

Communications in Optimization Theory

Available online at http://cot.mathres.org

FIXED POINTS FOR (α, ψ) -KHAN-RATIONAL GERAGHTY CONTRACTIVE MAPPINGS

HOSSEIN PIRI*, SAMIRA RAHROVI

Department of Mathematics, University of Bonab, P.O. Box 5551761167, Iran

Abstract. In this paper, we study some results on the existence of fixed points for a class of (α, ψ) -Khan-rational Geraghty contractive mappings. Our main results extend and unify the corresponding results in Fisher [3] and Shahi *et al.* [5].

Keywords. Contractive mapping; Fixed point; Metric space; Khan theorem.

2010 Mathematics Subject Classification. 74H10, 54H25.

1. Introduction and preliminaries

In the mid-sixties ten, fixed points results dealing with general contractive conditions with rational expressions were appeared. On of the well-known works in this direction were established by Khan [4]. After that, Fisher [3] gave a revised version of Khan result as follows.

Theorem 1.1. Let (X,d) be a complete metric space and let $T: X \to X$ satisfy

$$d(Tx,Ty) \le \begin{cases} k \frac{d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)}{d(x,Ty) + d(Tx,y)}, & if \ d(x,Ty) + d(Tx,y) \neq 0, \\ 0, & if \ d(x,Ty) + d(Tx,y) = 0, \end{cases}$$

E-mail addresses: h.piri@bonabu.ac.ir (H. Piri), s.rahrovi@bonabu.ac.ir (S. Rahrovi).

Received September 29, 2016; Accepted April 6, 2017.

^{*}Corresponding author.

where $k \in [0,1)$ and $x,y \in X$. Then T has a unique fixed point $x^* \in X$. Moreover, for all $x \in X$, the sequence $\{T^n x\}$ converges to x^* .

Definition 1.2. Let X be a nonempty set, $T: X \to X$ and $\alpha: X \times X \to [0, \infty)$ be two mappings. We say that T is α -admissible if for all $x, y \in X$, $\alpha(x, y) \ge 1$ implies that $\alpha(Tx, Ty) \ge 1$.

Definition 1.3. Let X be a nonempty set and $\alpha: X \times X \to [0, \infty)$ be a mapping. We say that α is transitive if for all $x, y, z \in X$, $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$ implies that $\alpha(x, z) \ge 1$.

Let Ψ be a family of functions $\psi:[0,\infty)\to[0,\infty)$ satisfying the following conditions:

- (Ψ_1) ψ is nondecreasing.
- $(\Psi_2) \sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0, where ψ^n is the n-th iterate of ψ .

It can be easily verified that if $\psi \in \Psi$, then $\psi(t) < t$ for any t > 0.

Define $\Phi = \{ \varphi \mid \varphi : [0, \infty) \to [0, \infty) \}$ such that φ is Lebesgue integrable and satisfies

$$\int_0^{\varepsilon} \varphi(t)dt > 0, \quad \forall \varepsilon > 0.$$

Very recently, Shahi *et al.* [5] gave the integral version of (α, ψ) -contractive type mappings and proved some related fixed point theorems.

Definition 1.4. Let (X,d) be a metric space and $T: X \to X$ be a given mapping. We say that T is an (α, ψ) -contractive mapping of integral type if there exist two functions $\alpha: X \times X \to [0, \infty)$ and $\psi \in \Psi$ such that for each $x, y \in X$,

$$\alpha(x,y) \int_0^{d(Tx,Ty)} \varphi(t)d(t) \le \psi\left(\int_0^{d(x,y)} \varphi(t)d(t)\right),$$

where $\phi \in \Phi$.

Theorem 1.5. Let (X,d) be a complete metric space and $\alpha: X \times X \to [0,\infty)$ be a transitive mapping. Suppose that $T: X \to X$ is an (α, ψ) -contractive mapping of integral type and satisfies the following conditions:

- (i) T is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (ii) T is continuous.

Then T has a fixed point, that is, there exists $z \in X$ such that Tz = z.

2. Main results

Definition 2.1. Let (X,d) be a metric space with constant $s \ge 1$ and $T: X \to X$ be a given mapping. We say that T is an (α, ψ) - rational Geraghty contractive mapping of integral type, if there are a function $\alpha: X \times X \to [0,\infty)$ and a continuous function $\psi \in \Psi$ such that for all distinct $x,y \in X$. If $\max\{d(x,Ty),d(Tx,y)\} \ne 0$, then

$$\alpha(x,y) \int_0^{d(Tx,Ty)} \varphi(t)d(t) \le \psi\left(\int_0^{M_T(x,y)} \varphi(t)d(t)\right), \tag{2.1}$$

where, $\varphi \in \Phi$ and

$$M_T(x,y) = \max \left\{ d(x,y), \frac{d(x,Tx)d(y,Ty)}{d(x,y)}, \frac{d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)}{\max\{d(x,Ty),d(Tx,y)\}}, \right\},\,$$

and if $\max\{d(x,Ty),d(Tx,y)\}=0$, then Tx=Ty.

Theorem 2.2. Let (X,d) be a complete b-metric space with constant $s \ge 1$ and $\alpha : X \times X \to [0,\infty)$ be a transitive mapping. Suppose that $T:X\to X$ be an (α,ψ) -rational Geraghty contractive mapping of integral type I and satisfies the following conditions:

- (i) T is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (ii) T is continuous.

Then T has a fixed point $x^* \in X$.

Proof. Put $x_{n+1} = Tx_n = T^{n+1}x_0$ for all $n \in \mathbb{N}_0$. If there exists $n \in \mathbb{N}$ such that $x_n = x_{n-1}$, then x_{n-1} is a fixed point of T. This completes the proof. Therefore, we suppose that

$$d(x_n, x_{n-1}) > 0, \quad \forall n \in \mathbb{N}.$$
 (2.2)

Due to the fact that T is α -admissible, we find that for all $n \in \mathbb{N}_0$

$$\alpha(x_n, x_{n+1}) \ge 1. \tag{2.3}$$

We shall divide the proof into two cases.

Case 1. Assume that

$$\max\{d(x_m, Tx_n), d(Tx_m, x_n)\} \neq 0, \quad \forall m \in \mathbb{N}, \forall n \in \mathbb{N}_0.$$
 (2.4)

By applying inequality (2.1) with $x = x_{n-1}$ and $y = x_n$ and using (2.3), we deduce that

$$\int_{0}^{d(x_{n},x_{n+1})} \varphi(t)d(t) \le \psi\left(\int_{0}^{M_{T}(x_{n-1},x_{n})} \varphi(t)d(t)\right). \tag{2.5}$$

Since

$$M_{T}(x_{n-1},x_{n}) = \max \left\{ \begin{array}{c} d(x_{n-1},x_{n}), \frac{d(x_{n-1},Tx_{n-1})d(x_{n},Tx_{n})}{d(x_{n-1},x_{n})}, \\ \frac{d(x_{n-1},Tx_{n-1})d(x_{n-1},Tx_{n}) + d(x_{n},Tx_{n})d(x_{n},Tx_{n-1})}{\max\{d(x_{n-1},Tx_{n}),d(Tx_{n-1},x_{n})\}}, \end{array} \right\}$$
(2.6)

$$\leq \max \{d(x_{n-1},x_n),d(x_n,x_{n+1})\}$$

If $d(x_n, x_{n+1}) > d(x_{n-1}, x_n)$, then $M_T(x_{n-1}, x_n) \le d(x_n, x_{n+1})$. From (2.5), (2.6) and (Ψ_1) , we get

$$\int_0^{d(x_n,x_{n+1})} \varphi(t)d(t) \le \psi\left(\int_0^{d(x_n,x_{n+1})} \varphi(t)d(t)\right) < \int_0^{d(x_n,x_{n+1})} \varphi(t)d(t),$$

which is a contradiction (from the property of ψ , we have $\psi(t) < t$ for any t > 0). Thus, we conclude that $d(x_n, x_{n+1}) \le d(x_{n-1}, x_n)$. By utilizing (2.6) and (Ψ_1) , we derive from (2.5) that

$$\int_{0}^{d(x_{n},x_{n+1})} \varphi(t)d(t) \le \psi^{n} \left(\int_{0}^{d(x_{0},x_{1})} \varphi(t)d(t) \right). \tag{2.7}$$

From (2.2) and (Ψ_2) , we find that

$$\lim_{n\to\infty} \psi^n \left(\int_0^{d(x_0, x_1)} \varphi(t) d(t) \right) = 0. \tag{2.8}$$

which implies that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0. \tag{2.9}$$

Now, we claim that

$$\lim_{n,m\to\infty}d(x_n,x_m)=0.$$

Arguing by contradiction, we assume that there exist $\varepsilon > 0$, the sequences $\{p(n)\}_{n=1}^{\infty}$ and $\{q(n)\}_{n=1}^{\infty}$ of natural numbers such that

$$p(n) > q(n) > n, \ d(x_{p(n)}, x_{q(n)}) \ge \varepsilon, \ d(x_{p(n)-1}, x_{q(n)}) < \varepsilon, \ \forall n \in \mathbb{N}.$$
 (2.10)

Let $u, v \in \mathbb{N}$ and u < v. In view of triangular inequality and using (2.9), we deduce that

$$\lim_{n \to \infty} d(x_{p(n)+u}, x_{p(n)+\nu}) = 0.$$
 (2.11)

From (2.10), we get

$$\varepsilon \le d(x_{p(n)}, x_{p(n)-1}) + d(x_{p(n)-1}, Tx_{q(n)-1}), \quad \forall n \in \mathbb{N}.$$
 (2.12)

It follows from (2.8) and (2.12) that

$$\liminf_{n\to\infty} d(x_{p(n)-1}, Tx_{q(n)-1}) \ge \varepsilon.$$

So, there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

$$\max\{d(x_{p(n)-1}, Tx_{q(n)-1}), d(Tx_{p(n-1)}, x_{q(n)-1})\} \ge d(x_{p(n)-1}, Tx_{q(n)-1}) \ge \frac{\varepsilon}{2}. \tag{2.13}$$

Since ψ is a continuous and nondecreasing, so by applying inequality (2.1) with $x = x_{p(n)}$ and $y = x_{q(n)}$ and using (2.3) and (2.10), we deduce that

$$\int_0^{\varepsilon} \varphi(t)d(t) \le \psi\left(\limsup_{n \to \infty} \int_0^{M_T(x_{p(n)-1}, x_{q(n)-1})} \varphi(t)d(t)\right). \tag{2.14}$$

On the other hand, for all $n \ge N_1$, we have

$$\begin{split} & M_T(x_{p(n)-1}, x_{q(n)-1}) \\ & = \max \left\{ \begin{array}{l} d(x_{p(n)-1}, x_{q(n)-1}), \frac{d(x_{p(n)-1}, Tx_{p(n)-1})d(x_{p(n)-1}, Tx_{q(n)-1})}{d(x_{p(n)-1}, Tx_{q(n)-1})} \\ & + \frac{d(x_{q(n)-1}, Tx_{q(n)-1})d(x_{q(n)-1}, Tx_{p(n)-1})}{\max\{d(x_{p(n)-1}, Tx_{q(n)-1}), d(Tx_{p(n)-1}, x_{q(n)-1})\}} \end{array} \right\} \\ & \leq \max \left\{ \begin{array}{l} \frac{\varepsilon + d(x_{q(n)}, x_{q(n)-1})}{\max\{d(x_{p(n)-1}, x_{q(n)-1}), d(x_{p(n)-1}, x_{p(n)})d(x_{q(n)-1}, x_{q(n)})}, \\ \varepsilon \\ \frac{d(x_{p(n)-1}, x_{p(n)})d(x_{p(n)-1}, x_{q(n)}) + d(x_{q(n)-1}, x_{q(n)})d(x_{q(n)-1}, x_{p(n)})}{\varepsilon}, \\ \varepsilon \\ \end{array} \right\}, \end{split}$$

which implies from (2.11) that

$$\limsup_{n\to\infty} M_T(x_{p(n)-1},x_{q(n)-1})\leq \varepsilon.$$

Since, the function $s \to \int_0^s \varphi(t) d(t)$ and ψ are increasing and continuous, so we get

$$\psi\left(\limsup_{n\to\infty}\int_0^{M_T(x_{p(n)-1},x_{q(n)-1})}\varphi(t)d(t)\right) \le \psi\left(\int_0^{\varepsilon}\varphi(t)d(t)\right) \tag{2.15}$$

Since $\psi(t) < t$, for all t > 0, so from (2.14) and (2.15), we get a contradiction. This implies that $\lim_{n,m\to\infty} d(x_n,x_m) = 0$. Hence $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (X,d). Due to the completeness of (X,d), there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. The continuity of T yields that $Tx_n \to Tx^*$ as $n \to \infty$, that is, $x_{n+1} \to Tx^*$ as $n \to \infty$. By the uniqueness of the limit, we obtain $x^* = Tx^*$. Therefore, x^* is a fixed point of T.

Case 2. Assume that there exist $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ such that

$$\max\{d(x_m, Tx_n), d(Tx_m, x_n)\} = 0. \tag{2.16}$$

Since T is (α, ψ) -rational Geraghty contractive mapping of integral type, so we have $Tx_m = Tx_n$. It follows from (2.16) that, $x_n = Tx_m = Tx_n = x_m$. This completes the proof.

Theorem 2.3. Let (X,d) be a complete metric space and let $T: X \to X$ be a self-mapping such that for all $x, y \in X$

$$d(Tx, Ty) \le \begin{cases} \lambda M_T(x, y), & \text{if } \max\{d(x, Ty), d(Tx, y)\} \neq 0, \\ 0, & \text{if } \max\{d(x, Ty), d(Tx, y)\} = 0, \end{cases}$$

where, $\lambda \in (0,1)$ and $N_T(x,y)$ are as in Definition 2.1. Then T has a unique fixed point $x^* \in X$.

Proof. It is suffice to take $\varphi(t) = 1$, for all $t \ge 0$ and $\alpha(x,y) = 1$, for all $x,y \in X$ in Theorem 2.2.

Remark 2.4. Obviously, Theorem 2.2 is a generalization of Theorem 2.1 of [5] and Theorem 2.3 is a generalization of the main result of [3].

REFERENCES

- [1] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. 29 (2002), 531-536.
- [2] M. Berzig, M. Rus, Fixed point theorems for α -contractive mappings of Meir-Keeler type and applications. arXiv:1303.5798.
- [3] B. Fisher, On a theorem of Khan, Riv. Math. Univ. Parma. 4 (1978), 135-137.
- [4] M. S. Khan, A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste 8 (1976), 69-72.
- [5] P. Shahi, J. Kaur, S.S. Bhatia, Fixed point theorems for α - ψ -contractive type mappings of integral type with applications, J. Nonlinear Convex. Anal. 16 (2015), 745-760.