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Abstract. The purpose of this paper is to study common solutions of split variational inclusion and fixed point

problems of a nonexpansive mapping via a new viscosity iterative method with Meri-Keeler contractions. A

strong convergence theorem is established in the framework of Hilbert spaces with mild restrictions imposed on

the control sequences. The result presented in this paper are the supplement, extension and generalization of the

previously known results in this area.
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1. Introduction-Preliminaries

Throughout the paper unless otherwise stated, we assume that H1 and H2 are real Hilbert

spaces with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C and Q be nonempty closed

convex subsets of H1 and H2, respectively. A mapping S : H1→H1 is called contraction, if there

exists a constant α ∈ (0,1) such that ‖ Sx−Sy ‖≤ α ‖ x−y ‖, ∀x,y ∈H1. If α = 1, S is called a

nonexpansive mapping. Further, we consider the following fixed point problem (in short, FPP)

for a nonexpansive mapping S : H1→ H1: Find x ∈ H1 such that Sx = x. The solution set of the

FPP is denoted by Fix(S). It is well known that if C is closed convex and bounded, then Fix(S)

is nonempty, closed and convex.
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For every point x ∈ H1, there exists a unique nearest point in C denoted by PCx such that

‖ x−PCx ‖≤‖ x− y ‖, ∀y ∈C. PC is called the metric projection of H1 onto C. It is well known

that PC is nonexpansive mapping and satisfies 〈x− y,PCx−PCy〉 ≥‖ PCx−PCy ‖2, ∀x,y ∈ H1.

Moreover, PCx is characterized by the fact PCx ∈ C and 〈x− PCx,y− PCx〉 ≤ 0, and ‖ x−
y ‖2≥‖ x−PCx ‖2 + ‖ y−PCx ‖2, ∀x ∈ H1,y ∈ C. In a real Hilbert space the following hold:

‖ λx+(1−λ )y ‖2= λ ‖ x ‖2 +(1−λ ) ‖ y ‖2−λ (1−λ ) ‖ x−y ‖2 for all x,y∈H1 and λ ∈ (0,1).
It is well known that every nonexpansive operator T : H1→ H1 satisfies, for all x,y ∈ H1×H1,

the inequality 〈(x− T (x))− (y− T (y)),T (y)− T (x)〉 ≤ 1
2 ‖ (T (x)− x)− (T (y)− y) ‖2, and

therefore, we get, for all (x,y) ∈ H1×Fix(T ), 〈x−T (x),y−T (y)〉 ≤ 1
2 ‖ T (x)− x ‖2 . A map-

ping T : H1 → H1 is said to be averaged if and only if it can be written as the average of the

identity mapping and a nonexpansive mapping, i.e., T := (1−α)I +αS where α ∈ (0,1) and

S : H1→ H1 is nonexpansive and I is the identity operator on H1. We note that averaged map-

pings are nonexpansive. Further, firmly nonexpansive mappings(in particular, projections on

nonempty closed and convex subsets and resolvent operators of maximal monotone operators)

are averaged.

If T = (1−α)S+αV , where S : H1→H1 is averaged, V : H1→H1 is nonexpansive and α ∈
(0,1), then T is averaged. The composite of finitely many averaged mappings is averaged. If the

mappings {Ti}N
i=1 are averaged and have a nonempty common fixed point, then

⋂N
i=1 Fix(Ti) =

Fix(T1,T2, . . . ,TN). If T is τ− ism, then for γ > 0, γT is τ

γ
− ism. T is averaged if and only if,

its complement I−T is τ− ism for some τ > 1
2 .

Let f be a Meir-Keeler contraction on (in short, MKC) C. Then for any t ∈ (0,1), the map-

ping S f
t : x 7→ t f (x)+(1− t)Sx is also a MKC from C into itself. By the Meir-Keeler fixed point

theorem [1], S f
t has a unique fixed point xt in C, i.e., xt = t f (xt)+ (1− t)S(xt), t ∈ (0,1). The

viscosity approximation methods are very important due to they be applied to convex optimiza-

tion, linear programming, monotone type variational inequality, monotone inclusions, elliptic

differential equations, and other applied science; see [2-5] and the references therein. Recall

that a mapping T : H1→ H1 is said to be

(i) monotone, if

〈T x−Ty,x− y〉 ≥ 0,∀x,y ∈ H1.

(ii) α-strongly monotone, if there exists a constant α > 0 such that

〈T x−Ty,x− y〉 ≥ α ‖ x− y ‖2,∀x,y ∈ H1.
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(iii) β -inverse strongly monotone(or, β -ism), if there exists a constant β > 0 such that

〈T x−Ty,x− y〉 ≥ β ‖ T x−Ty ‖2,∀x,y ∈ H1.

(iv) firmly nonexpansive, if

〈T x−Ty,x− y〉 ≥‖ T x−Ty ‖2,∀x,y ∈ H1.

A multi-valued mapping M : H1 → 2H1 is called monotone if for all x,y ∈ H1, u ∈ Mx and

v ∈ My such that 〈x− y,u− v〉 ≥ 0. A monotone mapping M : H1 → 2H1 is maximal if the

Graph(M) is not properly contained in the graph of any other monotone mapping. It is known

that a monotone mapping M is maximal if and only if for (x,u) ∈ H1×H1, 〈x− y,u− v〉 ≥
0, for every (y,v) ∈ Graph(M) implies that u ∈ M(x). Let M : H1 → 2H1 be a multi-valued

maximal monotone mapping. Then, the resolvent mapping JM
λ

: H1→ H1 associated with M,

is defined by JM
λ

:= (I +λM)−1(x),∀x ∈ H1, for some λ > 0, where I stands identity operator

on H1. We note that for all λ > 0 the resolvent operator JM
λ

is single-valued, nonexpansive and

firmly nonexpansive. Recently, Moudafi [6] introduced the following split monotone variational

inclusion problem (in short, SMVIP): Find x∗ ∈ H1 such that

0 ∈ f1(x∗)+B1(x∗), (1.1)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ f2(y∗)+B2(y∗), (1.2)

where B1 : H1→ 2H1 and B2 : H2→ 2H2 are multi-valued maximal monotone mappings. Moudafi

[6] introduced an iterative method for solving SMVIP (1.1)-(1.2), which can be seen an impor-

tant generalization of an iterative method given by Censor et al. [7] for split variational inequal-

ity problem. As Moudafi motes in [6], SMVIP (1.4)-(1.5) includes as special cases, the split

common fixed point problem, split variational inequality problem, split zero problem and split

feasibility problem [8-11] which have already been studied and used in practice as a model in

intensity-modulated radiation therapy treatment planning, see [12]. This formalism is also at

the core of modeling of many inverse problems arising for phase retrieval and other real-world

problems.

If f1 ≡ 0 and f2 ≡ 0 then SMVIP (1.1)-(1.2) reduces to the following split variational inclu-

sion problem (in short, SVIP): Find x∗ ∈ H1 such that

0 ∈ B1(x∗), (1.3)
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and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.4)

When looked separately, (1.3) is the variational inclusion problem and we denoted its solution

set by SOLVIP (B1). The SVIP (1.3)-(1.4) constitutes a pair of variational inclusion problems

which have to be solved so that the image y∗ = Ax∗ under a given bounded linear operator A, of

the solution x∗ of SVIP (1.3) in H1 is the solution of another SVIP (1.4) in another space H2,

we denote the solution set of SVIP (1.4) by SOLVIP (B2). The solution set of SVIP (1.3)-(1.4)

is denoted by Γ = {x∗ ∈ H1 : x∗ ∈ SOLV IP(B1)

and Ax∗ ∈ SOLV IP(B2)}. Motivated by the work of going on in this direction, we suggest

and analyze an iterative method for approximating a common solution of SVIP (1.3)-(1.4) and

a fixed point of nonexpansive mapping. Furthermore, we prove that the sequences generated by

the iterative scheme converge strongly to a common solution of SVIP (1.3)-(1.4).

Lemma 2.1. [13] Assume that T is nonexpansive self mapping of a closed convex subset C

of a Hilbert space H1. If T has a fixed point, then I− T is demiclosed, i.e., whenever {xn}
is a sequence in C converging weakly to some x ∈ C and the sequence {(I−T )xn} converges

strongly to some y, it follows that (I−T )x = y. Here I is the identity mapping on H1.

Lemma 2.2. [14] Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1−ξn)an +δn,n≥ 0,

where {ξn} is a sequence in (0,1) and {δn} is a sequence in R such that

(i) Σ∞
n=1ξn = ∞;

(ii) limsupn→∞
δn
ξn
≤ 0 or ∑

∞
n=1 | δn |< ∞.

Then limn→∞ an = 0.

Lemma 2.3. [15] Let {xn} and {yn} be bounded sequences in a Hilbert space H1 and let

{βn} be a sequence in (0, 1) with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose xn+1 =

(1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(‖ yn+1− yn ‖ − ‖ xn+1− xn ‖)≤ 0.

Then limn→∞ ‖ yn− xn ‖= 0.

2. Main results
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Theorem 2.1. Let H1 and H2 be two real Hilbert spaces. Let A : H1→ H2 be a bounded linear

operator and f : H1→ H2 be a MKC. Let S : H1→ H2 be a nonexpansive mapping such that

Fix(S)∩Γ 6= ∅. For a give x0 ∈ H1, arbitrarily, let the iterative sequences {un} and {xn} be

generated by

un = JB1
λ
(xn + γA∗(JB2

λ
− I)Axn),

xn+1 = αn f (xn)+βnxn + γnSun,
(2.1)

where λ > 0 and γ ∈ (0, 1
L), L is the spectral radius of the operator A∗A and A∗ is the adjoint

of A and {αn} ,{βn}, {γn} be real number sequences in (0,1) such that αn +βn + γn = 1 and

limn→∞ αn = 0, Σ∞
n=0αn = ∞, and Σ∞

n=0‖αn−αn−1‖< ∞,0 < liminfn→∞ βn ≤ limsupn→∞ βn <

1. Then the sequences {un} and {xn} both converge strongly to z ∈ Fix(S)∩ Γ, where z =

PFix(S)∩Γ f (z).

Proof Letting p∈ Fix(S)∩Γ, we have p = JB1
λ

p, Ap = JB2
λ
(Ap) and Sp = p. For a give y0 ∈H1,

let the iterative sequences {vn} and {yn} be generated by

vn = JB1
λ
(yn + γA∗(JB2

λ
− I)Ayn),

yn+1 = αn f (z)+βnyn + γnSvn,
(2.2)

We show that {yn} is a bounded sequence. Note that

‖ vn− p ‖2 ≤‖ yn + γA∗(JB2
λ
− I)Ayn− p ‖2

≤‖ yn− p ‖2 +γ
2 ‖ A∗(JB2

λ
− I)Ayn ‖2 +2γ〈yn− p,A∗(JB2

λ
− I)Ayn〉.

(2.3)

Thus, we have

‖ vn− p ‖2≤ ‖ yn− p ‖2 +γ
2〈(JB2

λ
− I)Ayn,AA∗(JB2

λ
− I)Ayn〉

+2γ〈yn− p,A∗(JB2
λ
− I)Ayn〉.

(2.4)

Therefore, we find that

γ
2〈(JB2

λ
− I)Ayn,AA∗(JB2

λ
− I)Ayn〉 ≤ Lγ

2〈(JB2
λ
− I)Ayn,(J

B2
λ
− I)Ayn〉

= Lγ
2 ‖ (JB2

λ
− I)Ayn ‖2 .

(2.5)
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Denoting Λ = 2γ〈yn− p,A∗(JB2
λ
− I)Ayn〉, we have

Λ = 2γ〈yn− p,A∗(JB2
λ
− I)Ayn〉

= 2γ〈A(yn− p),(JB2
λ
− I)Ayn〉

= 2γ〈A(yn− p)+(JB2
λ
− I)Ayn− (JB2

λ
− I)Ayn,(J

B2
λ
− I)Ayn〉

= 2γ{〈JB2
λ

Axn−Ap,(JB2
λ
− I)Ayn〉− ‖ (JB2

λ
− I)Ayn ‖2}

≤ 2γ{1
2
‖ (JB2

λ
− I)Ayn ‖2 − ‖ (JB2

λ
− I)Ayn ‖2}

≤ −γ ‖ (JB2
λ
− I)Ayn ‖2 .

(2.6)

Using (2.4), (2.5) and (2.6), we obtain

‖ vn− p ‖2≤‖ yn− p ‖2 +γ(Lγ−1) ‖ (JB2
λ
− I)Ayn ‖2 . (2.7)

Since γ ∈ (0, 1
L), we obtain

‖ vn− p ‖2≤‖ yn− p ‖2 . (2.8)

Next, we estimate

‖ yn+1− p ‖=‖ αn f (z)+βnyn + γnSvn− p ‖

=‖ αn f (z)+βnyn + γnSvn− (αn +βn + γn)p ‖

≤ αn ‖ f (z)− p ‖+βn ‖ yn− p ‖+γn ‖ Svn− p ‖

≤ αn ‖ f (z)− p ‖+βn ‖ yn− p ‖+γn ‖ vn− p ‖

≤ αn ‖ f (z)− p ‖+βn ‖ yn− p ‖+γn ‖ yn− p ‖

= αn ‖ f (z)− p ‖+(1−αn) ‖ yn− p ‖

≤max{‖ f (z)− p ‖,‖ yn− p ‖}
...

≤max{‖ f (z)− p ‖,‖ y0− p ‖}.

(2.9)

Hence {yn} is bounded and consequently, we deduce that {vn}, {Svn} are bounded. Now, we

show that the sequence {yn} is asymptotically regular, i.e., ‖ yn+1− yn ‖→ 0 as n→ ∞. Let
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yn+1 = βnyn +(1−βn)ρn, then ρn =
αn f (z)+γnSvn

1−βn
.

‖ ρn+1−ρn ‖=‖
αn+1 f (z)+(1−αn+1−βn+1)Svn+1

1−βn+1
− αn f (z)+(1−αn−βn)Svn

1−βn
‖

=‖ αn+1( f (z)−Svn+1)

1−βn+1
+Svn+1−

αn( f (z)−Svn)

1−βn
−Svn ‖

≤ αn+1

1−βn+1
‖ f (z)−Svn+1 ‖+

αn

1−βn
‖ f (z)−Svn ‖

+ ‖ Svn+1−Svn ‖

≤ αn+1

1−βn+1
‖ f (z)−Svn+1 ‖+

αn

1−βn
‖ f (z)−Svn ‖

+ ‖ vn+1− vn ‖ .
(2.10)

Since, for γ ∈ (0, 1
L), the mapping JB1

λ
(I + γA∗(JB2

λ
− I)A) is averaged and hence nonexpansive.

Then we obtain

‖ vn+1− vn ‖ ≤‖ JB1
λ
(yn+1 + γA∗(JB2

λ
− I)Ayn+1)− JB1

λ
(yn + γA∗(JB2

λ
− I)Ayn) ‖

≤‖ JB1
λ
(I + γA∗(JB2

λ
− I)A)yn+1− JB1

λ
(I + γA∗(JB2

λ
− I)A)yn) ‖

≤‖ yn+1− yn ‖ .

(2.11)

Using (2.10) and (2.11), we obtain

‖ ρn+1−ρn ‖ − ‖ yn+1− yn ‖ ≤
αn+1

1−βn+1
‖ f (z)−Svn+1 ‖+

αn

1−βn
‖ f (z)−Svn ‖ .

Since, for limn→∞ αn = 0, we get

limsup
n→∞

‖ ρn+1−ρn ‖ − ‖ yn+1− yn ‖≤ 0.

It follows that limn→∞ ‖ ρn− yn ‖= 0, which in turn implies that

lim
n→∞
‖ yn+1− yn ‖= 0. (2.12)

Now, we write

yn+1− yn = αn f (z)+βnyn + γnSvn− yn

= αn( f (z)− yn)+ γn(Svn− yn).

It follows that

γn ‖ Svn− yn ‖≤‖ yn+1− yn ‖+αn ‖ f (z)− yn ‖ .
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Since ‖ yn+1− yn ‖→ 0 and αn→ 0 as n→ ∞, we obtain ‖ Svn− yn ‖→ 0 as n→ ∞. Note that

‖ yn+1− p ‖2 =‖ αn f (z)+βnyn + γnSvn− p ‖2

=‖ αn f (z)+βnyn + γnSvn− (αn +βn + γn)p ‖2

≤ αn ‖ f (z)− p ‖2 +βn ‖ yn− p ‖2 +γn ‖ Svn− p ‖2

≤ αn ‖ f (z)− p ‖2 +βn ‖ yn− p ‖2 +γn ‖ vn− p ‖2

≤ αn ‖ f (z)− p ‖2 +βn ‖ yn− p ‖2

+ γn[‖ yn− p ‖2 +γ(Lγ−1) ‖ (JB2
λ
− I)Ayn ‖2]

= αn ‖ f (z)− p ‖2 +(βn + γn) ‖ yn− p ‖2 +γnγ(Lγ−1) ‖ (JB2
λ
− I)Ayn ‖2

≤ αn ‖ f (z)− p ‖2 + ‖ yn− p ‖2 +γ(Lγ−1) ‖ (JB2
λ
− I)Ayn ‖2

(2.13)

Therefore,

γ(1−Lγ) ‖ (JB2
λ
− I)Ayn ‖2

≤ αn ‖ f (z)− p ‖2 + ‖ yn− p ‖2 − ‖ yn+1− p ‖2

≤ αn ‖ f (z)− p ‖2 + ‖ yn+1− yn ‖ (‖ yn− p ‖+ ‖ yn+1− p ‖).

Since (1−Lγ)> 0, and αn→ 0, and ‖ yn+1− yn ‖→ 0 as n→ ∞, we have

‖ (JB2
λ
− I)Ayn ‖= 0. (3.14)
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Furthermore, using γ ∈ (0, 1
L), we observe that

‖ vn− p ‖2 =‖ JB1
λ
(yn + γA∗(JB2

λ
− I)Ayn)− p ‖2

=‖ JB1
λ
(yn + γA∗(JB2

λ
− I)Ayn)− JB1

λ
p ‖2

≤ 〈vn− p,yn + γA∗(JB2
λ
− I)Ayn− p〉

=
1
2
{‖ vn− p ‖2 + ‖ yn + γA∗(JB2

λ
− I)Ayn− p ‖2

− ‖ (vn− p)− [yn + γA∗(JB2
λ
− I)Ayn− p] ‖2}

≤ 1
2
{‖ vn− p ‖2 + ‖ yn− p ‖2 +γ(Lγ−1) ‖ (JB2

λ
− I)Ayn ‖2

− ‖ vn− yn− γA∗(JB2
λ
− I)Ayn ‖2}

≤ 1
2
{‖ vn− p ‖2 + ‖ yn− p ‖2 −[‖ vn− yn ‖2

+ γ
2 ‖ A∗(JB2

λ
− I)Ayn ‖2 −2γ〈vn− yn,A∗(J

B2
λ
− I)Ayn〉]}

≤ 1
2
{‖ vn− p ‖2 + ‖ yn− p ‖2 − ‖ vn− yn ‖2

+2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖}.

Hence, we obtain

‖ vn− p ‖2≤‖ yn− p ‖2 − ‖ vn− yn ‖2 +2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖ . (2.15)

It follows that from (2.13) and (2.15) that

‖ yn+1− p ‖2 ≤ αn ‖ f (z)− p ‖2 +βn ‖ yn− p ‖2 +γn ‖ vn− p ‖2

≤ αn ‖ f (z)− p ‖2 +βn ‖ yn− p ‖2

+ γn[‖ yn− p ‖2 − ‖ vn− yn ‖2 +2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖]

= αn ‖ f (z)− p ‖2 +(βn + γn) ‖ yn− p ‖2

− γn ‖ vn− yn ‖2 +2γγn ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖

≤ αn ‖ f (z)− p ‖2 + ‖ yn− p ‖2

− γn ‖ vn− yn ‖2 +2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖ .
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Therefore, we arrive at

γn ‖ vn− yn ‖2 ≤ αn ‖ f (z)− p ‖2 + ‖ yn− p ‖2 − ‖ yn+1− p ‖2

+2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖

≤ αn ‖ f (z)− p ‖2 +(‖ yn− p ‖+ ‖ yn+1− p ‖) ‖ yn− yn+1 ‖

+2γ ‖ A(vn− yn) ‖‖ (JB2
λ
− I)Ayn ‖ .

Since αn→ 0 as n→ ∞, we obtain

lim
n→∞
‖ vn− yn ‖= 0. (2.16)

Now, we can write

‖ Svn− vn ‖≤‖ Svn− yn ‖+ ‖ yn− vn ‖ . (2.17)

Since {vn} is bounded, we consider a weak cluster point w of {vn}. Hence, there exists a

subsequence {vnk} of {vn}, which converges weakly to w. Now, S being nonexpnsive, by

(2.17), we obtain that w ∈ Fix(S). On the other hand, vnk = JB1
λ
(ynk + γA∗(JB2

λ
− I)Aynk) can

be rewritten as

(ynk− vnk)+A∗(JB2
λ
− I)Aynk

λ
∈ B1vnk . (3.18)

By passing to limit k→ 0 in (2.18) and by taking into account (2.14), (2.16) and the fact that the

graph of a maximal monotone operator is weakly-strongly closed, we obtain 0∈B1(w), i.e., w∈
SOLV IP(B1). Furthermore, since {yn} and {vn} have the same asymptotical behavior, {Aynk}
weakly converges to Aw. Again, by (2.14) and the fact that the resolvent JB2

λ
is nonexpansive,

we obtain that Aw ∈ B2(Aw), i.e., Aw ∈ SOLV IP(B2). Thus w ∈ Fix(S)∩Γ. Next, we claim that

limsupn→∞〈 f (z)− z,yn− z〉 ≤ 0, where z = PFix(S)∩Γ f (z). Indeed, we have

limsup
n→∞

〈 f (z)− z,yn− z〉= limsup
n→∞

〈 f (z)− z,Svn− z〉

≤ limsup
n→∞

〈 f (z)− z,vn− z〉

= 〈 f (z)− z,w− z〉

≤ 0,

(2.19)
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since z = PFix(S)∩Γ f (z). Note that

‖ yn+1− z ‖2 = 〈αn f (z)+βnyn + γnSvn− z,yn+1− z〉

≤ αn〈 f (z)− z,yn+1− z〉+βn〈yn− z〉+ γn〈vn− z,yn+1− z〉

≤ αn〈 f (z)− z,yn+1− z〉+βn〈yn− z〉+ γn〈yn− z,yn+1− z〉

= αn〈 f (z)− z,yn+1− z〉+(1−αn)〈yn− z,yn+1− z〉

≤ αn〈 f (z)− z,yn+1− z〉+ (1−αn)

2
{‖ yn− z ‖2 + ‖ yn+1− z ‖2},

which implies that

(1+αn) ‖ yn+1− z ‖2≤ (1−αn) ‖ yn− z ‖2 +2αn〈 f (z)− z,yn+1− z〉.

It follows that ‖ yn+1− z ‖2≤ (1−αn) ‖ yn− z ‖2 +2αn〈 f (z)− z,yn+1− z〉. Now, by using

(2.19), we deduce that yn→ z. Further it follows from ‖ vn−yn ‖→ 0, vn ⇀ w ∈ Fix(S)∩Γ and

yn→ z as n→ ∞, that z = w. Finally, we prove that xn→ z(n→ ∞). To end this, we need to

show that xn−yn→ 0 as n→ ∞. Assume that a = limn ‖ xn−yn ‖> 0; then ∀ε ∈ (0,a), we can

choose η > 0 such that

lim
n
‖ xn− yn ‖> ε +η . (2.20)

For above ε > 0, using Suzuki [16], we know that there exists β ∈ (0,1) such that

‖ f (x)− f (y) ‖≤ β ‖ x− y ‖, (3.21)

for all x,y ∈ H1 with ‖ x− y ‖≥ ε , which implies that

‖ f (x)− f (y) ‖≤max{β ‖ x− y ‖,ε}, (2.22)

for all x,y ∈ H1. Since yn→ z as n→ ∞, we see that there exists some integer n0 ≥ 1 such that

‖ yn− z ‖≤ (1−β )η , (2.23)

for all n≥ n0. We now consider tow possible cases.

Case 1. There exists some n1 ≥ n0 such that

‖ xn1− yn1 ‖≤ ε +η . (2.24)
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Therefore, we have

‖ xn1+1− yn1+1 ‖=‖ αn1 f (xn1)+βn1xn1 + γn1Sun1− (αn1 f (z)+βn1yn1 + γn1Svn1) ‖

≤ αn1 ‖ f (xn1)− f (z) ‖+βn1 ‖ xn1− yn1 ‖+γn1 ‖ Sun1−Svn1 ‖

≤ αn1 ‖ f (xn1)− f (z) ‖+βn1 ‖ xn1− yn1 ‖+γn1 ‖ un1− vn1 ‖

≤ αn1 ‖ f (xn1)− f (yn1) ‖+αn1 ‖ f (yn1)− f (z) ‖

+βn1 ‖ xn1− yn1 ‖+γn1 ‖ xn1− yn1 ‖

= αn1 ‖ f (xn1)− f (yn1) ‖+αn1 ‖ f (yn1)− f (z) ‖

+(1−αn1) ‖ xn1− yn1 ‖

≤ αn1 max{β ‖ xn1− yn1 ‖,ε}

+αn1 ‖ f (yn1)− f (z) ‖+(1−αn1) ‖ xn1− yn1 ‖

≤max{αn1(εβ +η)+(1−αn1)(ε +η),

αn1(ε +η−βη)+(1−αn1)(ε +η)}

≤ ε +η .

Similarly, we can prove that ‖ xn1+2 − yn1+2 ‖≤ ε + η . By induction, we have ‖ xn1+m −
yn1+m ‖≤ ε +η , for all m ≥ 1, which implies that limn ‖ xn− yn ‖≤ ε +η , which contradicts

with (2.20). This contraction shows that xn− yn→ 0 as n→ ∞. Consequently, xn→ z.

Case 2. ‖ xn1− yn1 ‖> ε +η for all n≥ n1.

We shall prove that the case is impossible. Suppose case 2 hold true. By virtue of (2.21), we

have

‖ f (xn)− f (yn) ‖≤ β ‖ xn− yn ‖, (2.25)

for all n≥ n1. It follows that

‖ xn+1− yn+1 ‖ ≤ αn ‖ f (xn)− f (yn) ‖+αn ‖ f (yn)− f (z) ‖

+(1−αn) ‖ xn− yn ‖

≤ (1− (1−β )αn) ‖ xn− yn ‖+αn ‖ yn− z ‖,

which yields to xn− yn→ 0(n→ ∞). Consequently, 0 ≥ ε +η is a contradiction. This shows

that case 2 is impossible. The proof is completed.

Since every contractive is MKC, we find from Theorem 2.1 the following result immediately.

Corollary 2.2. Let H1 and H2 be two real Hilbert spaces. Let A : H1→H2 be a bounded linear

operator and f : H1→ H2 be a contraction. Let S : H1→ H2 be a nonexpansive mapping such
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that Fix(S)∩Γ 6= ∅. For a give x0 ∈ H1, arbitrarily, let the iterative sequences {un} and {xn}
be generated by

un = JB1
λ
(xn + γA∗(JB2

λ
− I)Axn),

xn+1 = αn f (xn)+βnxn + γnSun,

where λ > 0 and γ ∈ (0, 1
L), L is the spectral radius of the operator A∗A and A∗ is the adjoint

of A and {αn} ,{βn}, {γn} be real number sequences in (0,1) such that αn +βn + γn = 1 and

limn→∞ αn = 0, Σ∞
n=0αn = ∞, and Σ∞

n=0‖αn−αn−1‖< ∞,0 < liminfn→∞ βn ≤ limsupn→∞ βn <

1. Then the sequences {un} and {xn} both converge strongly to z ∈ Fix(S)∩ Γ, where z =

PFix(S)∩Γ f (z).
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