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PERMANENCE OF A NONLINEAR COMPETITION MODEL WITH DELAY
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Abstract. Sufficient conditions are obtained for the permanence of the following nonlinear competition model

dN1(t)
dt

= r1(t)N1(t)

[
K1(t)+α1(t)N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

−Nβ11
1 (t−σ1(t))

]
,

dN2(t)
dt

= r2(t)N2(t)

[
K2(t)+α2(t)N

β21
1 (t− τ1(t))

1+Nβ21
1 (t− τ1(t))

−Nβ22
2 (t−σ2(t))

]
,

where ri,Ki,αi, τi and σi, i = 1,2 are continuous functions bounded above and below by positive constants, Ki >

αi, i = 1,2, βi j, i, j = 1,2 are all positive constants.
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1. Introduction

Throughout this paper, for a continuous function g(t), we set

gl = inf
t∈R

g(t), gu = sup
t∈R

g(t).
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The aim of this paper is to investigate the persistent property of the following nonlinear

competition model

dN1(t)
dt

= r1(t)N1(t)

[
K1(t)+α1(t)N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

−Nβ11
1 (t−σ1(t))

]
,

dN2(t)
dt

= r2(t)N2(t)

[
K2(t)+α2(t)N

β21
1 (t− τ1(t))

1+Nβ21
1 (t− τ1(t))

−Nβ22
2 (t−σ2(t))

]
.

(1.1)

We assume that the coefficients of system (1.1) satisfies:

(A) ri,Ki,αi, τi and σi, i = 1,2 are continuous functions bounded above and below by positive

constants. Ki > αi, i = 1,2. βi j, i, j = 1,2 are all positive constants.

Let τ = sup
t
{τi(t),σi(t), i = 1,2}, we consider (1.1) together with the following initial condi-

tions

Ni(s) = ϕi(s)≥ 0,s ∈ [−τ,0], ϕi(0)> 0. (1.2)

It is not difficult to see that solutions of (1.1)-(1.2) are well defined for all t ≥ 0 and satisfy

Ni(t)> 0 for t ≥ 0, i = 1,2.

The essential assumption in (A) is Ki > αi, i = 1,2, we mention here that such an assumption

implies that the relationship between two species is competition. Indeed, from K1 > α1 and the

first equation of system (1.1), we have

dN1(t)
dt

= r1(t)N1(t)

[
K1(t)+α1(t)N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

−Nβ11
1 (t−σ1(t))

]

= r1(t)N1(t)

[
K1(t)+K1(t)N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

−Nβ11
1 (t−σ1(t))

−
(K1(t)−α1(t))N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

]
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= r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))

−
(K1(t)−α1(t))N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

]
.

(1.3)

Similarly, the second equation of system (1.1) can be rewrite as follows:

dN2(t)
dt

= r2(t)N2(t)

[
K2(t)−Nβ22

2 (t−σ2(t))

−
(K2(t)−α2(t))N

β21
1 (t− τ1(t))

1+Nβ21
1 (t− τ1(t))

]
.

(1.4)

From (1.3) and (1.4), one could easily see that the first species has negative effect on the sec-

ond species, and the second species has negative effect on the first species, that is, under the

assumption Ki > αi, i = 1,2, the relationship between two species is competition.

During the past decades, many scholars focused their attention to the study of the dynamic

behaviors of the cooperative system, see [1]-[24], Li [1] studied the following two species

mutualism model

dN1(t)
dt

= r1(t)N1(t)
[

K1(t)+α1(t)N2(t− τ2(t))
1+N2(t− τ2(t))

−N1(t−σ1(t))
]
,

dN2(t)
dt

= r2(t)N2(t)
[

K2(t)+α2(t)N1(t− τ1(t))
1+N1(t− τ1(t))

−N2(t−σ2(t))
]
.

(1.4)

Under the assumption ri,Ki,αi and τi,σi, i = 1,2 are continuous periodic functions with com-

mon period ω . αi > Ki, i = 1,2. The author investigated the existence, uniqueness and stability

property of the positive periodic solution of system (1.4). Huang[2] argued that the general non-

autonomous case is more appropriate, and she investigated the persistent property of a n-species

mutualism model with delay, which is the generalization of the system (1.4).

As for as system (1.4) is concerned, one interesting issue is proposed: What would happen if

Ki > αi, i = 1,2 ? Is it possible for the system admits the similar dynamic behaviors as that of

the case αi > Ki, i = 1,2?

On the other hand, during the past decades, many scholars argued that nonlinear population

model is more appropriate then the Logistic type model, and they investigated the extinction,
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persistent, and stability property of the nonlinear population models ([22]-[30]). For example,

Chen and Shi [27] investigated the following nonlinear model:
ẋi = xi[bi(t)−

n
∑

k=1
aik(t)x

αik
k −

n
∑

k=1
cik(t)x

αii
i xαik

k −
m
∑

k=1
dik(t)y

βik
k ],

ẏ j = y j[−r j(t)+
n
∑

k=1
e jk(t)x

δ jk
k −

m
∑

k=1
f jk(t)y

η j j
j y

η jk
k −

m
∑

k=1
g jk(t)y

η jk
k ],

(1.6)

where i = 1,2, ...,n, j = 1,2, ...,m, xi(t) denotes the density of prey species Xi at time t, y j(t)

denotes the density of predator species Yj at time t. They obtained a set of sufficient conditions

which ensure the existence of a unique globally attractive almost periodic solution. Chen [25]

investigated the permanence and extinction property of following general nonautonomous n-

species Gilpin-Ayala competition system

ẋi(t) = xi(t)
[
bi(t)−

n
∑
j=1

ai j(t)(x j(t))αi j
]
, i = 1,2, ...,n, (1.6)

where bi(t),1≤ i≤ n and ai j(t), i, j = 1,2, ...,n are continuous for c≤ t <+∞, αi j are positive

constants. The results of Chen[28] is then generalized to the delayed case in [27].

The success of [22]-[30] motivated us to proposed the system (1.1). The aim of this paper is,

by further developing the analysis technique of [2, 25], to obtain a set of sufficient conditions to

ensure the permanence of the system (1.1). More precisely, we will prove the following result.

Theorem 1.1. Under the assumption (A), system (1.1) is permanent, that is, there exist positive

constants mi,Mi, i = 1,2 which are independent of the solutions of system (1.1), such that for

any positive solution (x1(t),x2(t))T of system (1.1) with initial condition (1.2), one has:

mi ≤ liminf
t→+∞

xi(t)≤ limsup
t→+∞

xi(t)≤Mi, i = 1,2.

2. Proof of the main results

Now let’s state several lemmas which will be useful in the proving of main result.

Lemma 2.1. [25] If a > 0,b > 0 and ẋ ≥ x(b− axα), where α is a positive constant, when

t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥
(b

a

)1/α

.
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If a > 0,b > 0 and ẋ≤ x(b−axα), where α is a positive constant, when t ≥ 0 and x(0)> 0, we

have

limsup
t→+∞

x(t)≤
(b

a

)1/α

.

Now we are in the position of proving the main result of this paper.

Proof of Theorem 1.1. Set

τ = sup
t
{τi(t),σi(t), i = 1,2}.

Let (N1(t),N2(t)) be any positive solution of system (1.1) with initial condition (1.2). From

K1(t) > α1(t), we know that the first equation of (1.1) could be rewrite as (1.3), and it follows

from (1.3) that

dN1(t)
dt

= r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))

−
(K1(t)−α1(t))N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

]

≤ Ku
1 ru

1N1(t).

(2.1)

Integrating both sides of (2.1) from t−σ1(t) to t leads to

ln
N1(t)

N1(t−σ1(t))
≤
∫ t

t−σ1(t)
ru

1Ku
1 ds≤ ru

1Ku
1 τ,

and so

N1(t−σ1(t))≥ N1(t)exp{−ru
1Ku

1 τ}. (2.2)

Substituting (2.2) into (1.3), it follows that

dN1(t)
dt

≤ r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))

]

≤ N1(t)
[
ru

1Ku
1 − rl

1
(
N1(t)exp{−ru

1Ku
1 τ}
)β11
]

= N1(t)
[
ru

1Ku
1 − rl

1Nβ11
1 (t)exp{−β11ru

1Ku
1 τ}
)]

.

(2.3)
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Thus, as a direct corollary of Lemma 2.1, according to (2.3), one has

limsup
t→+∞

N1(t) ≤

(
ru

1Ku
1

rl
1

exp{β11ru
1Ku

1 τ}

) 1
β11

=

(
ru

1Ku
1

rl
1

) 1
β11

exp{ru
1Ku

1 τ} def
= M1.

(2.4)

By using (1.4), similarly to the analysis of (2.1)-(2.4), we can obtain

limsup
t→+∞

N2(t)≤

(
ru

2Ku
2

rl
2

) 1
β22

exp{ru
2Ku

2 τ} def
= M2. (2.5)

For any small positive constant ε > 0, from (2.4)-(2.5) it follows that there exists a T1 > 0 such

that for all t > T1 and i = 1,2,

Ni(t) < Mi + ε. (2.6)

For t ≥ T1 + τ , from (2.6) and (1.3), we have

dN1(t)
dt

= r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))

−
(K1(t)−α1(t))N

β12
2 (t− τ2(t))

1+Nβ12
2 (t− τ2(t))

]

≥ r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))

−
(K1(t)−α1(t))N

β12
2 (t− τ2(t))

Nβ12
2 (t− τ2(t))

]

= r1(t)N1(t)

[
K1(t)−Nβ11

1 (t−σ1(t))− (K1(t)−α1(t))

]

≥ N1(t)
[
rl

1α l
1− ru

1
(
M1 + ε)β11

]
.

(2.7)
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Noting that

rl
1α l

1− ru
1
(
M1 + ε)β11 ≤ ru

1

(
α l

1−
(
M1 + ε)β11

)
≤ ru

1

(
α l

1−
(
M1)

β11

)
≤ ru

1

(
α l

1−
ru

1Ku
1

rl
1

exp{β11ru
1Ku

1 τ}
)

≤ ru
1

(
α l

1−Ku
1

)
≤ 0.

Integrating both sides of (2.7) from t−σ1(t) to t leads to

ln
N1(t)

N1(t−σ1(t))
≥

∫ t

t−σ1(t)

[
rl

1α
l
1− ru

1
(
M1 + ε)β11

]
ds

≥
[
rl

1α
l
1− ru

1
(
M1 + ε)β11

]
τ,

and so

N1(t−σ1(t))≤ N1(t)exp
{
−
[
rl

1α
l
1− ru

1
(
M1 + ε)β11

]
τ

}
. (2.8)

Substituting (2.8) into (1.3), similarly to the analysis of (2.7), for t ≥ T1 + τ , it follows that

dN1(t)
dt

≥ r1(t)N1(t)

[
α1(t)−Nβ11

1 (t−σ1(t))

]

≥ N1(t)
[
rl

1α l
1− ru

1Nβ11
1 (t−σ1(t))

]
≥ N1(t)

[
rl

1α l
1− ru

1Nβ11
1 (t)exp

{
−
[
rl

1α l
1− ru

1
(
M1 + ε)β11

]
β11τ

}]
,

(2.9)

thus, as a direct corollary of Lemma 2.1, according to (2.9), one has

liminf
t→+∞

N1(t) ≥

(
rl

1α l
1

ru
1

exp
{[

rl
1α l

1− ru
1
(
M1 + ε)β11

]
β11τ

}) 1
β11

=

(
rl

1α l
1

ru
1

) 1
β11

exp
{[

rl
1α l

1− ru
1
(
M1 + ε)β11

]
τ

}
.

(2.10)

Setting ε → 0, it follows that

liminf
t→+∞

N1(t)≥
1
2

(
rl

1α l
1

ru
1

) 1
β11

exp
{[

rl
1α

l
1− ru

1
(
M1)

β11
]
τ

}
def
= m1. (2.11)
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Similarly to the analysis of (2.7)-(2.11), by applying (2.6), from (1.4), we can also have

liminf
t→+∞

N2(t)≥
1
2

(
rl

2α l
2

ru
2

) 1
β22

exp
{[

rl
2α

l
2− ru

2
(
M2)

β22
]
τ

}
def
= m2. (2.12)

(2.4)-(2.5), (2.11)-(2.12) show that under the assumptions of Theorem 1.1, system (1.1) is per-

manent. This ends the proof of Theorem 1.1.

3. Numeric simulations

This section we will give an example to show the feasibility of the Theorem 1.1.

Example 3.1.

dN1(t)
dt

= N1(t)

[
4+(1+ 1

2 cos(t))N
1
2
2 (t)

1+N
1
2
2 (t)

−N2
1 (t)

]
,

dN2(t)
dt

= N2(t)

[
3+(1+ 1

10 sin(t))N3
1 (t)

1+N3
1 (t)

−N
1
2
2 (t)

]
.

(3.1)

Corresponding to system (1.1), one has

r1(t) = r2(t) = 1,α1(t) = 1+ 1
2 cos(t), β12 =

1
2 , β11 = 2;

α2(t) = 1+ 1
10 sin(t), K1(t) = 4, K2(t) = 3, β21 = 3, β22 =

1
2 .

Obviously, αi(t) > Ki(t), i = 1,2, hence, the conditions of Theorem 1.1 holds, it follows from

Theorem 1.1 that system (3.1) is permanent. Fig. 1 and 2 also support this assertion.

4. Discussion

Li[1] proposed a delay model of mutualism (i.e., system (1.4)). Under the assumption αi >

Ki, i = 1,2, he showed that the system admits at least one positive periodic solution. However,

the author did not investigated the case αi < Ki. In this paper, we first generalize the system

(1.4) to the nonlinear case, then under the assumption Ki >αi, by using the theory of differential

inequality, and applying the analysis technique of Chen[23], we show that the system is also

permanent.

Our result shows that delay and nonlinear term only infect the upper and lower bound of the
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FIGURE 1. Dynamic behavior of the first

species in system (3.1) with the initial con-

ditions (N1(0),N2(0)) = (0.1,0.1), (2,2),

(3,3), (2.5,2.5) and (0.5,0.5), respectively.

FIGURE 2. Dynamic behavior of the sec-

ond species in system (3.1) with the initial

conditions (N1(0),N2(0)) = (0.1,0.1), (2,2),

(3,3), (2.5,2.5) and (0.5,0.5), respectively.

solution, and has no influence on the persistent property of the system. Whether delay could

induce the bifurcation or not is still unknown, we leave this for future investigation.
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