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WEAK CONVERGENCE OF AN ITERATIVE ALGORITHMS FOR ZERO POINT
PROBLEMS IN A BANACH SPACE
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Abstract. Common solutions of two convex optimization problems are investigated based on an iterative algorith-

m. A weak convergence theorem is obtained in a q-uniformly smooth and uniformly convex Banach space.
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1. Introduction

Let H be a Hilbert space and let C be a nonempty closed and convex subset of H. Let T :

H → 2H be a maximal monotone operator. The corresponding zero problem of operator T is

to find x̄ ∈ C such that 0 ∈ T x̄. A classical method for solving the problem is the proximal

point algorithm, proposed by Martinet [1,2] and generalized by Rockafellar [3,4]. In the case

of T = A+B, where A and B are monotone operators, the problem is reduced to the following

inclusion problem: find x̄ ∈C such that 0 ∈ (A+B)x̄. The solution set of the inclusion problem

is denoted by (A+B)−1(0).

A splitting method for the inclusion problem means an iterative algorithm for which each

iteration involves only with the individual operators A and B, but not the sum A+B. Splitting

methods have recently received much attention due to the fact that many nonlinear problems
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arising in applied areas such as image recovery, signal processing, and machine learning are

mathematically modeled as a nonlinear operator equation and this operator is decomposed as

the sum of two possibly simpler nonlinear operators. Splitting methods for linear equations

were introduced by Peaceman and Rachford [5] and Douglas and Rachford [6]. Extensions to

nonlinear equations in Hilbert spaces were carried out by Kellogg [7] and Lions and Mercier

[8]. The central problem is to iteratively find a zero of the sum of two monotone operators A

and B in a Hilbert space H. Many problems can be formulated as the inclusion problem. For

instance, a stationary solution to the initial value problem of the evolution equation 0∈ ∂u
∂ t +Ku,

u(0) = u0 can be recast as the inclusion problem when the governing maximal monotone K

is of the form K = A+B. To solve the inclusion problem Lions and Mercier [8] introduced

the nonlinear Peaceman-Rachford and Douglas-Rachford splitting iterative algorithms which

generate a sequence {xn} by the recursion

xn+1 = (2(I + rnA)−1− I)(2(I + rnB)−1− I)xn (1.1)

and respectively, a sequence {yn} by the recursion

yn+1 = (I + rnA)−1(2(I + rnB)−1− I)yn +(I− (I + rnB)−1)yn. (1.2)

The nonlinear Peaceman-Rachford algorithm (1.1) fails, in general, to converge (even in the

weak topology in the infinite-dimensional setting). This is due to the fact that the generat-

ing operator (2(I + rnA)−1− I)(2(I + rnB)−1− I) for algorithm (1.1) is merely nonexpansive.

However, the mean averages of {yn} can be weakly convergent [9]. The nonlinear Douglas-

Rachford algorithm (1.2) always converges in the weak topology, since the generating operator

(I + rnA)−1(2(I + rnB)−1− I) + (I − (I + rnB)−1) for this algorithm is firmly nonexpansive,

namely, the operator is of the form I+T
2 , where T is a nonexpansive mapping.

The aim of this paper is to present a forward-backward splitting method for solving zero point

problems of two accretive operators in a q-uniformly smooth and uniformly convex Banach

space. The main results mainly improve the corresponding results in [10].

2. Preliminaries
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Let E be a real Banach space with the dual E∗. Given of continuous strictly increasing

function: ϕ : R+→R+, where R+ denotes the set of nonnegative real numbers, such that ϕ(0) =

0 and limr→∞ ϕ(r) = ∞, we associate with it a (possibly mutivalued) generalized duality map

Jϕ(x) : E→ 2E∗ , defined as Jϕ(x) := {x∗ ∈ E∗ : x∗(x) = ϕ(‖x‖)‖x‖,ϕ(‖x‖) = ‖x∗‖}, ∀x∈ E. In

this paper, we use the generalized duality map associated with the gauge function ϕ(t) = tq−1

for q > 1,

Jq(x) := {x∗ ∈ E∗ : 〈x∗,x〉= ‖x‖q,‖x‖q−1 = ‖x∗‖}, ∀x ∈ E.

Let BE = {x ∈ E : ‖x‖= 1}. Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E by

ρE(t) = sup{‖x+ y‖−‖y− x‖
2

−1 : ‖y‖ ≤ t,x ∈ BE}.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t→ 0. Let q > 1. E is said to

be q-uniformly smooth if there exists a fixed constant k > 0 such that ρE(t)≤ ktq. The modulus

of convexity of E is the function δE(ε) : (0,2]→ [0,1] defined by δE(ε) = inf{1− ‖x+t‖
2 : ‖y‖=

‖x‖= 1,‖y−x‖≥ ε}. Recall that E is said to be uniformly convex if δE(ε)> 0 for any ε ∈ (0,2].

Let p > 1. We say that E is p-uniformly convex if there exists a constant kq > 0 such that

δE(ε) ≥ kpε p for any ε ∈ (0,2]. It is known that E is p-uniformly convex if and only if E∗ is

q-uniformly smooth, where p+q = pq.

Let T : C→C be a mapping. The fixed point set of T is denoted by F(T ). Recall that T is

said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x,y‖, ∀x,y ∈C.

Let I denote the identity operator on E. An operator A ⊂ E×E with domain D(A) = {z ∈ E :

Az 6= /0} and range R(A) = ∪{Az : z ∈D(A)} is said to be accretive if, for t > 0 and x,y ∈D(A),

‖x− y‖ ≤ ‖t(u− v)+ x− y‖, ∀v ∈ Ay,u ∈ Ax.

In this paper, we use A−1(0) to denote the set of zeros of A. It follows from Kato [11] that A is

accretive if and only if, for x,y ∈ D(A), there exists jq(x1− x2) such that

〈u− v, jq(x− y)〉 ≥ 0.
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An accretive operator A is said to be m-accretive if R(I+ rA) = E for all r > 0. For an accretive

operator A, we can define a single valued mapping JA
r : R(I + rA)→ D(A) by JA

r = (I + rA)−1

for each r > 0.

Recall that a single valued operator A : C→ E is said to be α-inverse strongly accretive if

there exists a constant α > 0 and some jq(x− y) ∈ Jq(x− y) such that

〈Ax−Ay, jq(x− y)〉 ≥ α‖Ax−Ay‖q, ∀x,y ∈C.

Zero points of accretive operators have been extensively investigated by iterative methods;

see [12-23] and the references therein. In this article, common zero points of two accretive

operators are investigated based on a splitting iterative algorithm. A weak convergence theorem

is obtained in a q-uniformly smooth and uniformly convex Banach space. Some applications are

also provided in Hilbert spaces. In order to obtain our main results, we also need the following

lemmas.

Lemma 2.1. [24] Let E be a real uniformly convex Banach space such that its dual E∗ has the

Kadec-Klee property. Suppose that {xn} is a bounded sequence such that limn→∞ ‖axn +(1−

a)p1− p2‖ exists for all a ∈ [0,1] and p1, p2 ∈ ωw(xn), where ωw(xn) : {x : ∃xni ⇀ x} denotes

the weak ω-limit set of {xn} Then ωw(xn) is a singleton.

Lemma 2.2. [25] Let E be a real uniformly convex Banach space, C a nonempty closed, and

convex subset of E and T : C→C a nonexpansive mapping. Then I−T is demiclosed at zero.

Lemma 2.3. [26] Let E be a real q-uniformly smooth Banach space. Then the following in-

equality holds:

‖x+ y‖q ≤ q〈y,Jq(x+ y)〉+‖x‖q

and

‖x+ y‖q ≤ q〈y,Jq(x)〉+Kq‖y‖q +‖x‖q, ∀x,y ∈ E,

where Kq is some fixed positive constant.

Lemma 2.4. [27] Let E be a real uniformly convex Banach space and let C be a nonempty

closed convex and bounded subset of E. Then there is a strictly increasing and continuous
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convex function ψ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that, for every Lipschitzian continuous

mapping T : C→C and, for all x,y ∈C and t ∈ [0,1], the following inequality holds:

‖T (tx+(1− t)y)− (tT x+(1− t)Ty)‖ ≤ Lψ
−1(‖x− y‖−L−1‖T x−Ty‖

)
,

where L≥ 1 is the Lipschitz constant of T.

Lemma 2.5. [26] Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E

is uniformly convex if and only if there exists a continuous strictly increasing convex function

ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖ax+(1−a)y‖p ≤ a‖x‖p +(1−a)‖y‖p−
(
ap(1−a)+(1−a)pa

)
ϕ(‖x− y‖),

for all x,y ∈ Br(0) := {x ∈ E : ‖x‖ ≤ r} and a ∈ [0,1].

3. Main results

Theorem 3.1. Let E be a real uniformly convex and q-uniformly smooth Banach space with

the constant Kq and let C be a closed convex subset of E. Let A : C → E be an α-inverse

strongly accretive operator and let B : Dom(B)⊂ E→ 2E be an m-accretive operator such that

Dom(B)⊂C. Let {xn} be a sequence generated in the following manner: x0 ∈C and

xn+1 = (1−αn)(I + rnB)−1(xn− rnAxn)+αnxn, ∀n≥ 0,

where {αn} and {rn} are real sequences satisfying the following restrictions: 0≤ αn ≤ α and

0 < r≤ rn ≤ r′ < (qα

Kq
)

1
q−1 . Assume that (A+B)−1(0) 6= /0. Then {xn} converges weakly to some

zero of A+B.
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Proof. From Lemma 2.3 and the restriction imposed on {rn}, one has

‖(I− rnA)x− (I− rnA)y‖q

≤ ‖x− y‖q−qrn〈Ax−Ay,Jq(x− y)〉+Kqrq
n‖Ax−Ay‖q

≤ ‖x− y‖q−qrnα‖Ax−Ay‖q +Kqrq
n‖Ax−Ay‖q

= ‖x− y‖q− (αq−Kqrq−1
n )rn‖Ax−Ay‖q

≤ ‖x− y‖q.

Fixing p ∈ (A+B)−1(0), one has

‖xn+1− p‖ ≤ αn‖xn− p‖+(1−αn)‖Jrn(xn− rnAxn)− p‖

≤ αn‖xn− p‖+(1−αn)‖(xn− rnAxn)− (p− rnA)p‖

≤ ‖xn− p‖.

This shows that limn→∞ ‖xn− p‖ exists, in particular, {xn} is bounded. Using Lemma 2.3, we

find that
‖(I− rnA)xn− (I− rnA)p‖q

≤ ‖xn− p‖q−qrn〈Axn−Ap,Jq(xn− p)〉+Kqrq
n‖Axn−Ap‖q

≤ ‖xn− p‖q− (αq−Kqrq−1
n )rn‖Axn−Ap‖q.

(3.1)

Putting yn = Jrn(xn− rnAxn), we find from Lemma 2.5 that∥∥1
2
(yn− p)+

1
2
(
(I− rnA)xn− (I− rnA)p

)∥∥q

≤ 1
2
‖yn− p‖q +

1
2
‖(I− rnA)xn− (I− rnA)p‖q

− 1
2q ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≤ ‖(I− rnA)xn− (I− rnA)p‖q− 1
2q ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)
.

(3.2)

Substituting (3.1) into (3.2), we arrive at∥∥1
2
(yn− p)+

1
2
(
(I− rnA)xn− (I− rnA)p

)∥∥q

≤ ‖xn− p‖q− (αq−Kqrq−1
n )rn‖Axn−Ap‖q

− 1
2q ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)
.

(3.3)
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Note that

‖yn− p‖ ≤
∥∥∥yn− p+

rn

2

(xn− rnAxn− yn

rn
− (I− rnA)p− p

rn

)∥∥∥
=
∥∥1

2
(yn− p)+

1
2
(
(I− rnA)xn− (I− rnA)p

)∥∥. (3.4)

Combining (3.3) with (3.4), we see that

‖yn− p‖q ≤ ‖xn− p‖q− (αq−Kqrq−1
n )rn‖Axn−Ap‖q

− 1
2q ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)
.

(3.5)

Since ‖ · ‖q is convex, we find that

‖xn+1− p‖q ≤ αn‖xn− p‖q +(1−αn)‖yn− p‖q

≤ ‖xn− p‖q− (αq−Kqrq−1
n )rn(1−αn)‖Axn−Ap‖q

− (1−αn)
1
2q ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)
.

It follows that

lim
n→∞
‖Axn−Ap‖= 0 (3.6)

and

lim
n→∞
‖yn− xn + rnAxn− rnAp‖= 0. (3.7)

Since

‖yn− xn‖ ≤ ‖yn− xn + rnAxn− rnAp‖+ rn‖Axn−Ap‖,

we find from (3.6) and (3.7) that

lim
n→∞
‖Jrn(xn− rnAxn)− xn‖= 0. (3.8)

Notice that〈xn− Jr(I− rA)xn

r
− xn− Jrn(I− rnA)xn

rn
,Jq
(
Jr(I− rA)xn− Jrn(I− rnA)xn

)〉
≥ 0.

Hence, we find that

‖Jr(I− rA)xn− Jrn(I− rnA)xn‖q

≤ rn− r
rn
〈xn− Jrn(I− rnA)xn,Jq

(
Jr(I− rA)xn− Jrn(I− rnA)xn

)
〉

≤ ‖xn− Jrn(I− rnA)xn‖‖Jr(I− rA)xn− Jrn(I− rnA)xn‖q−1.
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This implies that ‖Jr(I− rA)xn− Jrn(I− rnA)yn‖ ≤ ‖xn− Jrn(I− rnA)xn‖. It follows that

‖Jr(I− rA)xn− xn‖ ≤ ‖Jr(I− rA)xn− Jrn(I− rnA)xn‖

+‖Jrn(I− rnA)xn− xn‖

≤ 2‖Jrn(I− rnA)xn− xn‖.

From (3.8), we arrive at

lim
n→∞
‖Jr(xn− rAxn)− xn‖= 0. (3.9)

Define mappings Tn : C→C by

Tnx := αnx+(1−αn)Jrn((I− rnA)x), ∀x ∈C.

Set

Tn+m−1Tn+m−2 · · ·Tn = Sn,m, ∀n,m≥ 1.

Then Sn,mxn = xn+m and Sn,m is nonexpansive. For all t ∈ [0,1] and n,m≥ 1, put

an(t) = ‖txn +(1− t)p1− p2‖,

and

bn,m = ‖Sn,m(txn +(1− t)p1)− (txn+m +(1− t)p1)‖,

where p1 and p2 are zeros of A+B. Using Lemma 2.4, we find that

bn,m ≤ ψ
−1(‖xn− p1‖−‖Sn,mxn−Sn,m p1‖

)
= ψ

−1(‖xn− p1‖−‖xn+m− p1 + p1−Sn,m p1‖
)

≤ ψ
−1(‖xn− p1‖− (‖xn+m− p1‖−‖p1−Sn,m p1‖)

)
≤ ψ

−1(‖xn− p1‖−‖xn+m− p1‖
)
.

It follows that {bn,m} converges uniformly to zero as n→ ∞ for all m≥ 1. Hence,

an+m(t)≤ bn,m +‖Sn,m(txn +(1− t)p1)− p2‖

≤ bn,m +‖Sn,m(txn +(1− t)p1)−Sn,m p2‖+‖Sn,m p2− p2‖

≤ bn,m +an(t)+‖Sn,m p2− p2‖

≤ bn,m +an(t).
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Taking limsup as m→ ∞ and then the liminf as n→ ∞, we find that limn→∞ an(t) for any

t ∈ [0,1]. In view of Lemma 2.2, we see that ωw(xn)⊂ (A+B)−1(0). This implies from Lemma

2.1 that ωw(xn) is just one point. This proves the proof.

Remark 3.2. The framework of the space in Theorem 3.1 is applicable to Lp, where p > 1.

Corollary 3.3. Let E be a real Hilbert space and let C be a closed convex subset of E. Let

A : C → E be an α-inverse strongly monotone operator and let B : Dom(B) ⊂ E → 2E be

a maximal monotone operator such that Dom(B) ⊂ C. Let {xn} be a sequence generated in

the following manner: x0 ∈ C and xn+1 = ProgC(xn− rnAxn), ∀n ≥ 0, where {rn} is a real

sequence satisfying the following restrictions: 0 < r≤ rn ≤ r′ < 2α . Assume that V I(C,A) 6= /0.

Then {xn} converges weakly to some zero of V I(C,A).
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