. Berinde, M. Borcut, Tripled fixed points theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 47 (2011) 4889-4897.
[6] T. G. Bhaskar, V. Lakshmikantham, Fixed points theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[7] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 10 (2002), 531-536.
[8] B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531.
[9] B. S. Choudhury, N. Metiya, A. Kundu, Coupled coincidence point theorems in ordered metric spaces, Ann. Univ. Ferrara 57 (2011), 1-16.
[10] D. J. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623-632.
[11] M. Imdad, A. H. Soliman, B. S. Choudhury, P. Das, On n-tupled coincidence and common fixed points results in metric spaces, J. Oper. 2013 (2013), Article ID 532867.
[12] M. Imdad, A. Sharma, K. P. R. Rao, n-tupled coincidence and common fixed point results for weakly contractive mappings in complete metric spaces, Bull. Math. Anal. Appl. 5 (2013), 19-39.
[13] M. Imdad, A. Sharma, K. P. R. Rao, Generalized n-tupled fixed point theorems for nonlinear contraction mapping, Afrika Matematika, DOI 10.1007/s 13370-013-0217-8.
[14] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44 (1996), 381-391.
[15] E. Karapınar, Quartet fixed point for nonlinear contraction, arxiv.org/abs/1106.5472.
[16] E. Karapınar, V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6 (2012), 74-89.
[17] E. Karapınar, N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Anal. 64 (2012), 1839-1848.
[18] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distance functions between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
[19] S. Kumar, R. Chugh, R. Kumar, Fixed point theorem for compatible mapping satisfying a contractive condition of integral type, Soochow J. Math. 33 (2007), 181-185.
[20] V. Lakshmikantham, L. B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.
[21] V. Nguyen, X. Nguyen, Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal. Appl. 2 (2010), 16-24.
[22] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
[23] D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008), 1241-1252.
[24] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
[25] A. Razani, Z. M. Nezhad, M. Boujary, A fixed point theorem for w-distance, Appl. Sci. 11 (2009), 114-117.
[26] B. Samet, C. Vetro, Coupled fixed point, f-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2010), 4656-4662.
[27] P. Vijayaraju, B. E. Rhoades, R. Mohanraj, A fixed point theorem for pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 15 (2005), 2359-2364.

[^0]: *Corresponding author.
 E-mail addresses: annusharma241@gmail.com (A. Sharma), amiranalsismath3@gmail.com (A. H. Ansari), mhimdad@yahoo.co.in (M. Imdad).

