
Commun. Optim. Theory 2017 (2017), Article ID 13 https://doi.org/10.23952/cot.2017.13

GENERAL SET-VALUED VECTOR VARIATIONAL INEQUALITY PROBLEMS

SALAHUDDIN

Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia
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1. Introduction

Let X and Y be two arbitrary sets and f : X →Y , T : X ⇒Y be two given mappings. We

say that a point x ∈ X is a coincidence point of f and T if f (x)∈ T (x). Coincidence theory is, in

most settings a generalization of fixed point theory, the study of a point x with x ∈ T (x) indeed

a fixed point is the special case obtained from the coincidence point by letting X = Y and

taking f to be the identity mapping. The theory variational inequality problem is very powerful

techniques for studying problems arising in mechanics optimization, transportation, economics

equilibrium, control theory, contact problems in elasticity and other branches of mathematics;

see [2, 3, 12, 13, 15]. Let X and Y be two real Banach spaces. A nonempty set P of X is called

convex cone, if λP ⊆ P for all λ ≥ 0 and P+P = P. A cone P is called pointed cone, if P is a
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cone and P∩ (−P) = {0} where 0 denotes the zero vector. Also a cone P is called proper if it is

properly contained in X . Let K be a nonempty subset of X . We will denote by 2K the set of all

nonempty subsets of K, clX (K) the closure of K in X . Let T : K→ 2L(X ,Y ) be a multivalued

mapping where L(X ,Y ) be the set of bounded linear function from X to Y , the graph of T

denoted by G (T ) is the set {(x,y) ∈X ×Y : x ∈X ,y ∈ T (x)}. T is said to be upper semi

continuous on X if for each x ∈X and each open set U in Y containing T (x) then exists an

open neighbourhood V of x in X such that T (y)⊆U for each y∈Y . T is said to be upper hemi

continuous at x if for each y ∈X ,λ ∈ [0,1], the multivalued mapping λ → T (λy+(1−λ )x)

is upper semi continuous at 0+. Let C : K→ 2Y be a multivalued mapping such that for each

x∈X ,C(x) is a closed convex moving cone with intC(x) 6= /0 where intC(x) denotes the interior

of C(x). Let f : K → K be a single valued mapping and T : K ⇒ 2L(X ,Y ) be a multivalued

mapping. We consider the general set valued vector variational inequality problems for finding

x ∈ K, f (x) ∈ K,u ∈ T (x) such that

(1) 〈u, f (y)− f (x)〉 6∈ −intC(x), ∀ f (y) ∈ K.

Let us denote by Sw(T, f ,K) respectively S(T, f ,K) the set of solution of (1). We consider the

following problem for finding an x ∈ K such that

(2) ∀y ∈ K,∃u ∈ T (x) : 〈u, f (y)− f (x)〉 6∈ −intC(x),

(3) ∃u ∈ T (x),∀y ∈ K : 〈u, f (y)− f (x)〉 6∈ −intC(x),

(4) ∀y ∈ K,∃v ∈ T (y) : 〈v, f (y)− f (x)〉 6∈ −intC(x).

In this pape, inspired by the works [1, 4, 5, 9, 11, 14, 17, 18, 21, 22, 23, 24, 25], we give

some existence results for the solutions of the problems (2)-(4) and also discuss the coincidence

point results.

2. Preliminaries

Let X1 and X2 be the Hausdorff topological vector spaces and T : X1 ⇒ X2 be a set valued

mapping with nonempty set values. T is said to be upper semicontinuous if for every x0 ∈X1
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and for every open set N containing T (x0) there exists a neighbourhood M of x0 such that

T (M)⊆ N.

Lemma 2.1. If T is compact valued then T is upper semicontinuous if and only if for every net

{xi} ⊆X1 such that xi→ x0 ∈X1 and for every zi ∈ T (xi) there exists z0 ∈ T (x0) and a subnet

{zi j} of {zi} such that zi j → z0.

Let X and Y be two Banach spaces. T : X → L(X ,Y ) is called weak to norm-sequentially

continuous at x ∈X if every sequence {xn} that converges weakly to x, we know that T (xn)

converges to T (x) in the topology of the norm of Y . An operator T : X ⇒ L(X ,Y ) is said

to be weak to weak∗ upper semicontinuous if for every x0 ∈X and for every open set N ⊆ Y

in the weak∗ topology of Y containing T (x0) there exists a neighbourhood M of x0 in the weak

topology of X such that T (M)⊆ N.

Lemma 2.2. [10] If P ⊂ Q ⊂X where Q is weakly compact and P is weakly sequentially

closed then P is weakly compact.

Lemma 2.3. [20] Consider a bounded net {(xi,x∗i )}i∈I ⊂X ×X ∗ and assume that one of the

following conditions is fulfilled:

(i) xi→ x i.e., the net {xi} converges to x in the weak topology of X and x∗i → x∗ i.e., the

net {x∗i } converges to x∗ in the topology of norm of X ∗;

(ii) xi→ x i.e., the net {xi} converges to x in the weak topology of norm of X and x∗i → x∗

i.e., the net {x∗i } converges to x∗ in the weak∗ topology of X ∗.

Then

〈x∗i ,xi〉 → 〈x∗,x〉.

Now we present the notion of KKM-mapping. Let X be a real Banach space and D ⊆X .

Recall the convex hull of the set D is defined as the set

co(D) = {
n

∑
i=1

λixi : xi ∈ D,
n

∑
i=1

λi = 1,λi ≥ 0, ∀i ∈ {1,2, · · · ,n},n ∈ N}.

Definition 2.4. [7] Let X be a Hausdorff topological real linear spaces and M ⊆X . The set

valued mapping G : M ⇒ X is called a KKM-mapping if for every finite number of elements
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x1,x2, · · · ,xn ∈M one has

co{x1,x2, · · · ,xn} ⊆
n⋃

i=1

G(xi).

Lemma 2.5. [7] Let X be a Hausdorff topological real linear spaces and M ⊆X and G :

M ⇒ X be a KKM-mapping. If G(x) is closed for every x ∈M and there exists x0 ∈M such

that G(x0) is compact, then ⋂
x∈M

G(x) 6= /0.

Lemma 2.6. [20] Let X be a Banach spaces, M ⊆X a nonempty set and G : M ⇒ X be a

KKM-mapping. If G(x) is weakly sequentially closed for every x ∈M and there exists x0 ∈M

such that G(x0) is weakly compact, then

⋂
x∈M

G(x) 6= /0.

Let X be a real linear space. For x,y ∈X let us denote by [x,y] = {z = (1− t)x+ ty : t ∈

[0,1]} the closed line segment with the end points x respectively y. The open line segment with

the endpoints x respectively y is defined by (x,y) = [x,y]\{x,y}= {z= (1−t)x+ty : t ∈ (0,1)}.

Definition 2.7. Let X and Y be two real linear spaces. We say that the operator T : D⊆X →

Y is a quasi linear type if for every x,y ∈ D and every z ∈ [x,y]∩D, one has

T (z) ∈ [T (x),T (y)].

Proposition 2.8. [20] Let X ,Y ,Z be real linear spaces, D⊆X ,C ⊆ Y and A : D→ Y ,B :

C→Z ,A(D)⊆C be two operator of quasi linear type. Then B◦A : D→Z is of quasi linear

type.

Lemma 2.9. [19] Let X be a topological real linear space and Y be a Hausdorff topological

real linear space. Let D ⊆X be a convex and A : D→ Y an operator continuous on line

segments and of quasi linear type. Then for every x,y ∈ D one has

A([x,y]) = [A(x),A(y)].
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Theorem 2.10. [19] Let X and Y be two real linear spaces, let D ⊆X be a convex and

T : D→ Y be an operator of quasi linear type. Then for every n ∈ N every x1,x2, · · · ,xn ∈ D

and every x ∈ co{x1,x2, · · · ,xn}, we have

T (x) ∈ co{T (x1),T (x2), · · · ,T (xn)}.

Let X be a real Banach spaces and Y be a topological vector spaces and let T : D⊆X →

L(X ,Y ) and f : D→X be a given operator. We say that (T, f ) is f -pseudomonotone if for

all x,y ∈ D,u ∈ T (x),v ∈ T (y),

〈u, f (y)− f (x)〉 6∈ −intC(x) ⇒ 〈v, f (y)− f (x)〉 6∈ −intC(x),

and the pair (T,F) is called weakly f -pseudomonotone in K if for all x,y ∈ K

∃u ∈ T (x),〈u, f (y)− f (x)〉 6∈ −intC(x) ⇒∃v ∈ T (y),〈v, f (y)− f (x)〉 6∈ −intC(x).

Theorem 2.11. [6] Let Y be a topological vector spaces with a closed, convex, pointed cone C

such that intC 6= /0 then for all x,y,z ∈ Y we have

(i) x− y ∈ −intC and x 6∈ −intC⇒ y 6∈ −intC;

(ii) x+ y ∈ −C and x+ z 6∈ −intC⇒ z− y 6∈ −intC;

(iii) x+ z− y 6∈ −intC and −y ∈ −C⇒ x+ z 6∈ −intC;

(iv) x+ y 6∈ −intC and y− z ∈ −C⇒ x+ z 6∈ −intC.

3. Existence results

In this section, we discuss the existence results of the general set valued vector variational

inequality problems.

Theorem 3.1. Let K be a nonempty weakly compact convex subset of X and a set valued map-

ping T : K→ L(X ,Y ) be the generalized upper hemicontinuous in K with nonempty compact

values. Further, let f : K →X be an operator of quasi linear type, convex and pair (T, f )

is weakly f -pseudo monotone for each x ∈ K. Assume that C : K → 2Y is a mapping such

that x ∈ K,C(x) is a proper closed convex moving cone with intC(x) 6= /0. Assume that mapping
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x→ Y \ (−intC(x)) for x ∈ K is a weakly closed mapping that is its graph is closed in X ×Y

with weak topology of X and Y . Assume that the following conditions are fulfilled.

(a) f is weak to weak-sequentially continuous on K, T is weak to norm upper semi contin-

uous on K and T (x) is compact for every x ∈ K,

(b) f is weak to norm-sequentially continuous on K, T is weak to weak∗ upper semi con-

tinuous on K and T (x) is weak∗ compact for every x ∈ K,

(c) there is a nonempty weakly compact subset D of K and a subset D0 of a weakly compact

convex subset of K such that for all x ∈ K \D there exists z ∈ D0,u ∈ T (z),

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ D0.

Then Sω(T, f ,K) 6= /0. If, in addition, T is f -pseudomonotone, then M(T, f ,K) 6= /0.

Proof. To prove the theorem, we first define the mapping G : K ⇒ K

G(y) = {x ∈ K : ∃u ∈ T (x) such that 〈u, f (y)− f (x)〉 6∈ −intC(x)},

which satisfies the assumptions of Ky Fan Lemma. Let y1,y2, · · · ,yn ∈K and y∈ co{y1,y2, · · · ,yn}.

Suppose that

y 6∈
n⋃

i=1

G(yi).

Then for all u ∈ T (y) we have

〈u, f (y1)− f (y)〉 ∈ −intC(y), 〈u, f (y2)− f (y)〉 ∈ −intC(y),

· · · 〈u, f (yn)− f (y)〉 ∈ −intC(y).

Since f is quasi linear type and y ∈ co{y1,y2, · · · ,yn}, we find from Theorem 2.10 that

f (y) ∈ co{ f (y1), f (y2), · · · , f (yn)}.

Hence there exists λi ≥ 0, i = 1,n where ∑
n
i=1 λi = 1 such that

f (y) =
n

∑
i=1

λi f (yi).

For every fixed u ∈ T (y), we have

0 =
n

∑
i=1

λi〈u, f (yi)− f (y)〉=
n

∑
i=1
〈u,λi( f (yi)− f (y))〉=−intC(y),
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which is a contradiction. Hence, G is a KKM mapping. We show next that G(y) is weakly

compact for all y ∈ K. Obviously G(y) 6= /0. Since for all y ∈ K we have y ∈ G(y). For y ∈ K

consider a sequence {xn} ⊆G(y) that converges weakly to x∈K. Hence there exists un ∈ T (xn)

such that

〈un, f (y)− f (xn)〉 6∈ −intC(xn).

Assume that (a) hold. From Lemma 2.1, we obtain the sequence {un} contains a subsequence

{unk} that converges to v ∈ T (x) in the norm topology Y . Since f is weak to weak sequentially

continuous, we obtain that f (xnk) converges to f (x),k→ ∞ in the weak topology of X . From

Lemma 2.3 (i), we have

〈unk , f (y)− f (xnk)〉 → 〈v, f (y)− f (x)〉,k→ ∞.

Hence

〈unk , f (y)− f (xnk)〉 6∈ −intC(xnk).

This implies that

〈v, f (y)− f (x)〉 6∈ −intC(x).

Assume that (b) holds. From Lemma 2.1 we obtain that the sequence {un} contain a sub-

sequence {unk} that converges to v ∈ T (x) in the weak∗ topology of Y . Since f is weak to

norm-sequentially continuous, we obtain that f (xnk)→ f (x),k→ ∞. From Lemma 2.3 (ii), we

have

〈unk , f (y)− f (xnk)〉 → 〈v, f (y)− f (x)〉,k→ ∞.

Hence, we have

〈unk , f (y)− f (xnk)〉 6∈ −intC(xnk), ∀k ∈ N.

It follows that

〈v, f (y)− f (x)〉 6∈ −intC(x).

Hence x ∈G(y), which means that G(y) is weakly sequentially closed for all y ∈ K. But G(y)⊆

K and K is weakly compact thus from Lemma 2.2, G(y) is weakly compact for all y∈K, implies
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that is weakly closed as well. Hence G is a KKM mapping that satisfies the assumptions of Ky

Fan Lemma, consequentially ⋂
y∈K

G(y) 6= /0.

In other words there exists x ∈ K such that for every y ∈ K there exists u ∈ T (x) satisfying

〈u, f (y)− f (x)〉 6∈ −intC(x).

This show that Sω(T, f ,K) 6= /0.

Now, we assume that T is f -pseudomonotone. Let x ∈ Sω(T, f ,K), then for all y ∈ K there

exists u ∈ T (x) such that

〈u, f (y)− f (x)〉 6∈ −intC(x),

and from f -pseudomonotonicity of T , we have

〈v, f (y)− f (x)〉 6∈ −intC(x), ∀v ∈ T (y).

Hence x ∈M(T, f ,K).

Corollary 3.2. Let K be a nonempty weakly compact convex subset of X and T : K→ L(X ,Y )

be a generalized upper hemicontinuous in K with nonempty compact values. Let f : K→ X be

a convex and pair (T, f ) is weakly f -pseudo monotone for each x ∈ K. Further assume that f

is of quasi linear type operator. Assume that C : K→ 2Y is mapping such that x ∈ K,C(x) is a

proper closed convex moving cone with intC(x) 6= /0. Assume that mapping x→Y \ (−intC(x))

for x ∈ K is a weakly closed mapping that is its graph is closed in X ×Y with weak topology

of X and Y . Then the following conditions are holds:

(a) f is weak to weak-sequentially continuous on K, T is weak to norm -sequentially con-

tinuous on K,

(b) f is weak to norm-sequentially continuous on K, T is weak to weak∗ continuous on K,

(c) there is a nonempty weakly compact subset D of K and a subset D0 of a weakly compact

convex subset of K such that for all x ∈ K \D then there exists z ∈ D0,u ∈ T (z)

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ D0.
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Then Sω(T, f ,K) 6= /0. If, in addition, T is f -pseudomonotone, then M(T, f ,K) 6= /0.

Theorem 3.3. Let X be a reflexive Banach space and let K ⊂ X be a nonempty weakly

sequentially closed convex subset. Assume that C : K→ 2Y is mapping such that x ∈ K,C(x) is

a proper closed convex moving cone with intC(x) 6= /0. Assume that mapping x→Y \(−intC(x))

for x ∈ K is a weakly closed mapping that is its graph is closed in X ×Y with weak topology

of X and Y . Consider a set valued mapping T : K → L(X ,Y ) and f : K →X is a quasi

linear type. Assume that there exists y0 ∈ K such that

lim inf
‖x‖→∞

inf
u∈T (x)

〈u, f (x)− f (y0)〉 ∈ −intC(x).

Assume that T is generalized upper hemi continuous in K with nonempty compact values and f

is convex and pair (T, f ) is weakly f -pseudomonotone for each x ∈ K then there is a nonempty

weakly compact subset D of K and a subset of K such that for all x ∈ K \D there exists z ∈

D0,u ∈ T (z)

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ D0.

Moreover, assume that one of the following conditions are fulfilled:

(a) f is weak to weak-sequentially continuous on K, T is weak to norm -upper semicontin-

uous on K and T (x) is compact for every x ∈ K,

(b) f is weak to norm-sequentially continuous on K, T is weak to weak∗ upper semi con-

tinuous on K and T (x) is weak∗ compact for every x ∈ K.

Then Sω(T, f ,K) 6= /0. If, in addition, T is f -pseudomonotone, then M(T, f ,K) 6= /0.

Proof. Let us define the mapping G : K ⇒ K as in the proof of Theorem 3.1. From the proof of

Theorem 3.1, G(y) is weakly sequentially closed for all y ∈ K. We show that G(y0) is weakly

compact. The rest of the proof is similar to the proof of Theorem 3.1 and is here omitted. We

prove that G(y0) is bounded. Indeed suppose to contrary, we obtain that there exists {xk} ⊆

G(y0) such that

inf
u∈T (xk)

〈u, f (xk)− f (y0)〉 6∈ −intC(xk).

Hence

liminf
‖xK‖→∞

inf
u∈T (xk)

〈u, f (xk)− f (y0)〉 6∈ −intC(xk),
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which contradicts the assumptions of the theorem. Thus we have G(y0) is bounded and weakly

sequentially closed. But then there exists N > 0 such that G(y0) ⊆ BN where BN denotes the

closed ball centered in 0 with radius N. Since X is reflexive it is known that BN is weakly

compact. From Lemma 2.2, we conclude that G(y0) is weakly compact. According to Lemma

2.6, we have ⋂
x∈K

G(x) 6= /0.

Corollary 3.4. Let X be a reflexive Banach space and let K ⊂ X be a nonempty weakly

sequentially closed convex subset. Assume that C : K → 2Y is mapping such that x ∈ K,C(x)

is a proper closed convex moving cone with intC(x) 6= /0. Assume that the set valued mapping

x : K → Y \ (−intC(x)) for x ∈ K is a weakly closed mapping that is its graph is closed in

X ×Y with weak topology of X and Y . Let a set valued mapping T : K → L(X ,Y ) be

a generalized upper hemi continuous in K with nonempty compact values and f : K →X be

a quasi linear type. Let f be a convex and pair (T, f ) is weakly f -pseudomonotone for each

x ∈ K. Assume that there exists y0 ∈ K such that

liminf
‖x‖→∞

inf
x∈K
〈T (x), f (x)− f (y0)〉 ∈ −intC(x).

Then there is a nonempty weakly compact subset D of K and a subset of K such that for all

x ∈ K \D there exists z ∈ D0,u ∈ T (z)

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ D0.

Moreover, assume that one of the following conditions are fulfilled:

(a) f is weak to weak-sequentially continuous on K, T is weak to norm -sequentially con-

tinuous on K,

(b) f is weak to norm-sequentially continuous on K, T is weak to weak∗ sequentially con-

tinuous on K.

Then Sω(T, f ,K) 6= /0. If, in addition, T is f -pseudomonotone, then M(T, f ,K) 6= /0.

The following concepts were introduced by Ky Fan [7]. Let X and Y be arbitrary sets. A

function h : X ×X → R is said to be convex like on X if for any u1,u2 ∈X and t ∈ (0,1),
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there exists u0 ∈X such that for all y ∈ Y one has

h(u0,y)≤ th(u1,y)+(1− t)h(u2,y).

Similarly h is said to be concave like on Y if for any v1,v2 ∈ Y and t ∈ (0,1) there exists

v0 ∈ Y such that for all x ∈X one has

h(x,v0)≥ th(x,v1)+(1− t)h(x,v2).

Theorem 3.5. [8] Let X be a compact space, Y a set and h : X ×Y → R a function that is

concave like on Y , convex like on X and for each y ∈Y the function x→ h(x,y) is lower semi

continuous on X . Then

sup
y∈Y

min
x∈X

h(x,y) = min
x∈X

sup
y∈Y

h(x,y).

Theorem 3.6. Let K be a nonempty weakly compact convex subset of X . Assume that C : K→

2Y is mapping such that x ∈ K,C(x) is a proper closed convex moving cone with intC(x) 6= /0.

Assume that mapping x→ Y \ (−intC(x)) for x ∈ K is a weakly closed mapping that is its

graph is closed in X ×Y with weak topology of X and Y . Let a set valued mapping T :

K → L(X ,Y ) be a generalized upper hemicontinuous in K with nonempty compact values

and f : K →X be a quasi linear type. Let f be a convex and pair (T, f ) is weakly f -pseudo

monotone for each x ∈ K. Then there is a nonempty weakly compact subset D of K and a

subset D0 of a weakly compact convex subset of K such that for all x ∈ K \D, there exists

z ∈ D0,u ∈ T (z)

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ D0.

Assume that one of the following conditions are fulfilled:

(a) f is weak to weak-sequentially continuous on K, T is weak to norm -upper semicontin-

uous on K and T (x) is compact for every x ∈ K,

(b) f is weak to norm-sequentially continuous on K, T is weak to weak∗ upper semi con-

tinuous on K and T (x) is weak∗ compact for every x ∈ K.

Then Sω(T, f ,K) 6= /0.
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Proof. From Theorem 3.1, whenever (a) and (b) holds, we have Sω(T, f ,K) 6= /0. Let x ∈

Sω(T, f ,K). We now prove that x ∈ Sω(T, f ,K). Indeed by supposing the contrary, we obtain

that for every u ∈ T (x) there exists y ∈ K such that

〈u, f (y)− f (x)〉 ∈ −intC(x).

Hence

min
y∈K
〈u, f (y)− f (x)〉 ∈ −intC(x).

Since T (x) is compact (in the norm topology or in the weak∗ topology), we obtain that

max
u∈T (x)

min
y∈K
〈u, f (y)− f (x)〉 ∈ −intC(x).

Consider the function h : K×T (x)→ Y

h(y,u) = 〈u, f (y)− f (x)〉 6∈ −intC(x).

We show that h satisfies the assumptions of Fan’s minimax Theorem. Since T (x) is convex, we

have that h(y, ·) : T (x)→ Y is concave for every y ∈ K. Hence h is concave like on T (x). Since

f is of quasi linear type. From Lemma 2.9, for every y1,y2 ∈ K we have

f ([y1,y2]) = [ f (y1), f (y2)].

Hence for every t ∈ (0,1) we have

t f (y1)+(1− t) f (y2) = f (y0) for some y0 ∈ [y1,y2].

Thus for every y1,y2 ∈ K and t ∈ (0,1) there exists y0 ∈ [y1,y2] such that

〈u, f (y0)− f (x)〉= 〈u, t f (y1)+(1− t) f (y2)− f (x)〉 6∈ −intC(x), ∀u ∈ T (x).

That is,

h(u,y0) = th(u,y1)+(1− t)h(u,y2) 6∈ −intC(x).

Hence h is convex like on K. Obviously h(·,u) is weakly sequentially continuous on K for all

u ∈ T (x). Hence from Theorem 7.1.2 from [16], h(·,u) is weakly lower semi continuous from

Theorem 3.5 we have

max
u∈T (x)

min
y∈K

h(y,u) = min
y∈K

max
u∈T (x)

h(y,u).



GENERAL SET-VALUED VECTOR VARIATIONAL INEQUALITY PROBLEMS 13

max
u∈T (x)

min
y∈K
〈u, f (y)− f (x)〉= max

u∈T (x)
min
y∈K

h(y,u) ∈ −intC(x).

On the other hand, from x ∈ Sω(T, f ,K), we have that for every y ∈ K

max
u∈T (x)

〈u, f (y)− f (x)〉= max
u∈T (x)

h(y,u) 6∈ −intC(x).

which leads to

min
y∈K

max
u∈T (x)

h(y,u) 6∈ −intC(x).

This a contradiction.

3. Applications

In this section, we apply the existence results of solutions for the general set valued vector

variational inequality problems. From (2)-(4) that we have obtain in previous section, to es-

tablished some coincidence point results involving operators of quasi linear type. We obtain

Kakutani’s fixed point Theorem. Every where in the sequel X denotes a real Hilbert space

identified with its dual. The range of the set valued operator F : K ⊆X ⇒ X is the set

R(F) =
⋃

x∈K

F(x).

Theorem 4.1. Let K be a nonempty weakly compact convex subset of a topological vector

space X and consider {C(x) : x ∈ K} be a family of nonempty convex compact pointed solid

cone with−intC(x) 6= /0. Consider the weak to weak upper semi continuous set valued mapping

F : K ⇒ X with weakly compact and convex valued. Let f : K → X be a weak to norm

continuous operator which is of quasi linear type. Assume that R(F)⊆ f (K). Then there exists

x ∈ K such that f (x) ∈ F(x).

Proof. Consider the set valued mapping T : K ⇒ L(X ,Y ), T (x) = f (x)−F(x), which is

nonempty convex and weakly compact valued. We show that T is weak to weak upper semicon-

tinuous . From Lemma 2.1, it is enough to show that for every weak convergent net {xi}⊆K that

is xi→ x0 ∈K and for every net zi ∈ T (xi) there exists z0 ∈ T (x0) and a subnet {zi j} ⊆ {zi} such

that zi j → z0 that is {zi j} converges to z0 in the weak topology of X . Let {xi} ⊆ K,xi→ x0 ∈ K

and zi ∈ T (xi). Then zi = f (xi)− yi, where yi ∈ F(xi). Since F is weakly compact valued and
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weak to weak upper semi continuous. From Lemma 2.1, there exists y0 ∈ F(x0) and a sub net

{yi j} ⊆ {yi} such that yi j → y0. But zi j → f (x0)− y0 ∈ T (x0), hence T is weak to weak upper

semi continuous. From Theorem 3.6 (b), Sω(T, f ,K) 6= /0. Let x ∈ Sω(T, f ,K), that is there

exists u ∈ T (x) such that

〈u, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ K.

But u = f (x)− v for some v ∈ F(x). Hence for all y ∈ K,

〈 f (x)− v, f (y)− f (x)〉 6∈ −intC(x), ∀y ∈ K.

Since R(F)⊆ f (K), let y ∈ K such that f (y) = v. Then we obtain

〈 f (x)− v,v− f (x)〉 6∈ −intC(x)

or equivalently

−‖v− f (x)‖2 6∈ −intC(x),

which leads to f (x) = v ∈ F(x).

Theorem 4.2. Let K be a nonempty weakly compact convex set of a topological vector space X

and {C(x) : x ∈X } be a family of nonempty convex compact point solid cone with intC(x) 6= /0.

Consider the weak to weak upper semi continuous set valued map F : K ⇒ X with weakly

compact convex values. Let f : K →X be a weak to weak sequentially continuous operator

which is quasi linear type. Assume that R(F)⊆ f (K) and the map f −F is weak to norm upper

semi continuous. Then there exists x ∈ K such that

f (x) ∈ F(x).

Proof. Consider the map T : K ⇒ L(X ,Y ), T (x) = f (x)−F(x). From Theorem 3.6 (a),

similar to the proof of Theorem 4.1, we obtain that there exists x ∈ K such that

f (x) ∈ F(x).

In the virtue of weak to weak sequentially continuity of the map idK : K→ K, idK(x) = x as

a corollary. We have the following fixed point results.
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Corollary 4.3. Let K ⊆X be a nonempty weakly compact convex set of a topological vector

space X and {C(x) : x ∈X } be a family of nonempty convex compact point solid cone with

intC(x) 6= /0. Consider a set valued map F : K ⇒X with weakly compact convex values. Assume

that idK−F is weak to norm upper semi continuous. Then F has a fixed point.
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