
Commun. Optim. Theory 2017 (2017), Article ID 6 https://doi.org/10.23952/cot.2017.6

EVEN TUPLED COINCIDENCE AND COMMON FIXED POINT RESULTS FOR
WEAKLY CONTRACTIVE MAPPINGS IN COMPLETE METRIC SPACES VIA

NEW FUNCTIONS

ANUPAM SHARMA1,∗, ARSLAN HOJAT ANSARI2, MOHAMMAD IMDAD3

1Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India

2Department of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran

3Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract. In this paper, we prove results on even tupled coincidence and common fixed points in ordered complete

metric spaces for a pair of weakly contractive compatible mappings under some new control functions. Moreover,

we also illustrate our main result with an example in arbitrary even order case.

Keywords. Partially ordered set; Control function; Compatible mapping; Mixed g-monotone property; n-tupled

coincidence point.

2010 Mathematics Subject Classification. 47H10, 55M20.

1. Introduction

Branciari [7] established a fixed point result for an integral-type inequality, which is a gen-

eralization of Banach contraction principle. Vijayaraju et al. [27] obtained a general principle,

which made it possible to prove many fixed point theorems for pairs of integral type maps. Ka-

da et al. [14] defined the concept of w-distance in a metric space and studied some fixed point
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theorems. Afterwards, Razani et al. [25] proved a fixed point theorem which is a new version

of the main theorem in [7], by considering the concept of the w-distance, as follows:

Theorem 1.1. ([25]) Let p be a w-distance on a complete metric space (X ,d). Let φ be non-

decreasing, continuous and φ(ε)> 0 for each ε > 0 and ψ be nondecreasing, right continuous

and ψ(t)< t for all t > 0. Suppose T is a (φ ,ψ, p)-contractive map on X . Then T has a unique

fixed point in X . Moreover, lim
n→∞

T nx is a fixed point of T for each x ∈ X .

The investigation of fixed points in ordered metric spaces is a relatively new development

which appears to have its origin in the paper of Ran and Reurings [24] which was well compli-

mented by Nieto and López [22]. The concept of multi-dimensional fixed point was introduced

by Guo and Lakshmikantham [10]. In [6], Bhaskar and Lakshmikantham proved some cou-

pled fixed point theorems for a mapping F : X2 → X in ordered complete metric space. In

this continuation, Lakshmikantham and Ćirić [20] generalized these results for non-linear φ -

contraction mapping by introducing two ideas namely: coupled coincidence point and mixed

g-monotone property. In an attempt to extend the definition from X2 to X3, Berinde and Bor-

cut [5] introduced the concept of tripled fixed point and utilize the same to prove some tripled

fixed point theorems. After that, Karapınar [15] introduced the quadrupled fixed point to prove

some quadrupled fixed point theorems for nonlinear contraction mappings satisfying mixed g-

monotone property; see [16, 17] and the references therein.

Recently, Samet and Vetro [26] extended the idea of coupled as well as quadrupled fixed

point to higher dimensions by introducing the notion of fixed point of n-order (or n-tupled fixed

point, where n ∈ N and n ≥ 3) and presented some n-tupled fixed point results in complete

metric spaces, using a new concept of f -invariant set. Here it can be pointed out that the

notion of tripled fixed point due to Berinde and Borcut [5] is different from the one defined

by Samet and Vetro [26] for n = 3 in the case of ordered metric spaces in order to keep the

mixed monotone property working. Recently, Imdad et al. [11] extended the idea of mixed

g-monotone property to the mapping F : Xn→ X (where n is even natural number) and proved

an even-tupled coincidence point theorem for nonlinear contraction mappings satisfying mixed

g-monotone property.
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2. Preliminaries

Definition 2.1. Let X be a non-empty set. A relation ‘ 4’ on X is said to be a partial order if the

following properties are satisfied:

(i) reflexive: x 4 x for all x ∈ X ,

(ii) anti-symmetric: x 4 y and y 4 x implies x = y,

(iii) transitive: x 4 y and y 4 z implies x 4 z for all x,y,z ∈ X .

A non-empty set X together with a partial order ‘ 4’ is said to be an ordered set and we

denote it by (X ,4).

Definition 2.2. Let (X ,4) be an ordered set. Any two elements x and y are said to be comparable

elements in X if either x 4 y or y 4 x.

Definition 2.3. ([23]) A triplet (X ,d,4) is called an ordered metric space if (X ,d) is a metric

space and (X ,4) is an ordered set. Moreover, if d is a complete metric on X , then we say that

(X ,d,4) is an ordered complete metric space.

Throughout the paper, n stands for a general even natural number. Let us denote by Xn the

product space X×X× . . .×X of n identical copies of X .

Definition 2.4. ([11]) Let (X ,4) be an ordered set and F : Xn→X and g : X→X two mappings.

Then F is said to have the mixed g-monotone property if F is g-nondecreasing in its odd position

arguments and g-nonincreasing in its even position arguments, that is, for x1,x2,x3, ...,xn ∈ X ,

if

for all x1
1,x

1
2 ∈ X , gx1

1 4 gx1
2⇒ F(x1

1,x
2,x3, ...,xn)4 F(x1

2,x
2,x3, ...,xn),

for all x2
1,x

2
2 ∈ X , gx2

1 4 gx2
2⇒ F(x1,x2

2,x
3, ...,xn)4 F(x1,x2

1,x
3, ...,xn),

for all x3
1,x

3
2 ∈ X , gx3

1 4 gx3
2⇒ F(x1,x2,x3

1, ...,x
n)4 F(x1,x2,x3

2, ...,x
n),

...

for all xn
1,x

n
2 ∈ X , gxn

1 4 gxn
2⇒ F(x1,x2,x3, ...,xn

2)4 F(x1,x2,x3, ...,xn
1).

For g = I (identity mapping), Definition 2.4 reduces to mixed monotone property (for details

see [11]).
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Definition 2.5. ([26]) An element (x1,x2, ...,xn) ∈ Xn is called an n-tupled fixed point of the

mapping F : Xn→ X if



F(x1,x2,x3, ...,xn) = x1,

F(x2,x3, ...,xn,x1) = x2,

F(x3, ...,xn,x1,x2) = x3,

...

F(xn,x1,x2, ...,xn−1) = xn.

Example 2.6. Let (R,d) be a partially ordered metric space under natural setting and F : Rn→

R a mapping defined by F(x1,x2, ...,xn) = sin(x1,x2, ...,xn), for any x1,x2, ...,xn ∈ R. Then

(0,0, ...,0) is an n-tupled fixed point of F.

Definition 2.7. ([11]) An element (x1,x2, ...,xn) ∈ Xn is called an n-tupled coincidence point of

mappings F : Xn→ X and g : X → X if



F(x1,x2,x3, ...,xn) = g(x1),

F(x2,x3, ...,xn,x1) = g(x2),

F(x3, ...,xn,x1,x2) = g(x3),

...

F(xn,x1,x2, ...,xn−1) = g(xn).

Example 2.8. Let (R,d) be a partially ordered metric space under natural setting and F :

Rn→ R be a mapping defined by F(x1,x2, ...,xn) = x1+x2+...+xn

n , for any x1,x2, ...,xn ∈ R while

g : R→ R is defined as g(x) = x
2 . Then (0,0, ...,0) is an n-tupled coincidence point of F and g.

Remark 2.9. For n = 2, Definitions 2.5 and 2.6 yield the definitions of coupled fixed point and

coupled coincidence point respectively while on the other hand, for n = 4 these definitions yield

the definitions of quadrupled fixed point and quadrupled coincidence point respectively.
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Definition 2.10. An element (x1,x2, ...,xn) ∈ Xn is called an n-tupled common fixed point of

F : Xn→ X and g : X → X if

F(x1,x2,x3, ...,xn) = g(x1) = x1,

F(x2,x3, ...,xn,x1) = g(x2) = x2,

F(x3, ...,xn,x1,x2) = g(x3) = x3,

...

F(xn,x1,x2, ...,xn−1) = g(xn) = xn.

Definition 2.11. Let F : Xn→ X and g : X → X be two mappings. Then F and g are said to be

compatible if

lim
m→∞

d(g(F(x1
m,x

2
m,x

3
m, ...,x

n
m)),F(gx1

m,gx2
m,gx3

m, ...,gxn
m)) = 0,

lim
m→∞

d(g(F(x2
m,x

3
m, ...,x

n
m,x

1
m)),F(gx2

m,gx3
m, ...,gxn

m,x
1
m)) = 0,

...

lim
m→∞

d(g(F(xn
m,x

1
m,x

2
m, ...,x

n−1
m )),F(gxn

m,gx1
m,gx2

m, ...,gxn−1
m )) = 0,

where {x1
m},{x2

m}, ...,{xn
m} are sequences in X such that

lim
m→∞

F(x1
m,x

2
m,x

3
m, ...,x

n
m) = lim

m→∞
g(x1

m) = x1,

lim
m→∞

F(x2
m,x

3
m, ...,x

n
m,x

1
m) = lim

m→∞
g(x2

m) = x2,

...

lim
m→∞

F(xn
m,x

1
m,x

2
m, ...,x

n−1
m ) = lim

m→∞
g(xn

m) = xn,

for some x1,x2, ...,xn ∈ X are satisfied.

Definition 2.12. ([18]) A function ψ : [0,∞)→ [0,∞) is called an altering distance function if

the following properties are satisfied;

(a) ψ is monotonically increasing and continuous;

(b) ψ(t) = 0 if and only if t = 0.

Definition 2.13. A function φ : [0,∞)→ [0,∞) is called an ultra-altering distance function if the

following properties are satisfied;
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(a) φ is continuous;

(b) φ(0)≥ 0, and φ(ε)> 0 for each ε > 0.

Now we state the main result of Choudhury et al. [9].

Theorem 2.14. Let (X ,d,4) be a complete ordered metric space. Let ϕ : [0,∞)→ [0,∞) be a

continuous function with ϕ(t) = 0 if and only if t = 0 while ψ an altering distance function. Let

F : X×X→ X and g : X→ X be two mappings such that F has the mixed g-monotone property

on X and

ψ(d(F(x,y),F(u,v)))≤ ψ(max{d(gx,gu),d(gy,gv)})−ϕ(max{d(gx,gu),d(gy,gv)})

for all x,y,u,v ∈ X for which gu 4 gx and gy 4 gv. Suppose that F(X×X)⊆ g(X), g is contin-

uous and F and g are compatible. Also, suppose that

(a) F is continuous or

(b) X has the following properties:

(i) if a nondecreasing sequence {xn}→ x, then g(xn)4 g(x) for all n≥ 0;

(ii) if a nonincreasing sequence {yn}→ y, then g(y)4 g(yn) for all n≥ 0.

If there exist x0,y0 ∈X such that g(x0)4F(x0,y0) and F(y0,x0)4 g(y0), then there exist x,y∈X

such that g(x) = F(x,y) and g(y) = F(y,x), i.e., F and g have a coupled coincidence point in

X .

Ansari [4] introduced the concept of C-class functions which cover a large class of contractive

conditions.

Definition 2.15. A continuous function f : [0,∞)2→ R is called a C-function if for any s, t ∈

[0,∞), the following conditions hold:

(1) f (s, t)≤ s;

(2) f (s, t) = s implies that either s = 0 or t = 0.

An extra condition on f is that f (0,0) = 0 could be imposed in some cases if required. The

letter C denotes the class of all C-functions. The following example shows that the class C is

nonempty:

Example 2.16. Define f : [0,∞)2→R by
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(1) f (s, t) = s− t,

(2) f (s, t) = s
(1+t)r for some r ∈ (0,∞),

(3) f (s, t) = log(t +as)/(1+ t), for some a > 1,

(4) f (s, t) = ln(1+as)/2, for a > e. Indeed f (s,1) = s implies that s = 0,

(5) f (s, t) = (s+ l)(1/(1+t)r)− l, l > 1, for r ∈ (0,∞),

(6) f (s, t) = s logt+a a, for a > 1,

(7) f (s, t) = s− (1+s
2+s)(

t
1+t ),

(8) f (s, t) = sβ (s), where β : [0,∞)→ [0,1) and semi-continuous,

(9) f (s, t) = s− t
k+t ,

(10) f (s, t) = s−ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t) = 0

if and only if t = 0,

(11) f (s, t) = sh(s, t), where h : [0,∞)× [0,∞)→ [0,∞) is a continuous function such that

h(s, t)< 1 for all t,s > 0,

(12) f (s, t) = s− (2+t
1+t )t,

(13) f (s, t) = n
√

ln(1+ sn),

(14) f (s, t) = φ(s), where φ : [0,∞)→ [0,∞) is an upper semi-continuous function such that

φ(0) = 0 and φ(t)< t for t > 0,

(15) f (s, t) = s
(1+s)r ; r ∈ (0,∞), for all s, t ∈ [0,∞).

Then f is an element of C.

3. Main results

Now, we are in a position to prove our main results.

Theorem 3.1. Let (X ,d,4) be a complete ordered metric space. Let ϕ be an ultra-altering

distance function, ψ an altering distance function and f a C-class function. Let F : Xn → X

and g : X → X be two mappings such that F has the mixed g-monotone property on X and

ψ(d(F(x1,x2, ...,xn),F(y1,y2, ...,yn)))≤ f (ψ(max{d(gx1,gy1), ...,d(gxn,gyn)}),

ϕ(max{d(gx1,gy1), ...,d(gxn,gyn)})) (1)
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for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which gy1 4 gx1,gx2 4 gy2,gy3 4 gx3, ...,gxn 4 gyn.

Suppose that F(Xn)⊆ g(X), g is continuous and F and g are compatible. Also, suppose that

(a) F is continuous or

(b) X has the following properties:

(i) if nondecreasing sequence {xm}→ x, then g(xm)4 g(x) for all m≥ 0;

(ii) if nonincreasing sequence {xm}→ x, then g(x)4 g(xm) for all m≥ 0.

If there exist x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that



g(x1
0)4 F(x1

0,x
2
0,x

3
0, ...,x

n
0),

F(x2
0,x

3
0, ...,x

n
0,x

1
0)4 g(x2

0),

g(x3
0)4 F(x3

0, ...,x
n
0,x

1
0,x

2
0),

...

F(xn
0,x

1
0,x

2
0, ...,x

n−1
0 )4 g(xn

0),

(2)

then F and g have an n-tupled coincidence point in X .

Proof. Let x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that (2) holds. Since F(Xn) ⊆ g(X), we can choose

x1
1,x

2
1,x

3
1, ...,x

n
1 ∈ X such that



g(x1
1) = F(x1

0,x
2
0,x

3
0, ...,x

n
0),

g(x2
1) = F(x2

0,x
3
0, ...,x

n
0,x

1
0),

g(x3
1) = F(x3

0, ...,x
n
0,x

1
0,x

2
0),

...

g(xn
1) = F(xn

0,x
1
0,x

2
0, ...,x

n−1
0 ).

(3)
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As earlier, one can also choose x1
2,x

2
2,x

3
2, ...,x

n
2 ∈ X such that



g(x1
2) = F(x1

1,x
2
1,x

3
1, ...,x

n
1),

g(x2
2) = F(x2

1,x
3
1, ...,x

n
1,x

1
1),

g(x3
2) = F(x3

1, ...,x
n
1,x

1
1,x

2
1),

...

g(xn
2) = F(xn

1,x
1
1,x

2
1, ...,x

n−1
1 ).

Continuing this process, we can construct sequences {x1
m},{x2

m}, ...,{xn
m}, (m≥ 0) such that



g(x1
m+1) = F(x1

m,x
2
m,x

3
m, ...,x

n
m),

g(x2
m+1) = F(x2

m,x
3
m, ...,x

n
m,x

1
m),

g(x3
m+1) = F(x3

m, ...,x
n
m,x

1
m,x

2
m),

...

g(xn
m+1) = F(xn

m,x
1
m,x

2
m, ...,x

n−1
m ).

(4)

In what follows, we shall prove that for all m≥ 0,

gx1
m 4 gx1

m+1,gx2
m+1 4 gx2

m,gx3
m 4 gx3

m+1, ...,gxn
m+1 4 gxn

m. (5)

Owing to (2) and (3), we have

gx1
0 4 gx1

1,gx2
1 4 gx2

0,gx3
0 4 gx3

1, ...,gxn
1 4 gxn

0,

that is, (5) holds for m = 0. Suppose that (5) holds for some m > 0. As F has the mixed g-

monotone property, we have from (4) that

gx1
m+1 = F(x1

m,x
2
m,x

3
m, ...,x

n
m) 4 F(x1

m+1,x
2
m,x

3
m, ...,x

n
m)

4 F(x1
m+1,x

2
m+1,x

3
m, ...,x

n
m)

4 F(x1
m+1,x

2
m+1,x

3
m+1, ...,x

n
m)

4 F(x1
m+1,x

2
m+1,x

3
m+1, ...,x

n
m+1) = gx1

m+2.
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gx2
m+2 = F(x2

m+1,x
3
m+1, ...,x

n
m+1,x

1
m+1) 4 F(x2

m+1,x
3
m+1, ...,x

n
m+1,x

1
m)

4 F(x2
m+1,x

3
m+1, ...,x

n
m,x

1
m)

4 F(x2
m+1,x

3
m, ...,x

n
m,x

1
m)

4 F(x2
m,x

3
m, ...,x

n
m,x

1
m) = gx2

m+1.

Also for the same reason, we have

gx3
m+1 = F(x3

m, ...,x
n
m,x

1
m,x

2
m) 4 F(x3

m+1, ...,x
n
m+1,x

1
m+1,x

2
m+1) = gx3

m+2,
...

gxn
m+2 = F(xn

m+1,x
1
m+1,x

2
m+1, ...,x

n−1
m+1) 4 F(xn

m,x
1
m,x

2
m, ...,x

n−1
m ) = gxn

m+1.

Hence by mathematical induction it follows that (5) holds for all m≥ 0. Therefore

gx1
0 4 gx1

1 4 gx1
2 4 ...4 gx1

m 4 gx1
m+1 4 ...

...gx2
m+1 4 gx2

m 4 ...4 gx2
2 4 gx2

1 4 gx2
0

gx3
0 4 gx3

1 4 gx3
2 4 ...4 gx3

m 4 gx3
m+1...

...

....gxn
m+1 4 gxn

m 4 ...4 gxn
2 4 gxn

1 4 gxn
0.

(6)

Let

Rm = max{d(gx1
m+1,gx1

m),d(gx2
m+1,gx2

m), ...,d(gxn
m+1,gxn

m)}.

Using (6), we have,

ψ(d(gx1
m,gx1

m+1)) = ψ(d(F(x1
m−1,x

2
m−1,x

3
m−1, ...,x

n
m−1),F(x1

m,x
2
m,x

3
m, ...,x

n
m)))

≤ f (ψ(max{d(gx1
m−1,gx1

m),d(gx2
m−1,gx2

m), ...,d(gxn
m−1,gxn

m)}),

ϕ(max{d(gx1
m−1,gx1

m),d(gx2
m−1,gx2

m), ...,d(gxn
m−1,gxn

m)})),

ψ(d(gx2
m,gx2

m+1)) = ψ(d(F(x2
m−1,x

3
m−1, ...,x

n
m−1,x

1
m−1),F(x2

m,x
3
m, ...,x

n
m,x

1
m)))

≤ f (ψ(max{d(gx2
m−1,gx2

m), ...,d(gxn
m−1,gxn

m),d(gx1
m−1,gx1

m)}),

ϕ(max{d(gx2
m−1,gx2

m), ...,d(gxn
m−1,gxn

m),d(gx1
m−1,gx1

m)})).
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Similarly, we can inductively write

ψ(d(gxn
m,gxn

m+1)) = ψ(d(F(xn
m−1,x

1
m−1,x

2
m−1, ...,x

n−1
m−1),F(xn

m,x
1
m,x

2
m, ...,x

n−1
m )))

≤ f (ψ(max{d(gxn
m−1,gxn

m),d(gx1
m−1,gx1

m), ...,d(gxn−1
m−1,gxn−1

m )}),

ϕ(max{d(gxn
m−1,gxn

m),d(gx1
m−1,gx1

m), ...,d(gxn−1
m−1,gxn−1

m )})).

From above inequalities and monotone property of ψ, we have

ψ(max{d(gx1
m+1,gx1

m),d(gx2
m+1,gx2

m), ...,d(gxn
m+1,gxn

m)})

= max{ψd(gx1
m+1,gx1

m),ψd(gx2
m+1,gx2

m), ...,ψd(gxn
m+1,gxn

m)}

≤ f (ψ(max{d(gx1
m−1,gx1

m),d(gx2
m−1,gx2

m), ...,d(gxn−1
m−1,gxn−1

m )}),

ϕ(max{d(gx1
m−1,gx1

m),d(gx2
m−1,gx2

m), ...,d(gxn−1
m−1,gxn−1

m )})),

that is,

ψ(Rm)≤ f (ψ(Rm−1),ϕ(Rm−1)). (7)

Using the property of ψ, we have ψ(Rm) ≤ ψ(Rm−1), which implies that Rm ≤ Rm−1 (by the

property of ψ). Therefore {Rm} is a monotonically decreasing sequence of nonnegative real

numbers. Hence there exists r ≥ 0 such that Rm→ r as m→ ∞. Taking the limit as m→ ∞ in

(7). Then by the continuities of ψ and ϕ, we have

ψ(r)≤ ψ(r)−ϕ(r),

which is a contradiction unless r = 0. Therefore

Rm→ 0 as m→ ∞, (8)

so that

lim
m→∞

d(gx1
m−1,gx1

m) = 0, lim
m→∞

d(gx2
m−1,gx2

m) = 0, ..., lim
m→∞

d(gxn
m−1,gxn

m) = 0.

Next, we show that {gx1
m},{gx2

m}, ...,{gxn
m} are Cauchy sequences. If possible suppose that at

least one of {gx1
m},{gx2

m}, ...,{gxn
m} is not a Cauchy sequence. Then there exists an ε > 0 and
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sequences of positive integers {m(k)} and {t(k)} such that for all positive integers k, t(k) >

m(k)> k,

Dk = max{d(gx1
m(k),gx1

t(k)),d(gx2
m(k),gx2

t(k)), ...,d(gxn
m(k),gxn

t(k))} ≥ ε

and

max{d(gx1
m(k),gx1

t(k)−1),d(gx2
m(k),gx2

t(k)−1), ...,d(gxn
m(k),gxn

t(k)−1)}< ε.

Now,

ε ≤ Dk = max{d(gx1
m(k),gx1

t(k)),d(gx2
m(k),gx2

t(k)), ...,d(gxn
m(k),gxn

t(k))}

≤ max{d(gx1
m(k),gx1

t(k)−1)),d(gx2
m(k),gx2

t(k)−1)), ...,d(gxn
m(k),gxn

t(k)−1))}

+max{d(gx1
t(k)−1,gx1

t(k)),d(gx2
t(k)−1,gx2

t(k)), ...,d(gxn
t(k)−1,gxn

t(k))},

that is,

ε ≤ Dk = max{d(gx1
m(k),gx1

t(k)),d(gx2
m(k),gx2

t(k)), ...,d(gxn
m(k),gxn

t(k))} ≤ ε +Rt(k)−1.

Letting k→ ∞ in above inequality and using (8), we have

lim
k→∞

Dk = lim
k→∞

max{d(gx1
m(k),gx1

t(k)),d(gx2
m(k),gx2

t(k)), ...,d(gxn
m(k),gxn

t(k))}= ε. (9)

Again,

Dk+1 = max{d(gx1
m(k)+1,gx1

t(k)+1),d(gx2
m(k)+1,gx2

t(k)+1), ...,d(gxn
m(k)+1,gxn

t(k)+1)}

≤ max{d(gx1
m(k)+1,gx1

m(k)),d(gx2
m(k)+1,gx2

m(k)), ...,d(gxn
m(k)+1,gxn

m(k))}

+max{d(gx1
m(k),gx1

t(k)),d(gx2
m(k),gx2

t(k)), ...,d(gxn
m(k),gxn

t(k))}

+max{d(gx1
t(k),gx1

t(k)+1),d(gx2
t(k),gx2

t(k)+1), ...,d(gxn
t(k),gxn

t(k)+1})

= Rm(k)+Dk +Rt(k)

and

Dk ≤ Rm(k)+Dk+1 +Rt(k).

Letting k→ ∞ in the preceding inequality, using (8) and (9) we have

lim
k→∞

Dk+1 = lim
k→∞

max{d(gx1
m(k)+1,gx1

t(k)+1), ...,d(gxn
m(k)+1,gxn

t(k)+1)}= ε. (10)
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Since t(k)> m(k) and

gx1
m(k) 4 gx1

t(k),gx2
t(k) 4 gx2

m(k),gx3
m(k) 4 gx3

t(k), ...,gxn
t(k) 4 gxn

m(k),

therefore owing to (1) and (4), we have

ψ(d(gx1
m(k)+1,gx1

t(k)+1)) = ψ(d(F(x1
m(k),x

2
m(k), ...,x

n
m(k)),F(x1

t(k),x
2
t(k), ...,x

n
t(k))))

≤ f (ψ(max{d(gx1
m(k),gx1

t(k)), ...,d(gxn
m(k),gxn

t(k))}),

ϕ(max{d(gx1
m(k),gx1

t(k)), ...,d(gxn
m(k),gxn

t(k))})),

that is,

ψ(d(gx1
m(k)+1,gx1

t(k)+1))≤ ψ(Dk)−ϕ(Dk). (11)

Also,

ψ(d(gx2
m(k)+1,gx2

t(k)+1)) = ψ(d(F(x2
m(k), ...,x

n
m(k),x

1
m(k)),F(x2

t(k), ...,x
n
t(k),x

1
t(k))))

≤ f (ψ(max{d(gx2
m(k),gx2

t(k)), ...,d(gx1
m(k),gx1

t(k))}),

ϕ(max{d(gx2
m(k),gx2

t(k)), ...,d(gx1
m(k),gx1

t(k))})),

that is,

ψ(d(gx2
m(k)+1,gx2

t(k)+1))≤ ψ(Dk)−ϕ(Dk). (12)

Similarly, we have

ψ(d(gxn
m(k)+1,gxn

t(k)+1)) = ψ(d(F(xn
m(k),x

1
m(k), ...,x

n−1
m(k)),F(xn

t(k),x
1
t(k), ...,x

n−1
t(k) )))

≤ f (ψ(max{d(gxn
m(k),gxn

t(k)), ...,d(gxn−1
m(k),gxn−1

t(k) )}),

ϕ(max{d(gxn
m(k),gxn

t(k)), ...,d(gxn−1
m(k),gxn−1

t(k) )})),

that is,

ψ(d(gxn
m(k)+1,gxn

t(k)+1))≤ ψ(Dk)−ϕ(Dk). (13)
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Using (11)-(13) along with monotone property of ψ, we have,

ψ(Dk+1) = ψ(max{d(gx1
m(k)+1,gx1

t(k)+1), ...,d(gxn
m(k)+1,gxn

t(k)+1)})

= max{ψd(gx1
m(k)+1,gx1

t(k)+1), ...,ψd(gxn
m(k)+1,gxn

t(k)+1)}

= f (ψ(Dk),ϕ(Dk)).

Letting k→ ∞ in the above inequality, using (9), (10) and the continuities of ψ and ϕ, we have

ψ(ε)≤ f (ψ(ε),ϕ(ε)),

therefore ψ(ε) = 0 or ϕ(ε) = 0, then ε = 0 which is a contradiction. Thus {gx1
m},{gx2

m}, ...,

{gxn
m} are Cauchy sequences in X . From the completeness of X , there exist x1,x2, ...,xn ∈ X

such that 

lim
m→∞

F(x1
m,x

2
m,x

3
m, ...,x

n
m) = lim

m→∞
g(x1

m) = x1,

lim
m→∞

F(x2
m,x

3
m, ...,x

n
m,x

1
m) = lim

m→∞
g(x2

m) = x2,

lim
m→∞

F(x3
m, ...,x

n
m,x

1
m,x

2
m) = lim

m→∞
g(x3

m) = x3,

...

lim
m→∞

F(xn
m,x

1
m,x

2
m, ...,x

n−1
m ) = lim

m→∞
g(xn

m) = xn,

(14)

for some x1,x2, ...,xn ∈ X are satisfied. Since F and g are compatible, we have from (14) that

lim
m→∞

d(g(F(x1
m,x

2
m,x

3
m, ...,x

n
m)),F(gx1

m,gx2
m,gx3

m, ...,gxn
m)) = 0,

lim
m→∞

d(g(F(x2
m,x

3
m, ...,x

n
m,x

1
m,)),F(gx2

m,gx3
m, ...,gxn

m,gx1
m)) = 0,

lim
m→∞

d(g(F(x3
m, ...,x

n
m,x

1
m,x

2
m)),F(gx3

m, ...,gxn
m,gx1

m,gx2
m)) = 0,

...

lim
m→∞

d(g(F(xn
m,x

1
m,x

2
m, ...,x

n−1
m )),F(gxn

m,gx1
m,gx2

m, ...,gxn−1
m )) = 0.

(15)

Let condition (a) holds. Then for all m≥ 0, we have

d(gx1,F(gx1
m,gx2

m, ...,gxn
m)) ≤ d(gx1,g(F(x1

m,x
2
m, ...,x

n
m)))

+d(g(F(x1
m,x

2
m, ...,x

n
m)),F(gx1

m,gx2
m, ...,gxn

m)).
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Taking m→ ∞ in above inequality, using (14), (15) and continuities of F and g, we have

d(gx1,F(x1,x2,x3, ...,xn)) = 0; that is, gx1 = F(x1,x2,x3, ...,xn).

Continuing this process, we obtain that

d(gx2,F(x2,x3, ...,xn,x1)) = 0; that is gx2 = F(x2,x3, ...,xn,x1).

...

d(gxn,F(xn,x1,x2, ...,xn−1)) = 0; that is gxn = F(xn,x1,x2, ...,xn−1).

Hence the element (x1,x2, ...,xn) ∈ Xn is an n-tupled coincidence point of the mappings F :

Xn→ X and g : X → X . Next, we suppose that condition (b) holds. From (6) and (14), we have

ggx1
m 4 gx1,gx2 4 ggx2

m,ggx3
m 4 gx3, ...,gxn 4 ggxn

m. (16)

Since F and g are compatible and g is continuous, by (14) and (15) we have

lim
m→∞

ggx1
m = gx1 = lim

m→∞
d(g(F(x1

m,x
2
m, ...,x

n
m)) = lim

m→∞
F(gx1

m,gx2
m, ...,gxn

m),

lim
m→∞

ggx2
m = gx2 = lim

m→∞
d(g(F(x2

m, ...,x
n
m,x

1
m)) = lim

m→∞
F(gx2

m, ...,gxn
m,gx1

m),

lim
m→∞

ggx3
m = gx3 = lim

m→∞
d(g(F(x3

m, ...,x
1
m,x

2
m)) = lim

m→∞
F(gx3

m, ...,gx1
m,gx2

m),

...

lim
m→∞

ggxn
m = gxn = lim

m→∞
d(g(F(xn

m,x
1
m, ...,x

n−1
m )) = lim

m→∞
F(gxn

m,gx1
m, ...,gxn−1

m ).

(17)

Now, using triangle inequality, we have

d(F(x1,x2, ...,xn),gx1)≤ d(F(x1,x2, ...,xn),ggx1
m+1)+d(ggx1

m+1,gx1),

that is,

d(F(x1,x2, ...,xn),gx1)≤ d(F(x1,x2, ...,xn),g(F(x1
m,x

2
m, ...,x

n
m))+d(ggx1

m+1,gx1).

Taking m→ ∞ in the above inequality and using (17) we have

d(F(x1,x2, ...,xn),gx1) ≤ lim
m→∞

d(F(x1,x2, ...,xn),g(F(x1
m,x

2
m, ...,x

n
m))

+ lim
m→∞

d(ggx1
m+1,gx1)

= lim
m→∞

d(F(x1,x2, ...,xn),F(gx1
m,gx2

m, ...,gxn
m)).
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Since ψ is continuous and monotonically increasing, from the above inequality we have

ψ(d(F(x1,x2, ...,xn),gx1)) ≤ ψ( lim
m→∞

d(F(x1,x2, ...,xn),F(gx1
m,gx2

m, ...,gxn
m)))

= lim
m→∞

ψ(d(F(x1,x2, ...,xn),F(gx1
m,gx2

m, ...,gxn
m))).

By (1) and (16), we have

ψ(d(F(x1,x2, ...,xn),gx1)) ≤ lim
m→∞

f ([ψ(max{d(gx1,ggx1
m), ...,d(gxn,ggxn

m)}),

ϕ(max{d(gx1,ggx1
m),d(gx2,ggx2

m), ...,d(gxn,ggxn
m)})]).

Using (17) and the properties of ψ and ϕ we have

ψ(d(F(x1,x2,x3, ...,xn),gx1)) = 0,

which implies that

d(F(x1,x2,x3, ...,xn),gx1) = 0, that is F(x1,x2,x3, ...,xn) = gx1.

Again, we have

d(F(x2, ...,xn,x1),gx2)≤ d(F(x2, ...,xn,x1),ggx2
m+1)+d(ggx2

m+1,gx2),

that is,

d(F(x2, ...,xn,x1),gx2)≤ d(F(x2, ...,xn,x1),g(F(x2
m, ...,x

n
m,x

1
m)))+d(ggx2

m+1,gx2).

Taking m→ ∞ in the above inequality, using (17) we have

d(F(x2, ...,xn,x1),gx2) ≤ lim
m→∞

d(F(x2, ...,xn,x1),g(F(x2
m, ...,x

n
m,x

1
m)))

+ lim
m→∞

d(ggx2
m+1,gx2)

= lim
m→∞

d(F(x2, ...,xn,x1),g(F(x2
m, ...,x

n
m,x

1
m))).

Since ψ is continuous and monotonically increasing, from the above inequality we have

ψ(d(F(x2, ...,xn,x1),gx2)) ≤ ψ( lim
m→∞

d(F(x2, ...,xn,x1),g(F(x2
m, ...,x

n
m,x

1
m))))

= lim
m→∞

ψ(d(F(x2, ...,xn,x1),g(F(x2
m, ...,x

n
m,x

1
m)))).

By (1) and (16), we have

ψ(d(F(x2, ...,xn,x1),gx2)) ≤ lim
m→∞

f ([ψ(max{d(gx2,ggx2
m), ...,d(gx1,ggx1

m)}),

ϕ(max{d(gx2,ggx2
m), ...,d(gxn,ggxn

m),d(gx1,ggx1
m)})]).
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Using (17) and the properties of ψ and ϕ, we have

ψ(d(F(x2, ...,xn,x1),gx2)) = 0,

which implies that

d(F(x2, ...,xn,x1),gx2) = 0, that is F(x2, ...,xn,x1) = gx2.

Continuing in this way, we get

d(F(xn,x1,x2, ...,xn−1),gxn) = 0, that is F(xn,x1,x2, ...,xn−1) = gxn.

Hence the element (x1,x2, ...,xn) ∈ Xn is an n-tupled coincidence point of mappings F and g.

This completes the proof of the theorem.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for real (x1,x2, ...,

xn),(y1,y2, ...,yn)∈Xn there exists, (z1,z2, ...,zn)∈Xn such that (F(z1,z2, ...,zn), F(z2, ...,zn,z1)

, ..., F(zn,z1, ...,zn−1)) is comparable to (F(x1,x2, ...,xn), F(x2, ...,xn,x1), ..., F(xn,x1, ...,xn−1))

and (F(y1,y2, ...,yn),F(y2, ...,yn,y1), ...,F(yn,y1, ...,yn−1)). Then F and g have a unique n-

tupled common fixed point.

Proof. The set of n-tupled coincidence points of F and g is non-empty due to Theorem 3.1.

Assume now, (x1,x2, ...,xn),(y1,y2, ...,yn) are two n-tupled coincidence points, that is,

F(x1,x2, ...,xn) = g(x1), F(y1,y2, ...,yn) = g(y1),

F(x2, ...,xn,x1) = g(x2), F(y2, ...,yn,y1) = g(y2),

...

F(xn,x1, ...,xn−1) = g(xn), F(yn,y1, ...,yn−1) = g(yn).

Now, we show that

g(x1) = g(y1),g(x2) = g(y2), ...,g(xn) = g(yn). (18)

By assumption, there exists (z1,z2, ...,zn) ∈ Xn such that (F(z1,z2, ...,zn),F(z2, ...,zn,z1), ...,

F(zn,z1, ...,zn−1)) is comparable to (F(x1,x2, ...,xn), F(x2, ...,xn,x1), ...,F(xn,x1, ...,xn−1)) and
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(F(y1,y2, ...,yn),F(y2, ...,yn,y1), ...,F(yn,y1, ...,yn−1)). Put z1
0 = z1,z2

0 = z2, ...,zn
0 = zn and choose

z1
1,z

2
1, ...,z

n
1 ∈ X such that

g(z1
1) = F(z1

0,z
2
0,z

3
0, ...,z

n
0),

g(z2
1) = F(z2

0,z
3
0, ...,z

n
0,z

1
0),

...

g(zn
1) = F(zn

0,z
1
0,z

2
0, ...,z

n−1
0 ).

Further define sequences {g(z1
m)},{g(z2

m)}, ...,{g(zn
m)} such that

g(z1
m+1) = F(z1

m,z
2
m,z

3
m, ...,z

n
m),

g(z2
m+1) = F(z2

m,z
3
m, ...,z

n
m,z

1
m),

...

g(zn
m+1) = F(zn

m,z
1
m,z

2
m, ...,z

n−1
m ).

Further set x1
0 = x1,x2

0 = x2, ...,xn
0 = xn and y1

0 = y1,y2
0 = y2, ...,yn

0 = yn. In the same way, define

the sequences {g(x1
m)},{g(x2

m)}, ...,{g(xn
m)} and {g(y1

m)},{g(y2
m)}, ...,{g(yn

m)}. Then it is easy

to show that

g(x1
m+1) = F(x1

m,x
2
m,x

3
m, ...,x

n
m),g(y

1
m+1) = F(y1

m,y
2
m,y

3
m, ...,y

n
m),

g(x2
m+1) = F(x2

m,x
3
m, ...,x

n
m,x

1
m),g(y

2
m+1) = F(y2

m,y
3
m, ...,y

n
m,y

1
m),

...

g(xn
m+1) = F(xn

m,x
1
m,x

2
m, ...,x

n−1
m ),g(yn

m+1) = F(yn
m,y

1
m,y

2
m, ...,y

n−1
m ).

Since (F(x1, ...,xn),F(x2, ...,xn,x1), ...,F(xn,x1, ...,xn−1))= (g(x1
1), ...,g(x

n
1)) = (g(x1), ...,g(xn))

and

(F(z1,z2, ...,zn),F(z2, ...,zn,z1), ...,F(zn,z1, ...,zn−1))= (g(z1
1),g(z

2
1), ...,g(z

n
1)) are comparable,

we have

g(x1)4 g(z1
1),g(z

2
1)4 g(x2),g(x3)4 g(z3

1), ...,g(z
n
1)4 g(xn).

It is easy to show that g(x1
1),g(x

2
1), ...,g(x

n
1) and g(z1

m),g(z
2
m), ...,g(z

n
m) are comparable, that is,

for all m≥ 1,

g(x1)4 g(z1
m),g(z

2
m)4 g(x2), ...,g(zn

m)4 g(xn).
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From (1), we have

ψ(d(g(x1),g(z1
m+1))) = ψ(d(F(x1,x2, ...,xn),F(z1

m,z
2
m, ...,z

n
m)))

≤ f (ψ(max{d(g(x1),g(z1
m)), ...,d(g(z

n
m),g(x

n))}),

ϕ(max{d(g(x1),g(z1
m)), ...,d(g(z

n
m),g(x

n))})),

ψ(d(g(x2),g(z2
m+1))) = ψ(d(F(x2, ...,xn,x1),F(z2

m, ...,z
n
m,z

1
m)))

≤ f (ψ(max{d(g(z2
m),g(x

2)), ...,d(g(x1),g(z1
m))}),

ϕ(max{d(g(z2
m),g(x

2)), ...,d(g(x1),g(z1
m))})),

ψ(d(g(xn),g(zn
m+1))) = ψ(d(F(xn,x1, ...,xn−1),F(zn

m,z
1
m, ...,z

n−1
m )))

≤ f (ψ(max{d(g(zn
m),g(x

n)), ...,d(g(zn−1
m ),g(xn−1))}),

ϕ(max{d(g(zn
m),g(x

n)), ...,d(g(zn−1
m ),g(xn−1))})).

From above inequalities and monotone property of ψ, we have

ψ(max{d(g(zn
m+1),g(x

n)),d(g(x1),g(z1
m+1)), ...,d(g(z

n−1
m+1),g(x

n−1))})

= max{ψd(g(zn
m+1),g(x

n)),ψd(g(x1),g(z1
m+1)), ...,ψd(g(zn−1

m+1),g(x
n−1))})

≤ f (ψ(max{d(g(zn
m),g(x

n)),d(g(x1),g(z1
m)), ...,d(g(z

n−1
m ),g(xn−1))}),

ϕ(max{d(g(zn
m),g(x

n)),d(g(x1),g(z1
m)), ...,d(g(z

n−1
m ),g(xn−1))})).

Let

Rm = max{d(g(z1
m+1),g(x

1)),d(g(x2),g(z2
m+1)), , ...,d(g(z

n
m+1),g(x

n))}.

It follows that

ψ(Rm)≤ f (ψ(Rm−1),ϕ(Rm−1)). (19)

Using the property of ψ, we have

ψ(Rm)≤ ψ(Rm−1)⇒ Rm ≤ Rm−1.

Therefore {Rm} is a monotone decreasing sequence of nonnegative real numbers. Hence there

exists r ≥ 0 such that Rm→ r as m→ ∞. Taking the limit as m→ ∞ in (19), we have

ψ(r)≤ f (ψ(r),ϕ(r)),
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which is a contradiction unless r = 0. Therefore Rm→ 0 as m→ ∞. Then

lim
m→∞

d(g(z1
m+1),g(x

1)) = 0, lim
m→∞

d(g(x2),g(z2
m+1)) = 0, ..., lim

m→∞
d(g(zn

m+1),g(x
n)) = 0.

Similarly, we can prove that

lim
m→∞

d(g(z1
m+1),g(y

1)) = 0, lim
m→∞

d(g(y2),g(z2
m+1)) = 0, ..., lim

m→∞
d(g(zn

m+1),g(y
n)) = 0.

On using the triangle inequality, we have

d(gx1,gy1)≤ d(gx1,gz1
m+1)+d(gz1

m+1,gy1)→ 0 as m→ ∞,

d(gx2,gy2)≤ d(gx2,gz2
m+1)+d(gz2

m+1,gy2)→ 0 as m→ ∞,

...

d(gxn,gyn)≤ d(gxn,gzn
m+1)+d(gzn

m+1,gyn)→ 0 as m→ ∞.

Hence, we have

gx1 = gy1, ...,gxn = gyn. (20)

Since

F(x1,x2, ...,xn) = g(x1),F(x2, ...,xn,x1) = g(x2), ...,F(xn,x1,x2, ...,xn−1) = g(xn),

and F and g are compatible, we have

F(gx1,gx2, ...,gxn) = gg(x1),F(gx2, ...,gxn,gx1) = gg(x2), ...,

F(gxn,gx1, ...,gxn−1) = gg(xn).

Writing g(x1) = a1,g(x2) = a2, ...,g(xn) = an, we have

g(a1) = F(a1,a2,a3, ...,an),

g(a2) = F(a2,a3, ...,an,a1),

...

g(an) = F(an,a1,a2, ...,an−1).

(21)
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Thus (a1,a2,a3, ...,an) is an n-tupled coincidence point of F and g. Owing to (20) with y1 =

a1,y2 = a2, ...,yn = an, it follows that

g(x1) = g(a1),g(x2) = g(a2), ...,g(xn) = g(an),

that is,

g(a1) = a1,g(a2) = a2, ...,g(an) = an. (22)

Using (21) and (22), we have

a1 = g(a1) = F(a1,a2,a3, ...,an)

a2 = g(a2) = F(a2,a3, ...,an,a1)

...

an = g(an) = F(an,a1,a2, ...,an−1).

(23)

Thus (a1,a2,a3, ...,an) is an n-tupled common fixed point of F and g. To prove the uniqueness,

assume that (b1,b2, ...,bn) is another n-tupled common fixed point of F and g. In view of (20),

we have

b1 = g(b1) = g(a1) = a1,

b2 = g(b2) = g(a2) = a2,

...

bn = g(bn) = g(an) = an.

This completes the proof of the theorem.

In Theorem 3.1, setting f (s, t) = s− t, s, t ∈ (0,∞), we obtain the following result.

Corollary 3.3. Let (X ,d,4) be a complete ordered metric space. Let ϕ be an ultra-altering

distance function and ψ an altering distance function. Let F : Xn→ X and g : X → X be two

mappings such that F has the mixed g-monotone property on X and

ψ(d(F(x1,x2, ...,xn),F(y1,y2, ...,yn)))≤ ψ(max{d(gx1,gy1), ...,d(gxn,gyn)})

−ϕ(max{d(gx1,gy1), ...,d(gxn,gyn)}))
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for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which gy1 4 gx1,gx2 4 gy2,gy3 4 gx3, ...,gxn 4 gyn.

Suppose that F(Xn)⊆ g(X), g is continuous and F and g are compatible. Also, suppose that

(a) F is continuous or

(b) X has the following properties:

(i) if nondecreasing sequence {xm}→ x, then g(xm)4 g(x) for all m≥ 0;

(ii) if nonincreasing sequence {xm}→ x, then g(x)4 g(xm) for all m≥ 0.

If there exist x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that (2) holds. Then F and g have an n-tupled coincidence

point in X .

In Theorem 3.1, setting f (s, t) = s
(1+t)r , r ∈ (0,∞), s, t ∈ (0,∞), we obtain the following

result.

Corollary 3.4. Let (X ,d,4) be a complete ordered metric space. Let ϕ be an ultra-altering

distance function and ψ an altering distance function. Let F : Xn→ X and g : X → X be two

mappings such that F has the mixed g-monotone property on X and

ψ(d(F(x1,x2, ...,xn),F(y1,y2, ...,yn)))≤ ψ(max{d(gx1,gy1), ...,d(gxn,gyn)})
(1+ϕ(max{d(gx1,gy1), ...,d(gxn,gyn)}))r

for all x1,x2, ...,xn,y1,y2, ...,yn ∈X and r∈ (0,∞) for which gy1 4 gx1,gx2 4 gy2,gy3 4 gx3, ...,gxn

4 gyn. Suppose that F(Xn)⊆ g(X), g is continuous and F and f are compatible. Also, suppose

that

(a) F is continuous or

(b) X has the following properties:

(i) if nondecreasing sequence {xm}→ x, then g(xm)4 g(x) for all m≥ 0;

(ii) if nonincreasing sequence {xm}→ x, then g(x)4 g(xm) for all m≥ 0.

If there exist x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that (2) holds. Then F and g have an n-tupled coincidence

point in X .

In Theorem 3.1, setting f (s, t) = s loga+t a, a > 1, s, t ∈ (0,∞) ( f is a C-class function), we

obtain the following result.

Corollary 3.5. Let (X ,d,4) be a complete ordered metric space. Let ϕ be an ultra-altering

distance function and ψ an altering distance function. Let F : Xn→ X and g : X → X be two
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mappings such that F has the mixed g-monotone property on X and

ψ(d(F(x1,x2, ...,xn),F(y1,y2, ...,yn)))≤ ψ(max{d(gx1,gy1), ...,d(gxn,gyn)})

loga+ϕ(max{d(gx1,gy1),...,d(gxn,gyn)}) a

for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which gy1 4 gx1,gx2 4 gy2,gy3 4 gx3, ...,gxn 4 gyn.

Suppose that F(Xn)⊆ g(X), g is continuous and F and g are compatible. Also, suppose that

(a) F is continuous or

(b) X has the following properties:

(i) if nondecreasing sequence {xm}→ x, then g(xm)4 g(x) for all m≥ 0;

(ii) if nonincreasing sequence {xm}→ x, then g(x)4 g(xm) for all m≥ 0.

If there exist x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that (2) holds. Then F and g have an n-tupled coincidence

point in X .

Considering g to be an identity mapping in Theorem 3.1, we have the following result.

Corollary 3.6. Let (X ,4) be an ordered set. Suppose that there is a metric d on X such that

(X ,d) is a complete metric space. Let ϕ be an ultra-altering distance function and ψ be an

altering distance function. Let F : Xn→ X be a mapping having the mixed monotone property

on X and f a C-class function and

ψ(d(F(x1,x2, ...,xn),F(y1,y2, ...,yn))) ≤ f (ψ(max{d(x1,y1),d(x2,y2), ...,d(xn,yn)}),

ϕ(max{d(x1,y1),d(x2,y2), ...,d(xn,yn)}))

for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which y1 4 x1,x2 4 y2,y3 4 x3, ...,xn 4 yn. Suppose that

(a) F is continuous or

(b) X has the following properties:

(i) if nondecreasing sequence {xm}→ x, then xm 4 x for all m≥ 0;

(ii) if nonincreasing sequence {xm}→ x, then x 4 xm for all m≥ 0.
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If there exist x1
0,x

2
0,x

3
0, ...,x

n
0 ∈ X such that

x1
0 4 F(x1

0,x
2
0,x

3
0, ...,x

n
0),

F(x2
0,x

3
0, ...,x

n
0,x

1
0)4 x2

0,

x3
0 4 F(x3

0, ...,x
n
0,x

1
0,x

2
0),

...

F(xn
0,x

1
0,x

2
0, ...,x

n−1
0 )4 xn

0,

(24)

then F has an n-tupled fixed point in X .

Considering ψ and g to be identity mappings in Theorem 3.1, we have the following result.

Corollary 3.7. Let (X ,4) be an ordered set. Suppose that there is a metric d on X such that

(X ,d) is a complete metric space. Let ϕ be an ultra-altering distance function and f a C-class

function. Let F : Xn→ X be a mapping having the mixed monotone property on X and

d(F(x1,x2, ...,xn),F(y1,y2, ...,yn)) ≤ f (max{d(x1,y1),d(x2,y2), ...,d(xn,yn)},

ϕ(max{d(x1,y1),d(x2,y2), ...,d(xn,yn)}))

for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which y1 4 x1,x2 4 y2,y3 4 x3, ...,xn 4 yn. Also in view

of conditions (a) and (b) of Corollary 3.6, if (24) is satisfied, then F has an n-tupled fixed point

in X .

Considering ψ and g to be identity mappings, f (s, t) = s− t and ϕ(t) = (1− k)t, where

0≤ k < 1 in Theorem 3.1, we have the following result.

Corollary 3.8. Let (X ,4) be an ordered set. Suppose that there is a metric d on X such that

(X ,d) is a complete metric space. Let F : Xn→ X be a mapping having the mixed monotone

property on X . Assume that there exists k ∈ [0,1) with

d(F(x1,x2, ...,xn),F(y1,y2, ...,yn))≤ k max{d(x1,y1),d(x2,y2), ...,d(xn,yn)}

for all x1,x2, ...,xn,y1,y2, ...,yn ∈ X for which y1 4 x1,x2 4 y2,y3 4 x3, ...,xn 4 yn. Also in view

of conditions (a) and (b) of Corollary 3.6, if (24) is satisfied, then F has an n-tupled fixed point

in X .
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Remark 3.9. With n = 2, Theorem 3.1 and Corollaries 3.3-3.8 respectively yield the results of

Choudhury et al. [9]. However, from Theorem 3.2, we can deduce a unique coupled common

fixed point theorem.

Example 3.10. Let X = [0,1]. Then (X ,4) is an ordered set with the natural ordering of real

numbers. Let d(x,y) = |x− y| for all x,y ∈ X. Then (X ,d) is a complete metric space with the

required properties of Theorem 3.1. Define g : X→ X by g(x) = x2 for all x∈ X and F : Xn→ X

(wherein n is a fixed even integer) by

F(x1,x2, ...,xn) =



(x1)
2−(x2)

2
+(x3)

2−.....+(xn−1)
2−(xn)2

n+1 , if xi+1 4 xi, i = 1,3, ...,n−1,

0 otherwise,

for all x1,x2, ...,xn ∈ X . Then F obeys the mixed g-monotone property. Now, define a function

f : [0,∞)2→ R by f (s, t) = s− t, s, t ∈ [0,∞). Then f is a C-class function. Let ψ : [0,∞)→

[0,∞) and ϕ : [0,∞)→ [0,∞) be defined respectively as follows:

ψ(t) = t2 and ϕ(t) =
2n+1
(n+1)2 t2, for t ∈ [0,∞).

Then ψ and ϕ have the properties mentioned in Theorem 3.1. Also F and f are compatible in

X . Now choose (x1
0,x

2
0, . . . ,x

n
0) = (0,c,0,c, ...,c) (c > 0). Then



g(x1
0) = g(0) = 0 = F(x1

0,x
2
0,x

3
0, ...,x

n
0) = g(x1

1),

g(x2
1) = F(x2

0,x
3
0, ...,x

n
0,x

1
0)� c2 = g(c) = g(x2

0),

g(x3
0) = g(0) = 0 = F(x3

0, ...,x
n
0,x

1
0,x

2
0) = g(x3

1),

...

g(xn
1) = F(xn

0,x
1
0,x

2
0, ...,x

n−1
0 )� c2 = g(c) = g(xn

0).

We next verify inequality (1) (of Theorem 3.1). We take x1,x2, ...,xn, y1,y2, ...,yn ∈ X such that

gy1 � gx1, gx2 � gy2, gy3 � gx3, ...,gxn � gyn.
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Let

M = max{d(gx1,gy1),d(gx2,gy2),d(gx3,gy3), ...,d(gxn,gyn)}

= max{|(x1)
2− (y1)

2|, |(x2)
2− (y2)

2|, |(x3)
2− (y3)

2|, ..., |(xn)2− (yn)2|}.

Then

M ≥ |(x1)
2− (y1)

2|, M ≥ |(x2)
2− (y2)

2|,M ≥ |(x3)
2− (y3)

2|, ...,M ≥ |(xn)2− (yn)2|.

The following four cases arise:

Case I: Let x1,x2,x3, ...,xn, y1,y2,y3, ...,yn ∈X such that xi+1� xi,yi+1� yi for i= 1,3, ...,n−1.

Then

d(F(x1,x2,x3, ...,xn),F(y1,y2,y3, ...,yn))

= d
(
(x1)

2− (x2)
2
+(x3)

2− ....− (xn)2

n+1
,
(y1)

2− (y2)
2
+(y3)

2− ....− (yn)2

n+1

)
=

∣∣∣∣(x1)
2− (x2)

2
+(x3)

2− ....− (xn)2

n+1
− (y1)

2− (y2)
2
+(y3)

2− ....− (yn)2

n+1

∣∣∣∣
=

∣∣∣∣((x1)
2− (y1)

2
)− ((x2)

2− (y2)
2
)+((x3)

2− (y3)
2
)− ....− ((xn)2− (yn)2)

n+1

∣∣∣∣
≤ |(x

1)
2− (y1)

2|+ |(x2)
2− (y2)

2|+ |(x3)
2− (y3)

2|+ ....+ |(xn)2− (yn)2|
n+1

≤ n
n+1

M.

Case II: Let x1,x2,x3, ...,xn, y1,y2,y3, ...,yn ∈ X such that xi+1 � xi for i = 1,3, ...,n− 1 and

yi � yi+1 for at least one i. Then (for y1 � y2),

d(F(x1,x2,x3, ...,xn),F(y1,y2,y3, ...,yn))

= d
(
(x1)

2− (x2)
2
+(x3)

2− ....− (xn)2

n+1
,0
)

≤
∣∣∣∣(x1)

2− (x2)
2
+(x3)

2− ....− (xn)2 +(y2)
2− (y1)

2

n+1

∣∣∣∣
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=

∣∣∣∣((x1)
2− (y1)

2
)− ((x2)

2− (y2)
2
)+(x3)

2− (x4)
2
+ ....− (xn)2

n+1

∣∣∣∣
...

≤ |(x
1)

2− (y1)
2|+ |(x2)

2− (y2)
2|+ |(x3)

2− (y3)
2|+ ....+ |(xn)2− (yn)2|

n+1

≤ n
n+1

M.

Case III: Let x1,x2,x3, ...,xn, y1,y2,y3, ...,yn ∈ X such that xi � xi+1 for at least one i and

yi+1 � yi for i = 1,3, ...,n−1. Then arguing as in Case II, one verify inequality (1).

Case IV: Let x1,x2,x3, ...,xn, y1,y2,y3, ...,yn ∈ X such that xi � xi+1,yi � yi+1 for at least one i.

Then

d(F(x1,x2,x3, ...,xn),F(y1,y2,y3, ...,yn)) = d(0,0)≤ n
n+1

M.

In all above cases

ψ(d(F(x1,x2,x3, ...,xn),F(y1,y2,y3, ...,yn)))

≤ n2

(n+1)2 M2 = M2− 2n+1

(n+1)2 M2

= ψ(max{d(gx1,gy1),d(gx2,gy2), ...,d(gxn,gyn)})

−ϕ(max{d(gx1,gy1),d(gx2,gy2), ...,d(gxn,gyn)})

= f (ψ(max{d(gx1,gy1),d(gx2,gy2), ...,d(gxn,gyn)}),

ϕ(max{d(gx1,gy1),d(gx2,gy2), ...,d(gxn,gyn)})).

Hence all the conditions of Theorem 3.1 are satisfied and (0,0,0, ...,0) is an n-tupled coinci-

dence point of F and g.



28 A. SHARMA, A. H. ANSARI, M. IMDAD

REFERENCES

[1] M. Abbas, A. R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl.

Math. Comput. 217 (2011), 6328-6336.

[2] A. Alotaibi, S. Alsulami, Coupled coincidence points for monotone operators in partially ordered metric

spaces, Fixed Point Theory Appl. 2011 (2011), Article ID 44.

[3] S. M. Alsulami, A. Alotaibi, Coupled coincidence point theorems for compatible mappings in partially or-

dered metric spaces, Bull. Math. Anal. Appl. 2 (2012), 129-138.

[4] A. H. Ansari, Note on” ϕ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference

on Mathematics And Applications, PNU, (2014) , 377-380.

[5] V. Berinde, M. Borcut, Tripled fixed points theorems for contractive type mappings in partially ordered metric

spaces, Nonlinear Anal. 47 (2011) 4889-4897.

[6] T. G. Bhaskar, V. Lakshmikantham, Fixed points theorems in partially ordered metric spaces and applications,

Nonlinear Anal. 65 (2006), 1379-1393.

[7] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type,

Int. J. Math. Math. Sci. 10 (2002), 531-536.

[8] B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for com-

patible mappings, Nonlinear Anal. 73 (2010), 2524-2531.

[9] B. S. Choudhury, N. Metiya, A. Kundu, Coupled coincidence point theorems in ordered metric spaces, Ann.

Univ. Ferrara 57 (2011), 1-16.

[10] D. J. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear

Anal. 11 (1987), 623-632.

[11] M. Imdad, A. H. Soliman, B. S. Choudhury, P. Das, On n-tupled coincidence and common fixed points results

in metric spaces, J. Oper. 2013 (2013), Article ID 532867.

[12] M. Imdad, A. Sharma, K. P. R. Rao, n-tupled coincidence and common fixed point results for weakly con-

tractive mappings in complete metric spaces, Bull. Math. Anal. Appl. 5 (2013), 19-39.

[13] M. Imdad, A. Sharma, K. P. R. Rao, Generalized n-tupled fixed point theorems for nonlinear contraction

mapping, Afrika Matematika, DOI 10.1007/s 13370-013-0217-8.

[14] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete

metric spaces, Math. Japonica 44 (1996), 381-391.

[15] E. Karapınar, Quartet fixed point for nonlinear contraction, arxiv.org/abs/1106.5472.

[16] E. Karapınar, V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered

metric spaces, Banach J. Math. Anal. 6 (2012), 74-89.

[17] E. Karapınar, N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Anal.

64 (2012), 1839-1848.



EVEN TUPLED COINCIDENCE AND COMMON FIXED POINT RESULTS 29

[18] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distance functions between the points,

Bull. Aust. Math. Soc. 30 (1984), 1-9.

[19] S. Kumar, R. Chugh, R. Kumar, Fixed point theorem for compatible mapping satisfying a contractive condi-

tion of integral type, Soochow J. Math. 33 (2007), 181-185.

[20] V. Lakshmikantham, L. B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered

metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.

[21] V. Nguyen, X. Nguyen, Coupled fixed point theorems in partially ordered metric spaces, Bull. Math. Anal.

Appl. 2 (2010), 16-24.
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