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Abstract. The purpose of this paper is to study common fixed points of a countable family of nonlinear operators

and solutions of a countable family of equilibrium problems based on a monotone projection algorithm. We

establish a strong convergence theorems without any compact assumptions imposed on the operators.
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1. Introduction

Equilibrium problems involving bifunctions provides us with a unified, natural, innovative

and general framework to study a wide class of problems arising in finance, economics, net-

work analysis, transportation, and elasticity. This theory has witnessed an explosive growth in

theoretical advances and applications across all disciplines of pure and applied sciences. As a

result of this interaction, we have a variety of techniques to study the existence results for the

equilibrium problems, which include variational inequalities, saddle point problems and com-

plementary problems as special cases, see [1-8] and the references therein. In this paper, we
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suggest and analyze a monotone projection algorithm for fixed points of nonlinear operators

and solutions of equilibrium problems.

2. Preliminaries

Let E be a real Banach space with the dual E∗. Recall that the normalized duality mapping

J from E to 2E∗ is defined by Jx = {x∗ ∈ E∗ : 〈x,x∗〉 = ‖x‖2 = ‖x∗‖2}, where 〈·, ·〉 denotes

the generalized duality pairing. Let UE = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be

Gâteaux differentiable if the limit limt→0
‖x+ty‖−‖x‖

t exists for each x,y ∈UE . In this case, E

is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable if for each

y ∈ UE , the limit is attained uniformly for all x ∈ UE . The norm of E is said to be Fréchet

differentiable if for each x ∈ UE , the limit is attained uniformly for all y ∈ UE . The norm

of E is said to be uniformly Fréchet differentiable if the limit is attained uniformly for all

x,y ∈ UE . It is well known that (uniform) Fréchet differentiability of the norm of E implies

(uniform) Fréchet differentiability of the norm of E. Let ρE : [0,∞)→ [0,∞) be the modulus of

smoothness of E by ρE(t) = sup{‖x+y‖−‖x−y‖
2 −1 : x ∈UE ,‖y‖ ≤ t}. A Banach space E is said

to be uniformly smooth if ρE(t)
t → 0 as t → 0. It is known that E is uniformly smooth if and

only if the norm of E is uniformly Fréchet differentiable. The modulus of convexity of E is the

function δE(ε) : (0,2]→ [0,1] defined by δE(ε) = inf{1− ‖x+t‖
2 : ‖x‖= ‖y‖= 1,‖x− y‖ ≥ ε}.

Recall that E is said to be uniformly convex if δE(ε)> 0 for any ε ∈ (0,2]. Let p > 1. We say

that E is p-uniformly convex if there exists a constant cq > 0 such that δE(ε) ≥ cpε p for any

ε ∈ (0,2]. In what follows, we use ⇀ and → to stand for the weak and strong convergence,

respectively. Recall that E enjoys Kadec-Klee property iff for any sequence {xn} ⊂ E, and

x ∈ E with xn ⇀ x, and ‖xn‖→ ‖x‖, then ‖xn−x‖→ 0 as n→ ∞. It is well known that if E is a

uniformly convex Banach spaces, then E enjoys Kadec-Klee property.

Let E be a smooth Banach space. Let us consider the functional defined by φ(x,y) =

‖x‖2− 2〈x,Jy〉+ ‖y‖2, ∀x,y ∈ E. Observe that, in a Hilbert space H, the equality is reduced

to φ(x,y) = ‖x− y‖2, x,y ∈ H. As we all know that if C is a nonempty closed convex subset

of a Hilbert space H and PC : H → C is the metric projection of H onto C, then PC is nonex-

pansive. This fact actually characterizes Hilbert spaces and consequently, it is not available in
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more general Banach spaces. In this connection, Alber [9] recently introduced a generalized

projection operator ΠC in a Banach space E which is an analogue of the metric projection PC

in Hilbert spaces. Recall that the generalized projection ΠC : E→C is a map that assigns to an

arbitrary point x ∈ E the minimum point of the functional φ(x,y), that is, ΠCx = x̄, where x̄ is

the solution to the minimization problem φ(x̄,x) = miny∈C φ(y,x) existence and uniqueness of

the operator ΠC follows from the properties of the functional φ(x,y) and strict monotonicity of

the mapping J. If E is a reflexive, strictly convex and smooth Banach space, then φ(x,y) = 0 if

and only if x = y. In Hilbert spaces, we know that ΠC = PC.

Let C be a nonempty subset of E and let T : C→C be a mapping. In this paper, we use F(T )

to stand for the fixed point set of T. Recall that T is said to be asymptotically regular on C iff

for any bounded subset K of C, limsupn→∞{‖T n+1x−T nx‖ : x ∈ K}= 0. Recall that T is said

to be closed iff for any sequence {xn} ⊂C such that limn→∞ xn = x0 and limn→∞ T xn = y0, then

T x0 = y0. Recall that a point p in C is said to be an asymptotic fixed point of T iff C contains

a sequence {xn} which converges weakly to p such that limn→∞ ‖xn− T xn‖ = 0. The set of

asymptotic fixed points of T will be denoted by F̃(T ). T is said to be relatively nonexpansive

iff F̃(T ) = F(T ) 6= /0 and φ(p,T x) ≤ φ(p,x), ∀x ∈C, ∀p ∈ F(T ). T is said to be relatively

asymptotically nonexpansive iff F̃(T ) = F(T ) 6= /0 and φ(p,T nx)≤ (1+µn)φ(p,x), ∀x ∈C,

∀p ∈ F(T ),∀n≥ 1, where {µn} ⊂ [0,∞) is a sequence such that µn→ 0 as n→ ∞.

Recall that T is said to be quasi-φ -nonexpansive iff F(T ) 6= /0 and φ(p,T x) ≤ φ(p,x), ∀x ∈

C,∀p ∈ F(T ). Recall that T is said to be asymptotically quasi-φ -nonexpansive iff there ex-

ists a sequence {µn} ⊂ [0,∞) with µn → 0 as n → ∞ such that F(T ) 6= /0, φ(p,T nx) ≤

(1+µn)φ(p,x), ∀x ∈C, ∀p ∈ F(T ),∀n≥ 1.

Remark 2.1. The class of asymptotically quasi-φ -nonexpansive mappings is an extension of

the class of quasi-φ -nonexpansive mappings. The class of quasi-φ -nonexpansive mappings and

the class of asymptotically quasi-φ -nonexpansive mappings are more general than the class

of relatively nonexpansive mappings and the class of relatively asymptotically nonexpansive

mappings. Quasi-φ -nonexpansive mappings and asymptotically quasi-φ -nonexpansive do not

require the restriction F(T ) = F̃(T ).
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Let F be a bifunction from C×C to R, where R denotes the set of real numbers. Recall that

the following Ky Fan inequality, which is also known as ”equilibrium problem”. Find p ∈ C

such that F(p,y) ≥ 0, ∀y ∈ C. We use EP(F) to denote the solution set of the equilibrium

problem. Given a mapping Q : C→ E∗, let F(x,y) = 〈Qx,y− x〉, ∀x,y ∈C. Then p ∈ EP(F) if

and only if p is a solution of the following variational inequality. Find p such that 〈Qp,y− p〉 ≥

0, ∀y∈C. Numerous problems in physics, optimization and economics reduce to find a solution

of the equilibrium problem.

Lemma 2.2 [1] Let C be a nonempty closed convex subset of a smooth Banach space E and

x ∈ E. Then, x0 = ΠCx if and only if 〈x0− y,Jx− Jx0〉 ≥ 0, ∀y ∈C.

Lemma 2.3 [11] Let E be a smooth and uniformly convex Banach space and let r > 0. Then

there exists a strictly increasing, continuous and convex function g : [0,2r]→ R such that g(0) =

0 and ‖∑
∞
i=1(αixi)‖2 ≤∑

∞
i=1(αi‖xi‖2)−αiα jg(‖xi−x j‖), ∀i, j ∈ {1,2, . . . ,} for all x1,x2, . . . ,∈

Br = {x ∈ E : ‖x‖ ≤ r} and α1,α2, . . . ,∈ [0,1] such that ∑
∞
i=1 αi = 1.

Lemma 2.4 [9] Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty

closed convex subset of E and x ∈ E. Then φ(ΠCx,x)+φ(y,ΠCx)≤ φ(y,x), ∀y ∈C.

Lemma 2.5. [10] Let E be a uniformly smooth and strictly convex Banach space which also

enjoys the Kadec-Klee property and let C be a nonempty closed and convex subset of E. Let

T :C→C be a asymptotically quasi-φ -nonexpansive mapping. Then F(T ) is convex and closed.

Lemma 2.6. [4] Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let r > 0 and

x∈ E. Then there exists z∈C such that rF(z,y)+〈y−z,Jz−Jx〉 ≥ 0, ∀y∈C. Define a mapping

Tr : E →C by Srx = {z ∈C : r f (z,y)+ 〈y− z,Jz− Jx〉, ∀y ∈C}. Then Sr is a single-valued

quasi-φ -nonexpansive mapping; F(Sr) = EP(F) is closed and convex; φ(q,Srx)+φ(Srx,x)≤

φ(q,x), ∀q ∈ F(Sr).

3. Main results

Now, we are in a position to show our main results.
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Theorem 3.1. Let E be a strictly convex and uniformly smooth Banach space which also has

the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let Ti : C→C

a asymptotically quasi-φ -nonexpansive mapping, which is closed asymptotically regular on C

and let Fi be a bifunction from C×C to R satisfying (A1)-(A4) for each i ≥ 1. Let {xn} be a

sequence generated in the following manner:

x0 ∈ E, chosen arbitrarily,

C1,i =C,C1 = ∩∞
i=1C1,i,

x1 = ΠC1x0,

Jyn = ∑
∞
i=1 αn,iJT n

i xn +αn,0Jxn,

un,i ∈C such that 〈y−un,i,Jun,i− Jyn〉+ rn,iFi(un,i,y)≥ 0, ∀y ∈C,

Cn+1,i = {z ∈Cn : φ(z,xn)+∑
∞
i=1 µn,iMn ≥ φ(z,un,i)},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = ΠCn+1x0,

where {αn,i} is a real number sequence in (0,1) {rn,i} is a real number sequence in [r,∞), where

r is some positive real number, and Mn = sup{φ(z,xn) : z ∈ ∩∞
i=1F(Ti)

⋂
∩∞

i=1EP(Fi)}. Assume

that ∑
∞
i=0 αn,i = 1 and liminfn→∞ αn,0αn,i > 0 for every i ≥ 1. If S = ∩∞

i=1F(Ti)
⋂
∩∞

i=1EP(Fi)

is nonempty and bounded, then {xn} converges strongly to ΠSx0, where ΠS is the generalized

projection from E onto S.

Proof. First, we show that the sets Cn is convex and closed. It suffices to show, for any fixed

but arbitrary i that Cn,i is convex and closed. This can be proved by induction. It is clear that

C1, j =C is convex and closed. Assume that Cm, j is closed, and convex for some m≥ 1. We next

prove that Cm+1, j is convex and closed. It is clear that Cm+1, j is closed. We only prove the are

convex. Indeed, ∀x,y ∈Cm+1, j, we find that x,y ∈Cm, j,

φ(x,xm)+
N

∑
i=1

µn,iMn ≥ φ(x,um, j),

and

φ(y,xm)+
N

∑
i=1

µn,iMn ≥ φ(y,um, j).
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Notice that the above two inequalities are equivalent to the following inequalities, respectively.

‖xm‖2−‖um, j‖2 +
N

∑
i=1

µn,iMn ≥ 2〈x,Jxm− Jum, j〉,

and

‖xm‖2−‖um, j‖2 +
N

∑
i=1

µn,iMn ≥ 2〈y,Jxm− Jum, j〉.

These imply that

‖xm‖2−‖um, j‖2 +
N

∑
i=1

µn,iMn ≥ 2〈ax+(1−a)y,Jxm− Jum, j〉, ∀a ∈ (0,1).

Since Cm, j is convex, we see that ax + (1− a)y ∈ Cm, j. Notice that the above inequality is

equivalent to

φ
(
ax+(1−a)y,xm

)
+

N

∑
i=1

µn,iMn ≥ φ
(
ax+(1−a)y,um, j

)
.

This proves that Cm+1, j is convex. This completes that Cn is closed and convex. Note that

S⊂C1, j =C. Suppose that S⊂Cm, j for some m. Then, for ∀z ∈S⊂Cm, j, we have

φ(z,um, j)≤ ‖z‖2−2〈z,αm,0Jxm +
∞

∑
i=1

αm,iJT m
i xm〉+‖αm,0Jxm +

∞

∑
i=1

αm,iJT m
i xm‖2

≤ ‖z‖2−2αm,0〈z,Jxm〉−2
∞

∑
i=1

αm,i〈z,JT m
i xm〉

+αm,0‖xm‖2 +
∞

∑
i=1

αm,i‖T m
i xm‖2

= αm,0φ(z,xm)+
∞

∑
i=1

αm,iφ(z,T m
i xm)

≤ αm,0φ(z,xm)+
∞

∑
i=1

αm,iφ(z,xm)+
∞

∑
i=1

αm,iµm,iφ(z,xm)+
∞

∑
i=1

αm,iξm

≤ φ(z,xm)+
∞

∑
i=1

µm,iφ(z,xm)+
∞

∑
i=1

αm,iξm

≤ φ(z,xm)+
∞

∑
i=1

µm,iMm.

This implies z ∈Cm+1, j.

Next, we show that xn→ p ∈S. It is clear that φ(xn,x0) is a bounded sequence. This in turn

implies that {xn} is also bounded.
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Since the framework of the space is uniform, we find that it is also reflexive. Without loss of

generality, we assume that xn ⇀ p, where p ∈Cn. Note that φ(p,x0)≥ φ(xn,x0). It follows that

φ(p,x0)≤ liminf
n→∞

φ(xn,x0)≤ limsup
n→∞

φ(xn,x0)≤ φ(p,x0).

This gives that limn→∞ φ(xn,x0) = φ(p,x0). Hence, we have limn→∞ ‖xn‖= ‖p‖.

Since the space E enjoys Kadec-Klee property, we find that xn→ p as n→ ∞. By the con-

struction of Cn, we have that Cn+1 ⊂Cn and xn+1 = ΠCn+1x0 ∈Cn, we see that

φ(xn+1,x0)−φ(xn,x0) = φ(xn+1,x0)−φ(ΠCnx0,x0)

≥ φ(xn+1,ΠCnx0)

= φ(xn+1,xn).

Letting n→ ∞, we find φ(xn+1,xn)→ 0. Since xn+1 ∈Cn+1, one further obtains that

φ(xn+1,xn)+
∞

∑
i=1

µn,iMn ≥ φ(xn+1,un,i).

It follows that limn→∞ φ(xn+1,un,i) = 0. On the other hand, one has limn→∞ ‖un,i‖ = ‖p‖. It

follows that limn→∞ ‖Jun,i‖= ‖Jp‖ This implies that {Jun,i} is bounded. Note that E is reflexive

and E∗ is also reflexive. We may assume that Jun,i ⇀ u∗,i ∈ E∗. Since E is reflexive, we see that

there exists an ui ∈ E such that Ju j = u∗,i. It follows that φ(xn+1,un) = ‖xn+1‖2−2〈xn+1,Jun〉+

‖Jun‖2. Taking liminfn→∞ the both sides of equality above yields that

0≥ ‖p‖2−2〈p,u∗,i〉+‖u∗,i‖2

= ‖p‖2−2〈p,Jui〉+‖Jui‖2

= ‖p‖2−2〈p,Jui〉+‖ui‖2

= φ(p,ui).

It follows that p = ui, which in turn implies that Jp = u∗,i. It follows that Jun,i ⇀ Jp∈ E∗. Since

E∗ enjoys the Kadec-Klee property, we obtain that Jun,i−Jp→ 0 as n→∞. Since J−1 : E∗→ E

is demi-continuous. It follows that un,i ⇀ p. Since E enjoys the Kadec-Klee property, we

obtain that un,i → p as n→ ∞. Note that ‖xn− un,i‖ ≤ ‖xn− p‖+ ‖p− un,i‖. This gives that

limn→∞ ‖xn−un,i‖= 0. Since J is uniformly norm-to-norm continuous on any bounded sets, we
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have limn→∞ ‖Jxn− Jun,i‖= 0. Notice that

φ(z,xn)−φ(z,un,i)≤ ‖xn−un,i‖(‖xn‖+‖un,i‖)+2‖z‖‖Jxn− Jun,i‖.

It follows that limn→∞(φ(z,xn)− φ(z,un,i) = 0. This further yields that φ(z,yn) ≤ φ(z,xn) +

∑
∞
i=1 µn,iMn, where z ∈S. In view of un,i = Srn,iyn, we find that

φ(un,i,yn)≤ φ(z,yn)−φ(z,Srn,iyn)≤ φ(z,xn)−φ(z,un,i)+
∞

∑
i=1

µn,iMn.

Hence, we arrive at limn→∞ φ(un,i,yn) = 0. This further implies that ‖un,i‖−‖yn‖→ 0 as n→∞.

Since un,i→ p as n→∞, we arrive at limn→∞ ‖yn‖= ‖p‖. It follows that limn→∞ ‖Jyn‖= ‖Jp‖.

Since E∗ is also reflexive, we may assume that Jyn ⇀ y∗ ∈E∗. In view of J(E) =E∗, we see that

there exists y ∈ E such that Jy = y∗. It follows that φ(un,i,yn) = ‖Jyn‖2−2〈un,i,Jyn〉+‖un,i‖2.

Taking liminfn→∞ the both sides of equality above yields that φ(p,y)≤ 0. That is, p = y, which

in turn implies that y∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. Since E∗ enjoys the Kadec-Klee

property, we obtain that Jyn−Jp→ 0 as n→ ∞. Note that J−1 : E∗→ E is demi-continuous. It

follows that yn ⇀ p. Since E enjoys the Kadec-Klee property, we obtain that yn→ p as n→ ∞.

Since

‖un,i− yn‖ ≤ ‖un, j− p‖+‖p− yn‖,

we find that that limn→∞ ‖un,i− yn‖= 0. Since J is uniformly norm-to-norm continuous on any

bounded sets, we have lim
n→∞
‖Jun,i− Jyn‖= 0. From the assumption rn,i ≥ r, we see that

lim
n→∞

‖Jun,i− Jyn‖
rn,i

= 0.

Notice that

〈y−un,i,Jun,i− Jyn〉+ rn,iFj(un,i,y)≥ 0, ∀y ∈C.

Hence, we have ‖y−un,i‖‖Jun,i−Jyn‖≥ 〈y−un,i,Jun,i−Jyn〉 ≥ rn,iFi(y,un, j), ∀y∈C. Taking

the limit as n→ ∞, we find that Fi(y, p) ≤ 0, ∀y ∈ C. For 0 < ti < 1 and y ∈ C, define yti =

tiy+(1− ti)p. It follows that yt, ji ∈ C, which yields that Fi(yt,i, p) ≤ 0. It follows from the

conditions (A1) and (A4) that 0 = Fi(yt,i,yt,i) ≤ tiFi(yt,i,y) + (1− ti)Fi(yt,i, p) ≤ tiFj(yt,i,y).

This yields that Fi(yt,i,y) ≥ 0. Letting ti ↓ 0, we find from the condition (A3) that Fi(p,y) ≥ 0,

∀y ∈C. This implies that p ∈ EP(Fi).
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Since E is uniformly smooth, we know that E∗ is uniformly convex. It follows that

φ(z,un,i)≤ ‖z‖2−2〈z,αn,0Jxn +
∞

∑
i=1

αn,iJT n
i xn〉+‖αn,0Jxn +

∞

∑
i=1

αn,iJT n
i xn‖2

≤ ‖z‖2−2αn,0〈z,Jxn〉−2
∞

∑
i=1

αn,i〈z,JT n
i xn〉

+αn,0‖xn‖2 +
∞

∑
i=1

αn,i‖T n
i xn‖2−αn,0(1−αn,i)g(‖Jxn− JT n

i xn‖)

≤ αn,0φ(z,xm)+
∞

∑
i=1

αn,iφ(z,xm)+
∞

∑
i=1

αn,iµn,iφ(z,xn)+
∞

∑
i=1

αn,iξn

−αn,0(1−αn,i)g(‖Jxn− JT n
i xn‖)

≤ φ(z,xn)+
∞

∑
i=1

µn,iMn−αn,0(1−αn,i)g(‖Jxn− JT n
i xn‖).

In view of liminfn→∞ αn,0(1−αn,i) > 0, we have limn→∞ ‖JT n
i xn− Jxn‖ = 0. Since xn → p

as n→ ∞ and J : E → E∗ is demi-continuous, we obtain that Jxn ⇀ Jp ∈ E∗. On the other

hand, we have ‖Jxn‖ → ‖Jp‖ as n→ ∞. Since E∗ enjoys the Kadec-Klee property, we see

that limn→∞ ‖Jp−Jxn‖= 0. Hence, we have ‖Jxn−JT n
i xn‖+‖Jp−Jxn‖ ≥ ‖JT n

i xn−Jp‖ ≥ 0.

This yields that limn→∞ ‖Jp−JT n
i xn‖= 0. Since J−1 : E∗→E is demi-continuous, one sees that

T n
i xn ⇀ p. On the other hand, we have limn→∞ ‖T n

i xn‖ = ‖p‖. It follows that limn→∞ ‖T n
i xn−

p‖ = 0. Since T is asymptotically regular, one sees that limn→∞ ‖p− T n+1
i xn‖ = 0. That is,

TiT n
i xn− p→ 0 as n→ ∞. It follows from the closedness of Ti that Ti p = p for every i ≤ 1.

Since xn = ΠCnx0, we see that 〈xn−w,Jx0−Jxn〉 ≥ 0, ∀w ∈Cn. In view of S⊂Cn, we find that

〈xn−w,Jx0− Jxn〉 ≥ 0, ∀w ∈S. Letting n→ ∞, we arrive at 〈p−w,Jx0− Jp〉 ≥ 0, ∀w ∈S.

This completes the proof.

In the framework of Hilbert spaces, we have the following result.

Corollary 3.2. Let E be a Hilbert space. Let C be a nonempty closed and convex subset of E.

Let Ti : C→ C a asymptotically quasi-nonexpansive mapping, which is closed asymptotically

regular on C and let Fi be a bifunction from C×C to R satisfying (A1)-(A4) for each i≥ 1. Let
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{xn} be a sequence generated in the following manner:

x0 ∈ E, chosen arbitrarily,

C1,i =C,C1 = ∩∞
i=1C1,i,

x1 = Pro jC1x0,

yn = ∑
∞
i=1 αn,iT n

i xn +αn,0xn,

un,i ∈C such that 〈y−un,i,un,i− yn〉+ rn,iFi(un,i,y)≥ 0, ∀y ∈C,

Cn+1,i = {z ∈Cn : ‖z− xn‖2 +∑
∞
i=1 µn,iMn ≥ ‖z−un,i‖2},

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = Pro jCn+1x0,

where {αn,i} is a real number sequence in (0,1) {rn,i} is a real number sequence in [r,∞), where

r is some positive real number, and Mn = sup{‖z−xn‖2 : z∈∩∞
i=1F(Ti)

⋂
∩∞

i=1EP(Fi)}. Assume

that ∑
∞
i=0 αn,i = 1 and liminfn→∞ αn,0αn,i > 0 for every i ≥ 1. If S = ∩∞

i=1F(Ti)
⋂
∩∞

i=1EP(Fi)

is nonempty and bounded, then {xn} converges strongly to Pro jSx0, where Pro jS is the metric

projection from E onto S.

Remark 3.3. Theorem 3.1 mainly improves the corresponding results in Takahashi and Zem-

bayashi [3], Qin, Cho and Kang [4], Wu and Wang [7], Kim [8], and Qin, Cho and Kang [10].
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