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Abstract. In this paper, we consider a generalized Newton method for solving the generalized equation 0∈F(x∗)+

T (x∗), where F is Fréchet differentable and T is set valued and maximal monotone. Using the center Lipschitz

conditions, we prove the convergence of the method with the following advantages: tighter error estimates on the

distances involved and the information on the location of the solution is at least as precise. These advantages were

obtained under the same computational cost.
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1. Introduction

Let H be a Hilbert space and let T : H ⇒ H be a set valued maximal monotone operator.

Let F : H −→ H be a Fréchet differentiable function. In this paper, we are interested in the
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approximately solving the generalized equation: Find x∗ ∈ H such that

(1.1) 0 ∈ F(x∗)+T (x∗).

Importance of studying problem (1.1) and its applications in the physical and engineering sci-

ences and many other areas can be found in [1]- [31]. Generalized Newton method for (1.1) is

defined iteratively for n = 1,2,3, . . . by

(1.2) 0 ∈ F(xn)+F ′(xn)(xn+1− xn)+T (xn+1).

Using the classical Lipschitz condition, Uko [24, 25] established the convergence of (1.2). Re-

cently, the convergence (1.2) has been studied by many other authors under various conditions;

see Robinson [17], Josephy [12] and [18, 26] for more details.

The convergence of generalized Newton method (1.2) was shown in [27, 31] using the Lips-

chitz continuity conditions on F ′. However, there are problems where the Lipschitz continuity

of F ′ does not hold (see also the numerical examples). Motivated by this constrains, we present

a convergence analysis of the generalized Newton method (1.2) using the generalized continuity

on F ′. Our results are weaker even if we specialize the conditions on F ′ to the condition given

in [21]. This way we expand the applicability of generalized Newton method (1.2).

The rest of the paper is organized as follows. In Section 2, we give the mathematical prelim-

inaries. In Section 3, the convergence of generalized Newton method (1.2) is obtained.

2. Preliminaries

Let x ∈ H and r > 0. We use U(x,r) and U(x,r) to denote the open and closed metric ball,

respectively, center at at x with radius r i.e.,

U(x,r) := {y ∈ H : ‖x− y‖< r} and U(x,r) := {y ∈ H : ‖x− y‖ ≤ r}.

Recall that a bounded linear operator G : H→H is called a positive operator if G is self con-

jugate and 〈Gx,x〉 ≥ 0, for each x ∈ H (cf. [19], p.313). The following lemma about properties

of positive operators is taken from [27].

Lemma 2.1. Let G be a positive operator. Then the following conditions hold:
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• ‖G2‖= ‖G‖2

• If G−1 exists, then G−1 is also a positive operator and

(2.1) 〈Gx,x〉 ≥ ‖x‖2

‖G−1‖
, for each x ∈ H.

Let T : H ⇒ H be a set valued operator. The domain domT of T is defined as domT := {x ∈

H : T x 6= /0}. Next, let us recall notions of montonicity for set-valued operators (see [30]).

Definition 2.2. Let T : H ⇒ H be a set valued operator. T is said to be

(a) monotone if

(2.2) 〈u− v,y− x〉 ≥ 0, for each u ∈ T (y) and v ∈ T (x)

• maximal monotone if it is monotone and the following implications hold:

(2.3) 〈u− v,x− y〉 ≥ 0, for each y ∈ domT and v ∈ T (y)⇒ x ∈ domT and u ∈ T (x).

Let G : H −→H be a bounded linear operator. Then Ĝ := 1
2(G+G∗), where G∗ is the adjoint

of G. Hereafter, we assume that T : H ⇒ H is a set valued maximal monotone operator and

F : H −→ H is a Fréchet differentiable operator.

3. Semi-local convergence

Definition 3.1. Let R > 0 and x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Then, operator ‖F̂ ′(x̄)
−1
‖F is

said to satisfy the center-Lipschitz condition with L− average at x̄ ∈U(x̄,R), if

‖F̂ ′(x̄)
−1
‖‖F ′(x)−F ′(x̄)‖ ≤

∫ ‖x−x̄‖

0
L0(u)du,

for each x̄ ∈ U(x̄,R), where L0 is a non-negative non-decreasing integrable function on the

interval [0,R] satisfying
∫ R0

0 L0(u)du = 1, for some R0 ≥ 0.

Definition 3.2. Let R > 0 and x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Then, operator ‖F̂ ′(x̄)
−1
‖F ′

is said to satisfy the center-Lipschitz condition in the inscribed sphere with (L0,L)− average at

x̄ on U(x̄,R), R = min{R0,R}, if

‖F̂ ′(x̄)
−1
‖‖F ′(y)−F ′(x)‖ ≤

∫ ‖x−x̄‖+‖y−x‖

‖x−x̄‖
L(u)du,
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for each x,y ∈ U(x̄,R0), with ‖x− x̄‖+‖y− x‖ < R and L is a non-negative non-decreasing

integrable function on the interval [0,R].

Definition 3.3. Let R > 0 and x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Then, operator ‖F̂ ′(x̄)
−1
‖F ′

is said to satisfy the center-Lipschitz condition in the inscribed sphere with L1− average at

x̄ on U(x̄,R), if

‖F̂ ′(x̄)
−1
‖‖F ′(y)−F ′(x)‖ ≤

∫ ‖x−x̄‖+‖y−x‖

‖x−x̄‖
L1(u)du

for each x,y ∈ U(x̄,R), with ‖x− x̄‖+‖y− x‖ < R and L1 is a non-negative non-decreasing

integrable function on the interval [0,R].

The convergence analysis of generalized Newton’s method (1.2) was based on Definition

3.3 [31]. However, we have that

(3.1) L0(u)≤ L1(u)

and

(3.2) L(u)≤ L1(u)

for each u ∈ [0,R], since R≤ R.

Therefore if the functions L0 and L are used instead of L1 a more precise convergence analysis

can be obtained. This is the main objective in the present paper. Notice that in practice the

computation of function L1 requires the computation of functions L0 and L as special cases. Let

β > 0. Define scalar majorizing function h by

(3.3) h1(t) = β − t +
∫ t

0
L1(u)(t−u)du, for each t ∈ [0,R]

and majorizing sequences {tn} by t0 = 0, tn+1 = tn−h′1(tn)
−1h1(tn).

Sequence {tn} can also be written as t0 = 0, t1 = β ,

(3.4) tn+1 = tn +

∫ 1
0
∫ tn−1+θ(tn−tn−1)

tn−1
L1(u)(tn− tn−1)dθ

1−
∫ tn

0 L1(u)du
.
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Sequence {tn} was used in [31]. However, in our study, we use the sequence {sn} defined by

s0 = 0, s1 = β ,

(3.5) sn+1 = sn +

∫ 1
0
∫ sn−1+θ(sn−sn−1)

sn−1
L(u)du(sn− sn−1)dθ

1−
∫ sn

0 L0(u)du
.

We need an auxillary result where we compare sequence {tn} to {sn}. Let R1 > 0 and b > 0

be such that

(3.6)
∫ R1

0
L1(u)du = 1 and b =

∫ R1

0
L1(u)udu.

Lemma 3.4. The following items hold.

(a) The function h1 is monotonically decreasing on [0,R1] and monotonically increasing on

[R1,R]. Suppose that

(3.7) β ≤ b.

Then, h has a unique zero, respectively in [0,R1] and [R1,R], which are denoted by r1

and r2 which satisfy

(3.8) β < r1 <
R1

b
β < R1 < r2 < R.

Moreover, if β ≤ b and r1 = r2 if β = b.

(b) Under hypothesis (3.7) sequences {tn} and {sn} are non-decreasing, converge to r1 and

s∗ = lim
n→∞

sn, respectively so that

(3.9) sn ≤ tn ≤ r1

(3.10) 0≤ sn+1− sn ≤ tn+1− tn

and

(3.11) s∗ ≤ r1.

Proof. The proof of part (a) and that sequence {tn} non-decreasingly converges to r1 can be

found in [27, 31]. Using a simple inductive arguement, (3.1), (3.2), (3.4), (3.5) estimates (3.9)

and (3.10) are obtained. Hence, sequence {sn} is non-decreasing and bounded above by r1 and

as such it converges to s∗ which satisfies (3.11). �
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We also need the following Banach-type perturbation lemma.

Lemma 3.5. Let r < R0. Let also x̄ ∈ H be such that F̂ ′(x̄) is a positive operator and F̂ ′(x̄)
−1

exists. Suppose that ‖F̂ ′(x̄)‖F ′ satisfies the center-Lipschitz condition with L0− average at

x̄ ∈U(x̄,r). Then, for each x ∈U(x̄,r), F̂ ′(x) is a positive operator, F̂ ′(x)
−1

exists and

(3.12) ‖F̂ ′(x)
−1
‖ ≤ ‖F̂ ′(x̄)

−1
‖

1−
∫ ‖x−x̄‖

0 L0(u)du
.

Proof. Simply use L0 instead of L1 in the proof of corresponding result in [27, 31].

Remark 3.6. The estimate corresponding to (3.12) is

(3.13) ‖F̂ ′(x)
−1
‖ ≤ ‖F̂ ′(x̄)

−1
‖

1−
∫ ‖x−x̄‖

0 L1(u)du
.

In view of (3.1), (3.12) and (3.13), estimate (3.12) is more precise than (3.13), if L0(u)< L1(u).

Next, we present the semi-local convergence analysis of the Newton’s method (1.2).

Theorem 3.7. Suppose that there exists x0 ∈D such that F̂ ′(x0)
−1

exists, (3.7) holds, ‖F̂ ′(x0)
−1
‖F ′

satisfies the center-Lipschitz condition in the inscribed sphere with L0− average at x0 on U(x0,s∗),

the center-Lipschitz condition in the inscribed sphere with (L0,L)− average at x̄ on U(x0,s∗),

and F ′(x0) is a positive operator. Then, sequence {xn} generated with initial point x0 by New-

ton’s method (1.2) provided that

(3.14) ‖x1− x0‖ ≤ β

is well defined in U(x0,s∗), remains in U(x0,s∗) for each n = 0,1,2, · · · and converges to a

solution x∗ of (1.1) in U(x0,s∗). Moreover, the following estimates hold

(3.15) ‖xn+1− xn‖ ≤ s∗− sn, for each n = 0,1,2, · · ·

Proof. We shall show using mathematical induction that sequence {xn} is well defined and

satisfies

(3.16) ‖xk+1− xk‖ ≤ sk+1− sk, for each k = 0,1,2, · · ·
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Estimate (3.16) holds for k = 0 by (3.14). Let us suppose that (3.16) holds for n= 0,1,2, · · · ,k−

1. We shall show that (3.16) holds for n = k. Notice that

(3.17) ‖xk− x0‖ ≤ ‖xk− xk+1‖+ · · ·+‖x1− x0‖ ≤ sk− sk−1 + · · ·+ s1− s0 = sk− s0 < s∗.

By (3.17) and Lemma 3.5, F ′(xk) is a positive operator, F̂ ′(xk)
−1

exists and

(3.18) ‖F̂ ′(xk)
−1
‖ ≤ ‖F̂ ′(x0)

−1
‖

1−
∫ ‖xk−x0‖

0 L0(u)du
.

By Lemma 2.1, we have that

(3.19)
‖x‖2

‖F̂ ′(xk)
−1
‖
≤ 〈F ′(xk)x,x〉= 〈F ′(xk)x,x〉 for each x ∈ H,

By Remark 2.5 [27, 31], we have

(3.20) 0 ∈ F(xk)+F ′(xk)(xk+1− xk)+T (xk+1).

We have by hypotheses that

(3.21) 0 ∈ F(xk−1)+F ′(xk−1)(xk− xk−1)+T (xk).

Using (3.20), (3.21) and T being a maximal monotone operator, we get that 〈−F(xk−1)−

F ′(xk−1)(xk− xk−1)+F(xk)+F ′(xk)(xk+1− xk),xk− xk+1〉 ≥ 0. It follows that

(3.22) 〈F(xk)−F(xk−1)−F ′(xk−1)(xk− xk−1),xk− xk+1〉 ≥ 〈F ′(xk)(xk− xk+1),xk− xk+1〉.

By (3.19), we have that

‖xk− xk+1‖2

‖F̂ ′(xk)
−1
‖
≤ 〈F̂ ′(xk)(xk− xk+1),xk− xk+1〉= 〈F ′(xk)(xk− xk+1),xk− xk+1〉,
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which leads together with (3.22) to

‖xk− xk+1‖ ≤ ‖F̂ ′(xk)
−1
‖‖F(xk)−F(xk−1)−F ′(xk−1)(xk− xk−1)‖

≤ ‖F̂ ′(xk)
−1
‖‖

∫ 1

0
(F ′(xk−1 +θ(xk− xk−1))−F ′(xk−1)(xk− xk−1)dθ‖

≤ ‖F̂ ′(x0)
−1
‖

1−
∫ ‖xk−x0‖

0 L0(u)du
‖
∫ 1

0
(F ′(xk−1 +θ(xk− xk−1))−F ′(xk−1)‖

×‖(xk− xk−1)dθ‖

≤ 1
1−

∫ sk−s0
0 L0(u)du

∫ 1

0

∫ ‖xk−1−x0‖+θ‖xk−xk−1‖

‖xk−1−x0‖
L(u)du‖xk− xk−1‖dθ

≤ 1
1−

∫ sk
0 L0(u)du

∫ 1

0

∫ sk−1+θ(sk−sk−1)

sk−1

L(u)du(sk− sk−1)dθ

= sk+1− sk.(3.23)

It follows from (3.23) that sequence {xk} is complete in a Hilbert space H and as such it con-

verges to some x∗ ∈U(x0,s∗) (since U(x∗,s∗) is a closed set). Moreover, since T is a maximal

monotone and F ∈C1, we deduce that x∗ solves (1.1). Furthermore, (3.15) follows from (3.16)

by using standard majorization techniques [1, 4, 5].

Concerning the uniqueness of the solution x∗ around the point x0, we have the following

result.

Proposition 3.8. Suppose that the hypotheses of Theorem 3.7 hold except the center-Lipschitz

(L0,L) condition for x1 ∈ H such that

0 ∈ F(x0)+F ′(x0)(x1− x0)+T (x1).

Then, there exists a unique solution x∗ of (1.1) in U(x0,s∗).

Proof. Simply replace function L1 by L0 in the proof of Theorem 4.1 in [31].

Remark 3.9.

(a) It is worth noticing that function L1 is not needed in the proof of Theorem 4.1 in [31],

since it can be replaced by L0 which is more precise than L1(see (3.1)) in all stages of

the proof. Moreover, in view of (3.11), we obtain a better information on the uniqueness

of x∗.
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(b) The results obtained in this paper can be improved even further, if in Definition 3.2 we

consider instead the center Lipschitz condition in the inscribed sphere with (L0,K)−

average at x̄ on U(x̄,R−‖x1− x0‖) (or U(x̄,R−β )) given by

‖F̂ ′(x̄)
−1
‖‖F ′(y)−F ′(x)‖ ≤

∫ ‖x−x̄‖+‖y−x‖

‖x−x̄‖
K(u)du,

for each x,y ∈U(x̄,R−‖x1− x0‖) (or U(x̄,R−β )). Notice that

(3.24) K(u)≤ L(u), for each u ∈U(0,R).

Then, by simply noticing that the iterates {xn} remain in U(x0,R−‖x1− x0‖) which

is more precise location than U(x0,R), function K can replace L in all the preceding

results.

Moreover, define sequence {αn} by α0 = 0, α1 = β ,

(3.25) αn+1 = αn +

∫ 1
0
∫

αn−1+θ(αn−αn−1)
αn−1

K(u)du(αn−αn−1)dθ

1−
∫

αn
0 L0(u)du

.

Then, in view of (3.5), (3.24) and (3.25), we have that

(3.26) αn ≤ sn,

(3.27) 0≤ αn+1−αn ≤ sn+1− sn

and

(3.28) α
∗ = lim

n→∞
αn ≤ s∗

hold under the hypotheses (3.7).

(c) We have extended the applicability of Newton’s method under hypotheses (3.7). At

this point we are wondering, if sequences {αn} and {sn} converge under a hypotheses

weaker than (3.7). It turns out that this is indeed the case, when L0, L, L1 and K are

constant functions.

It follows from (3.4), (3.5) and (3.25) that sequences {tn}, {sn} and {αn} reduce

respectively to
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(3.29) t0 = 0, t1 = β , tn+1 = tn +
L(tn− tn−1)

2

2(1−Ltn)
,

(3.30) s0 = 0, s1 = β , sn+1 = sn +
L(sn− sn−1)

2

2(1−L0sn)
,

(3.31) α0 = 0, α1 = β , αn+1 = αn +
K(αn−αn−1)

2

2(1−L0αn)
.

Sequence {tn}, converges provided that the Kantorovich condition [13, 14, 23]

(3.32) hk = Lβ ≤ 1
2

is satisfied, whereas {sn} and {αn} converge [6], if

(3.33) h1 = L1β ≤ 1
2

and

(3.34) h2 = L2β ≤ 1
2

are satisfied, respectively, where L1 =
1
8(L+4L0+

√
L2 +8L0L) and L2 =

1
8(L+4L0+√

L2 +8L0K). Notice that

(3.35) hk ≤
1
2
⇒ h1 ≤

1
2
⇒ h2 ≤

1
2

but not necessarily vice versa, unless, if L0 = L = K.

Examples, where L0 < K < L < L1 can be found in [6]. Hence, the convergence domain is also

extended in this case. Similar advantages are obtained in the case of the Smale’s alpha theory

[21, 22] of Wang’s γ− condition [28], [31]. However, we leave the details to the motivated

readers.
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