

Communications in Optimization Theory

Available online at http://cot.mathres.org

GLOBAL POSITIVE SOLUTIONS FOR A SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

ASMA BOUAZIZ*, LAMINE NISSE

Laboratory of Applied Mathematics, Badji Mokhtar University - Annaba, Algeria

Abstract. In this paper, by employing some fixed point theorems, we establish the existence and uniqueness of the global positive solution for a system of nonlinear fractional differential equations with variable delays, involving the Caputo fractional derivative. Some examples are provided to illustrate our main results.

Keywords. Fixed point theorem; Global positive solution; Fractional differential system; Variable delay; Caputo fractional derivative.

2010 Mathematics Subject Classification. 34A12, 34A34.

1. Introduction

Fractional differential equations theory has emerged as an interesting area to explore in recent years due to its applications in engineering and other related fields. A very interesting account of the study of fractional differential equations can be found in [2, 3, 4, 5, 6, 7]. Furthermore, fractional differential equations with delays have gained much attention of research; see [1, 8] and references cited therein.

E-mail address: a_bouaziz@hotmail.com.

Received February 15, 2017; Accepted June 16, 2017.

^{*}Corresponding author.

In [9], Ye, Ding and Gao have studied the existence of a positive solution for a delay fractional differential equation

$$\begin{cases} D^{\alpha}[x(t) - x(0)] = x(t) f(t, x_t), & t \in (0, T], \\ x(t) = \phi(t) \ge 0, & t \in [-r, 0], \end{cases}$$

where $\alpha \in (0,1)$, D^{α} is the Riemann-Liouville fractional derivative, and ϕ and f are continuous. By using the sub- and super-solution method, they gave some sufficient conditions for the existence of positive solutions.

In this paper, motivated by the work in [9], we are interested in studying the existence and uniqueness of a positive solution for the fractional differential system with variable delays

$${}^{c}D^{\alpha}x_{i}(t) = f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))), \quad i \in [1, n], \ t \ge 0,$$

$$(1.1)$$

$$x(t) = \Phi(t) \ge 0, \quad t \in [-\tau, 0],$$
 (1.2)

where ${}^cD^{\alpha}$ is the Caputo fractional derivative of order $\alpha \in (0,1), \ x(t) = (x_1(t),...,x_n(t))',$ where ' denote the transpose of the vector and $f_i : \mathbb{R}^+ \times C^{n+1} \to \mathbb{R}$ are continuous such that $C = C([-\tau,\infty],\mathbb{R}^+)$ is the space of continuous function from $[-\tau,\infty]$ to \mathbb{R}^+ . $\Phi(t) = (\phi_1(t),...,\phi_n(t))'$ are given vector, such that $\phi_i(t) \in C([-\tau,0],\mathbb{R}^+)$. τ_i are continuous real-valued functions defined on \mathbb{R}^+ such that $\tau = \max\{\sup_{t \in \mathbb{R}^+} \tau_i(t), i \in [1,n]\} > 0$.

First, by using the sub- and super-solution method (on a cone), we establish the existence of a global positive solution to the problem (1.1)-(1.2). Second, we show the uniqueness of a positive solution of the problem (1.1)-(1.2) by using the Banach fixed point theorem.

The remainder of this paper is structured as follows. In Section 2, we list some preliminaries to make the paper self-contained. In Section 3, we present and prove our main results on the global existence of a positive solution. Furthermore, the uniqueness of the solution is shown in Section 4. Finally, we provide two examples to illustrate our results.

2. Preliminaries

Let E be a real Banach space. A cone K introduces a partial order \leq in E in the following manner [7]

$$x \le y$$
 if $y - x \in K$.

Definition 2.1. [7] For $x, y \in E$, the order interval $\langle x, y \rangle$ is defined as

$$\langle x, y \rangle = \{ z \in E : x \le z \le y \}.$$

Definition 2.2. [7] The functional $h(t, x, x_1, ..., x_n)$ is nondecreasing with respect to arguments (starting from the second argument) on $I \times E^{n+1}$, if for any $(t, \phi, \phi_1, ..., \phi_n) \in I \times E^{n+1}$ and $(t, \psi, \psi_1, ..., \psi_n) \in I \times E^{n+1}$, such that

$$\phi(\theta) \leq \psi(\theta)$$
 and $\phi_i(\theta) \leq \psi_i(\theta)$, $i = 1, 2, ..., n, \theta \in [-\tau, 0]$,

 $h(t, \phi, \phi_1, ..., \phi_n) \le h(t, \psi, \psi_1, ..., \psi_n)$ holds.

Theorem 2.3. [7] Let D be a subset of the cone K of partially ordered space E, $F:D \to E$ be nondecreasing. If there exist $x_0, y_0 \in D$ such that $x_0 \leq y_0, \langle x_0, y_0 \rangle \subset D$ and x_0, y_0 are respectively lower and upper solutions of equation x - F(x) = 0, then the equation x - F(x) = 0 has minimum solution and maximum solution x^*, y^* in $\langle x_0, y_0 \rangle$ such that $x^* \leq y^*$, when one of the following conditions holds

- (1) K is normal and F is completely continuous;
- (2) K is regular and F is continuous;
- (3) E is reflexive, K is normal, and F is continuous or weak continuous.

In this paper, the functions we are going to manipulate are defined on infinite (unbounded) intervals. Therefore, in our case, the theorem of Arzela-Ascoli does not work. So, we need the following modification [10].

Proposition 2.4. Let $\Omega \subset E$. If the functions $x \in \Omega$ are almost equicontinuous on I and uniformly bounded in the sens of the norm

$$||x||_q = \sup_{t} \{|x(t)|q(t)\},$$

where function q is positive and continuous on I and

$$\lim_{t\to\infty}\frac{p\left(t\right)}{q\left(t\right)}=0,$$

then Ω is relatively compact in E, where $p:I:=[0,\infty)\to (0,\infty)$ be a continuous function such that

$$\sup_{I}\left\{ \left|x\left(t\right)\right|p\left(t\right)\right\} <\infty.$$

Recall that the functions $x \in \Omega$ are said to be almost equicontinuous on I if they are equicontinuous in each interval [0,T], $0 < T < \infty$.

Definition 2.5. [3] For all T > 0, the Riemann–Liouville fractional integral of order $\alpha \in \mathbb{R}$ of a function $f \in L^1[0,T]$ is given by:

$$I^{\alpha}f(t) := \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \, ds, \, t \in [0,T].$$

For $\alpha = 0$, we set $I^0 := Id$, the identity operator.

Definition 2.6. [3] The Caputo fractional derivative of order $\alpha \in \mathbb{R}$ of the function f with $D^n f \in L^1[0,T]$ is defined by

$$^{c}D^{\alpha}f\left(t\right)=I^{n-\alpha}D^{n}f\left(t\right)=\frac{1}{\Gamma\left(n-\alpha\right)}\int_{0}^{t}\left(t-s\right)^{n-\alpha-1}f^{(n)}\left(s\right)ds,\ t\geq0,$$

where $n = [\alpha] + 1$, $[\alpha]$ denotes the integer part of number α and $D = \frac{d}{dt}$.

Obviously, Caputo's derivative of a constant is equal to zero. From the definition of Caputo's derivative, we can acquire the following properties; see [3] and the references therein.

Lemma 2.7. *Let* $\alpha > 0$ $(n-1 < \alpha \le n), n = [\alpha] + 1$ *and* $f \in L^1[0, \infty)$. *Then*

$$^{c}D^{\alpha}f(t) = I^{n-\alpha}D^{n}f(t). \tag{2.1}$$

Lemma 2.8. Let $\alpha > 0$. Then

$$^{c}D^{\alpha}I^{\alpha}f(t) = f(t). \tag{2.2}$$

3. Existence of positive solutions

In this section, we prove the existence of global positive solutions.

Lemma 3.1. The vector function $x(t) := (x_1(t), ..., x_n(t))$ is a solution of the problem (1.1) - (1.2) if and only if

$$x_{i}(t) = \begin{cases} \phi_{i}(0) + I^{\alpha} f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))), & t > 0, \\ \phi_{i}(0), & t \in [-\tau, 0], i \in [1, n]. \end{cases}$$

Proof. For t > 0, equation (1.1) can be written as

$$I^{1-\alpha}Dx_{i}(t) = f_{i}(t, x_{i}(t), x_{1}(t-\tau_{1}(t)), ..., x_{n}(t-\tau_{n}(t))).$$

Applying the operator I^{α} on both sides, we have

$$IDx_{i}(t) = I^{\alpha}f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))),$$

$$x_i(t) - x_i(0) = I^{\alpha} f_i(t, x_i(t), x_1(t - \tau_1(t)), ..., x_n(t - \tau_n(t))).$$

Then

$$x_i(t) = \phi_i(0) + I^{\alpha} f_i(t, x_i(t), x_1(t - \tau_1(t)), ..., x_n(t - \tau_n(t))). \tag{3.1}$$

Conversely, by operating ${}^{c}D^{\alpha}$ on both sides of (3.1), we get

$$^{c}D^{\alpha}x_{i}(t) = ^{c}D^{\alpha}\phi_{i}(0) + ^{c}D^{\alpha}I^{\alpha}f_{i}(t,x_{i}(t),x_{1}(t-\tau_{1}(t)),...,x_{n}(t-\tau_{n}(t))).$$

Using (2.2) and the fact that Caputo's derivative of a constant is equal to zero, we have

$$^{c}D^{\alpha}x_{i}(t) = f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))).$$

This completes the proof.

Next, we consider space $E = [C([-\tau, \infty), \mathbb{R}^+)]^n$, where $[C([-\tau, \infty), \mathbb{R}^+)]^n$ is the class of all continuous column n-vectors function with the norm

$$||x||_N = \sum_{i=1}^n \sup_{t \in \mathbb{R}^+} \left\{ e^{-Nt} |x_i(t)| \right\}, \ x \in E,$$

where $N \in \mathbb{R}^+$ will be chosen later.

Next, we define the cone $K = \{x \in E : x_i(t) \ge 0, t \ge -\tau, i \in [1,n]\}$, and the subset $D = \{x \in K : x(t) = \Phi(t), -\tau \le t \le 0\} \subset K$. We define the integral operator F by

$$Fx_{i} = \begin{cases} \phi_{i}(t), & t \in [-\tau, 0], \\ \phi_{i}(0) + I^{\alpha}f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))), & t > 0, \end{cases} \quad i \in [1, n]. \quad (3.2)$$

Assume that:

 (H_1) : there exists $g_i, \psi_{ij} : \mathbb{R}^+ \to \mathbb{R}^+$ continuous such that

$$|f_i(t, u_i, v_1, ..., v_n)| \le g_i(u_i) + \sum_{j=1}^n \psi_{ij}(v_j)$$
 for $i \in [1, n]$.

 (H_2) : $\forall A, \exists B_i, B'_i : g_i(A) \subset B_i$ and $\psi_{ij}(A) \subset B'_i$, where A, B_i and B'_i are bounded subset in D for $i \in [1, n]$.

Lemma 3.2. Assume that $(H_1) - (H_2)$ holds. Then operator $F: D \to D$ is completely continuous.

Proof. From the assumption of continuity of f, we see that $F: D \to D$ is continuous. Let $G \subset D$ be bounded, i.e. there exists a positive constant l such that $||x|| \le l$, $\forall x \in G$. So, for each $x \in G$, we have for $i \in [1, n]$:

$$|Fx_{i}(t)| \leq |\phi_{i}(0)| + \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |f_{i}(s,x_{i}(s),x_{1}(s-\tau_{1}(s)),...,x_{n}(s-\tau_{n}(s)))| ds$$

$$\leq |\phi_{i}(0)| + \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} g_{i}(x_{i}(s)) ds + \sum_{j=1}^{n} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \psi_{ij} \left(x_{j}(s-\tau_{j}(s))\right) ds.$$

It follows that

$$\begin{split} e^{-Nt} \left| Fx_{i}(t) \right| & \leq e^{-Nt} \left| \phi_{i}(0) \right| + \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} e^{-Ns} g_{i}\left(x_{i}(s)\right) ds + \\ & + \sum_{j=1}^{n} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+\tau_{j}(s))} e^{-N(s-\tau_{j}(s))} \psi_{ij}\left(x_{j}\left(s-\tau_{j}(s)\right)\right) ds \\ & \leq \|\phi\|_{N} + \sup_{\xi \in \mathbb{R}^{+}} \{e^{-N\xi} g_{i}\left(x_{i}(\xi)\right)\} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} ds + \\ & + \sum_{j=1}^{n} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+\tau_{j}(s))} e^{-Nr_{j}(s)} \psi_{ij}\left(x_{j}\left(r_{j}(s)\right)\right) ds / r_{j}(s) = s - \tau_{j}(s) \\ & \leq \|\phi\|_{N} + \sup_{\xi \in \mathbb{R}^{+}} \{e^{-N\xi} g_{i}\left(x_{i}(\xi)\right)\} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} ds + \\ & + \sum_{j=1}^{n} \sup_{\xi \in \mathbb{R}^{+}} \{e^{-N\xi} \psi_{ij}\left(x_{j}(\xi)\right)\} \int_{0}^{t} \frac{u^{\alpha-1}}{N^{\alpha}\Gamma(\alpha)} e^{-u} e^{-N\tau_{j}\left(t-\frac{u}{N}\right)} du \\ & \leq \|\phi\|_{N} + \sup_{\xi \in \mathbb{R}^{+}} \{e^{-N\xi} g_{i}\left(x_{i}(\xi)\right)\} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} ds + \\ & + \sum_{j=1}^{n} \sup_{\xi \in \mathbb{R}^{+}} \{e^{-N\xi} \psi_{ij}\left(x_{j}(\xi)\right)\} \int_{0}^{Nt} \frac{u^{\alpha-1}}{N^{\alpha}\Gamma(\alpha)} e^{-u} du. \end{split}$$

From hypothesis (H_2) , there exists L_i, L_j' such that $L_i = \sup_{t \in \mathbb{R}^+} \{e^{-Nt} | g_i(x_i(t))| \}, \quad L_j' = \sup_{t \in \mathbb{R}^+} \{e^{-Nt} | \psi_{ij}(x_j(t))| \}, \quad \forall j$. Then

$$\begin{aligned} e^{-Nt} \left| F x_i(t) \right| & \leq & \|\phi\|_N + L_i \int_0^{Nt} \frac{u^{\alpha - 1}}{N^{\alpha} \Gamma(\alpha)} e^{-u} du + \sum_{j=1}^n L_i' \int_0^{Nt} \frac{u^{\alpha - 1}}{N^{\alpha} \Gamma(\alpha)} e^{-u} du \\ & \leq & l + \frac{L_i + \sum_{j=1}^n L_j'}{N^{\alpha}}. \end{aligned}$$

Hence FG is bounded.

Next, we show that FG is locally (almost) equicontinuous. There are three possible cases for $i \in [1, n]$:

Case 1. For each $x \in G$, $\varepsilon_i > 0, \forall T \in]0, \infty)$, $t_1, t_2 \in [0, T]$, $t_1 < t_2$. Let $\delta_i = \left(\frac{\varepsilon_i \Gamma(\alpha + 1)}{2\left(c_i + \sum_{j=1}^n c_j'\right)}\right)^{\frac{1}{\alpha}}$, when $t_2 - t_1 < \delta_i$, we have:

$$\begin{aligned} & |Fx_{i}(t_{1}) - Fx_{i}(t_{2})| \\ & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}} \left((t_{1} - s)^{\alpha - 1} - (t_{2} - s)^{\alpha - 1} \right) \left| g_{i}(x_{i}(s)) + \sum_{j=1}^{n} \psi_{ij} \left(x_{j} \left(s - \tau_{j}(s) \right) \right) \right| ds + \\ & + \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} \left| g_{i}(x_{i}(s)) + \sum_{j=1}^{n} \psi_{ij} \left(x_{j} \left(s - \tau_{j}(s) \right) \right) \right| ds \\ & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}} \left((t_{1} - s)^{\alpha - 1} - (t_{2} - s)^{\alpha - 1} \right) \left\{ g_{i}(x_{i}(s)) + \sum_{j=1}^{n} \psi_{ij} \left(x_{j} \left(s - \tau_{j}(s) \right) \right) \right\} ds + \\ & + \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} \left\{ g_{i}(x_{i}(s)) + \sum_{j=1}^{n} \psi_{ij} \left(x_{j} \left(s - \tau_{j}(s) \right) \right) \right\} ds, \end{aligned}$$

 $\exists l>0$ such that for $x\in G$, $\|x\|\leq l$ then $|x_i(t)|\leq le^{Nt}\leq le^{NT}$. Indeed, the subset $X=\{x(t),t\in[0,T],x\in G\}$ is a closed bounded subset. Then g_i,ψ_{ij} have a maximum on X. Therefore, $\exists c_i,c_i':c_i=\sup_{t\in[0,T]}g_i(x_i(t))$, $c_i'=\sup_{t\in[0,T]}\psi_{ij}(x_i(t-\tau_i))$, $\forall i,j=1,2,...,n$. Then

$$|Fx_{i}(t_{1}) - Fx_{i}(t_{2})|$$

$$\leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}} \left((t_{1} - s)^{\alpha - 1} - (t_{2} - s)^{\alpha - 1} \right) \left(c_{i} + \sum_{j=1}^{n} c_{j}' \right) ds +$$

$$+ \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} \left(c_{i} + \sum_{j=1}^{n} c_{j}' \right) ds$$

$$\leq \frac{c_{i} + \sum_{j=1}^{n} c_{j}'}{\Gamma(\alpha)} \left\{ \int_{0}^{t_{1}} \left((t_{1} - s)^{\alpha - 1} - (t_{2} - s)^{\alpha - 1} \right) ds + \int_{t_{1}}^{t_{2}} (t_{2} - s)^{\alpha - 1} ds \right\}$$

$$\leq \frac{c_{i} + \sum_{j=1}^{n} c_{j}'}{\alpha \Gamma(\alpha)} \left\{ (t_{2} - t_{1})^{\alpha} + t_{1}^{\alpha} - t_{2}^{\alpha} + (t_{2} - t_{1})^{\alpha} \right\}$$

$$< 2 \frac{c_{i} + \sum_{j=1}^{n} c_{j}'}{\Gamma(\alpha + 1)} (t_{2} - t_{1})^{\alpha} < 2 \frac{c_{i} + \sum_{j=1}^{n} c_{j}'}{\Gamma(\alpha + 1)} \delta_{i}^{\alpha} = \varepsilon_{i}.$$

Case 2. For each $x \in G$, $\varepsilon_i > 0$, $t_1 \in [-\tau, 0]$, $t_2 \in [0, T]$, $\forall T \in [0, \infty)$. Since $\phi_i \in C[-\tau, 0]$, we see that $\exists \delta' : |\phi_i(t_1) - \phi_i(0)| < \frac{\varepsilon_i}{2}$ when $0 - t_1 < \delta'$. If $t_2 - t_1 < \delta_i$, $\delta_i = \min\left(\delta', \left(\frac{\varepsilon_i \Gamma(\alpha + 1)}{2\left(c_i + \sum_{j=1}^n c_j'\right)}\right)^{\frac{1}{\alpha}}\right)$, we have

$$\begin{aligned} &|Fx_{i}\left(t_{1}\right)-Fx_{i}\left(t_{2}\right)|\\ &\leq &|\phi_{i}\left(t_{1}\right)-\phi_{i}\left(0\right)|+\int_{0}^{t_{2}}\frac{\left(t_{2}-s\right)^{\alpha-1}}{\Gamma(\alpha)}\left|f_{i}\left(s,x_{i}\left(s\right),x_{1}\left(s-\tau_{1}\left(s\right)\right),...,x_{n}\left(s-\tau_{n}\left(s\right)\right)\right)\right|ds\\ &\leq &\frac{\varepsilon_{i}}{2}+\int_{0}^{t_{2}}\frac{\left(t_{2}-s\right)^{\alpha-1}}{\Gamma(\alpha)}\left\{g_{i}\left(x_{i}\left(s\right)\right)+\sum_{j=1}^{n}\psi_{ij}\left(x_{j}\left(s-\tau_{j}\left(s\right)\right)\right)\right\}ds\\ &< &\frac{\varepsilon_{i}}{2}+\frac{c_{i}+\sum_{j=1}^{n}c_{j}'}{\Gamma(\alpha+1)}\delta_{i}^{\alpha}\\ &< &\frac{\varepsilon_{i}}{2}+\frac{\varepsilon_{i}}{2}=\varepsilon_{i}.\end{aligned}$$

Case 3. For each $x \in G$, $\varepsilon_i > 0$, $t_1, t_2 \in [-\tau, 0]$, by continuity of ϕ_i , when $t_2 - t_1 < \delta_i$, we have

$$|Fx_i(t_1) - Fx_i(t_2)| = |\phi_i(t_1) - \phi_i(t_2)| < \varepsilon_i.$$

Therefore, FG is equicontinuous in each bounded interval. We now appeal proposition (2.4) to conclude that FG is relatively compact. Hence operator F is completely continuous. This completes the proof.

Definition 3.3. The function $u \in E$ is called a lower solution of problem (1.1)-(1.2) if

$$^{c}D^{\alpha}u_{i}(t) \leq f_{i}(t, u_{i}(t), u_{1}(t - \tau_{1}(t))..., u_{n}(t - \tau_{n}(t))), t \geq 0, i \in [1, n],$$

and

$$u(t) \leq \Phi(t), \quad t \in [-\tau, 0].$$

Similarly, function $v \in E$ is called an upper solution of problem (1.1)-(1.2) if

$$^{c}D^{\alpha}v_{i}(t) \geq f_{i}(t, v_{i}(t), v_{1}(t - \tau_{1}(t))..., v_{n}(t - \tau_{n}(t))), t \geq 0, i \in [1, n],$$

and

$$v(t) \ge \Phi(t), \quad t \in [-\tau, 0].$$

If the strict inequalities hold, then u(t), v(t) are called strict lower and upper solutions.

Theorem 3.4. Assume that $(H_1)-(H_2)$ hold, and $(H_3:)$ for $i \in [\![1,n]\!]: f_i: \mathbb{R}^+ \times E^{n+1} \to \mathbb{R}$ is continuous and nondecreasing function for each $t \in [0,\infty)$. (H_4) $u_0 = (u_0^1,...,u_0^n)', v_0 = (v_0^1,...,v_0^n)'$ are respectively lower and upper solutions of (1.1)-(1.2) satisfying $u_0(t) \leq v_0(t)$, $t \in [0,\infty), u_0, v_0 \in D$. Then (1.1)-(1.2) has at least a global positive solution.

Proof. By Lemma (3.2), we have $F: D \to D$ is completely continuous. And by (3.2), u_0^i, v_0^i are lower and upper solutions of F respectively. By $(H_3), x, y \in D, x \le y$, we have for $i \in [1, n]$:

$$Fx_{i}(t) = x_{i}(0) + I^{\alpha}f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t)))$$

$$\leq y_{j}(0) + I^{\alpha}f_{i}(t, y_{i}(t), y_{1}(t - \tau_{1}(t)), ..., y_{n}(t - \tau_{n}(t)))$$

$$\leq Fy_{i}(t).$$

Hence F is a nondecreasing operator. Clearly, for $i \in [1,n]$: $Fu_0^i \ge u_0^i$, $Fv_0^i \le v_0^i$ by definition of lower and upper solution of F. Hence, $F: \langle u_0, v_0 \rangle \to \langle u_0, v_0 \rangle$ is a compact continuous operator. As K is a normal cone, by Theorem 2.3, F has a fixed point $x \in \langle u_0, v_0 \rangle$. This completes the proof.

Remark 3.5. The condition (H_4) in Theorem 3.4 can be replaced by (H_5) : there exists a positive function $H(t) = (h_1(t), ..., h_n(t))'$, $t \ge 0$, such that

$$f_i(t, x_i(t), x_1(t - \tau_1(t)), ..., x_n(t - \tau_n(t))) \le h_i(t), \quad t \ge 0,$$

where $\forall t \geq 0$: $\int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h_i(s) ds < \infty$. We can easily find lower and upper solutions of the problem as follow. Consider the problem

$$\begin{cases} {}^{c}D^{\alpha}u_{0}^{i}(t) = 0, & t \ge 0 \\ u_{0}^{i}(t) = \phi_{i}(t), & -\tau \le t \le 0 \end{cases}, i = 1, 2, ..., n.$$
 (3.3)

Obviously, the equation ${}^cD^{\alpha}u_0^i(t)=0$ has a solution $u_0^i(t)=\phi_i(0)$, $t\geq 0$, i=1,2,...,n, which is a lower solution of the problem (1.1)-(1.2). Similarly, consider the problem

$$\begin{cases} {}^{c}D^{\alpha}v_{0}^{i}(t) = h_{i}(t) \geq f_{i}(t, x_{i}(t), x_{1}(t - \tau_{1}(t)), ..., x_{n}(t - \tau_{n}(t))), & t \geq 0 \\ v_{0}^{i}(t) = \phi_{i}(t), & -\tau \leq t \leq 0 \end{cases}, i \in [1, n].$$

We have

$$v_0^i(t) = \phi_i(0) + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h_i(s) ds, \ t \ge 0,$$

which is an upper solution of the problem (1.1) - (1.2) and $u_0^i(t) \le v_0^i(t)$. By Theorem 3.4, (1.1) - (1.2) has at least a positive solution.

4. Uniqueness of solutions

In this section, we discuss the uniqueness of solutions.

Theorem 4.1. Let $f_i : \mathbb{R}^+ \times [C([-\tau,\infty),\mathbb{R}^+)]^{n+1} \to \mathbb{R}$ be continuous and satisfy the Lipschitz condition for $i \in [1,n]$: $|f_i(t,u_i,u_1,...,u_n) - f_i(t,v_i,v_1,...,v_n)| \le l_i |u_i - v_i| + \sum_{j=1}^n k_{ij} |u_j - v_j|$, $i \in [1,n]$. Then (1.1) - (1.2) has a unique global positive solution.

Proof. Letting $u, v \in D$, we have

$$|Fu_{i}(t) - Fv_{i}(t)|$$

$$\leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \left\{ l_{i} |u_{i}(s) - v_{i}(s)| + \sum_{j=1}^{n} k_{ij} |u_{j}(s-\tau_{j}(s)) - v_{j}(s-\tau_{j}(s))| \right\} ds$$

$$\leq l_{i} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |u_{i}(s) - v_{i}(s)| ds + \sum_{j=1}^{n} k_{ij} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} |u_{j}(s-\tau_{j}(s)) - v_{j}(s-\tau_{j}(s))| ds.$$

Let
$$l=\sum\limits_{i=1}^{n}\left|l_{i}\right|,\,k=\sum\limits_{i=1}^{n}\left|k_{i}\right|=\sum\limits_{j=1}^{n}\max_{\forall i}\left|k_{ij}\right|$$
 . Then

$$e^{-Nt} |Fu_{j}(t) - Fv_{i}(t)|$$

$$\leq l_{i} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s)} e^{-Ns} |u_{i}(s) - v_{i}(s)| ds +$$

$$+ k_{i} \sum_{j=1}^{n} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} e^{-N(t-s+\tau j)} e^{-N(s-\tau_{j})} |u_{j}(s-\tau_{j}(s)) - v_{j}(s-\tau_{j}(s))| ds.$$

$$\leq ||u-v||_{N} \frac{l_{i}}{N^{\alpha}} \int_{0}^{Nt} \frac{u^{\alpha-1}e^{-u}}{\Gamma(\alpha)} du + nk_{i} ||u-v||_{N} \int_{0}^{Nt} \frac{u^{\alpha-1}e^{-u}}{N^{\alpha}\Gamma(\alpha)} du$$

$$\leq \frac{l_{i}}{N^{\alpha}} ||u-v||_{N} + \frac{k_{i}}{N^{\alpha}} ||u-v||_{N}.$$

Hence, we have

$$||Fu - Fv||_{N} = \sum_{i=1}^{n} \sup_{t \in \mathbb{R}^{+}} e^{-Nt} |Fu_{i}(t) - Fv_{i}(t)|$$

$$\leq \sum_{i=1}^{n} \frac{l_{i} + nk_{i}}{N^{\alpha}} ||u - v||_{N}$$

$$\leq \frac{l + nk}{N^{\alpha}} ||u - v||_{N}.$$

It follows that

$$||Fu - Fv||_N \le \frac{l + nk}{N^{\alpha}} ||u - v||_N.$$

We choose N large enough such that $\frac{l+nk}{N^{\alpha}} < 1$. By Banach fixed point theorem, F has a unique fixed point in D, which is the unique positive solution. This completes the proof.

5. Examples

Example 5.1. Consider the problem

$$\begin{cases}
{}^{c}D^{\alpha}x_{i}(t) = \sum_{j=1}^{n} a_{ij}x_{j}(t - \tau_{j}(t)), & t \ge 0 \\
x(t) = \Phi(t) \ge 0, & -\tau \le t \le 0
\end{cases}, \quad t \ge 0, \quad (5.1)$$

where $A = (a_{ij})_{n \times n}$ is given matrix. The hypothesis (H_1) - (H_4) are verified. By Theorem 3.4, problem (5.1) has at least a global positive solution. In addition, $\sum_{j=1}^{n} a_{ij}x_j (t - \tau_j(t))$ satisfies the Lipschitz condition. By Theorem 4.1, the problem (5.1) has unique global positive solution.

Example 5.2. Consider the problem

$$\begin{cases} {}^{c}D^{\alpha}x_{i}(t) = \sum_{k=1}^{n} \frac{x_{i}^{2}(t-\tau_{k}(t))}{1+x_{i}^{2}(t-\tau_{k}(t))}, & t \geq 0\\ x(t) = \Phi(t) \geq 0, & -\tau \leq t \leq 0 \end{cases}, i \in [1, n].$$

$$(5.2)$$

The hypothesis $(H_1) - (H_4)$ are verified. Using Theorem 3.4, we find that problem (5.2) has at least a global positive solution.

REFERENCES

- [1] J. Čermák, Z. Došlá, T. Kisela, Fractional differential equations with a constant delay: Stability and asymptotics of solutions, Appl. Math. Comput. 298 (2016), 336-350.
- [2] J. R. Graef, X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators, J. Nonlinear Funct. Anal. 2014 (2014), Article ID 13.

- [3] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential Equations, Ed van Mill, Amsterdam: North-Holland Mathematical studies 204, 2006.
- [4] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equation, John Wiley: New York, 1993.
- [5] L. Nisse, A. Bouaziz, Existence and stability of the solutions for systems of nonlinear fractional differential equations with deviating arguments, Adv. Difference Equ. 2014 (2014), Article ID 275.
- [6] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York: London: Toronto, 1999.
- [7] C. Zhong, X. Fan, W. Chen, Nonlinear Functional Analysis and Its Application, Lanzhou Univ. Press, 1998.
- [8] H. Vu, N. Ngoc Phung, N. Phuong, On fractional random differential equations with delay, Opuscula Math. 36 (2016), 541-556.
- [9] H. Ye, Y. Ding, J. Gao, The existence of a positive solution of $D^{\alpha}[x(t) x(0)] = x(t)f(t,x_t)$, Positivity 11 (2007), 341-350.
- [10] K. Zima, Sur l'existence des solutions d'une équation intégro-différentielle, Ann. Polon. Math. (1973), 181-187.