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1. Introduction and Preliminaries

Let K be a nonempty subset of a real Banach space E and let 7T : K — K be a nonlinear map-
ping. In this paper, we denote the set of all fixed points of T by F(T'). The set of common fixed
points of four mappings S, S2, 71 and 75 is denoted by F = F(S1) N\ F(S2) NF(T1) N F(T2).
Recall the following definitions.

T is said to be asymptotically nonexpansive [1] if there exists a positive sequence {k,} in

[1,e0) with lim,,_,e k, = 1 such that

IT"(x) =T"W)Il < kallx =y, Vx,y €K, neN.
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T is said to be uniformly L-Lipschitzian if for some L > 0 such that
IT"(x) =T"WIl < Llx—yll, Vxy€K,neN.
Also T is called a contraction if for some 0 < k < 1 such that
ITx)=TOI < kllx=yll, Vx,y e K.

Fix a sequence {e,} C [0,00) with lim,_,. e, = 0, then according to Agarwal et al. [2], T is
said to be nearly asymptotically nonexpansive if k,, > 1 for all n € N with lim,, .k, = 1 such

that
1T"(x) =T"WI < ka(llx—yll+en), Vx,y €K.

T will be nearly uniformly L-Lipschitzian if k,, < L for all n € N.

Remark 1.1. Every asymptotically nonexpansive mapping is nearly asymptotically nonexpan-

sive and every nearly asymptotically nonexpansive mapping is nearly uniformly L-Lipschitzian.

Definition 1.1. A subset K of a Banach space E is said to be a retract of E if there exists a
continuous mapping P: E — K (called a retraction) such that P(x) = x for all x € K. If, in

addition P is nonexpansive, then P is said to be a nonexpansive retract of E.

If P: E — K is a retraction, then P> = P. A retract of a Hausdorff space must be a closed

subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Chidume et al. [3] introduced the concept of non-self asymptotically nonexpansive mappings

as follows.

Definition 1.2. Let K be a nonempty subset of a real Banach space E and let P: E — K be a
nonexpansive retraction of E onto K. A non-self mapping T : K — E is said to be asymptotically

nonexpansive if there exists a positive sequence {k,} in [1,00) with lim,_,. k, = 1 such that

IT(PT)" ") =T (PT)" ') < hallx—ll, Vx,y €K, n EN.

Example 1.1. Let £ = R be a normed linear space, K = [0, 1] and P be the identity mapping.
For each x € K, we define
Ax, ifx#0,
0, ifx=0,

T(x)=
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where 0 < A < 1. Then |T"x — T"y| = A"x —y| < |x—y| for all x,y € K and n € N.
Thus T is an asymptotically nonexpansive mapping with constant sequence {k,} = {1} for

all n > 1 and uniformly L-Lipschtzian mappings with L = sup, > {kx}.
We know that the following iteration scheme for a mapping 7 : K — K are defined as follows:

Picard iteration scheme

xp = x€K,
() Xp+1 = Tx,,neN.
Mann iteration scheme
X1 = x€K,
2) Xnt1 = (1—op)xyn+ o, Tx,, n €N,

where { @, } is a real sequence in (0,1).
In 2007, Agarwal et al. [1] introduced the following iteration scheme:

Modified S-iteration scheme

x; = x€K,
Xn+1 = (1 - an)Tnxn + anTHYn»
3) Yn = (1 - Bn)xn +ﬁnTnxn7 neN,

where {a,} and {f,} are sequences in (0, 1). They showed that this process converge at a rate
same as that of Picard iteration and faster than Mann for contractions and also they established
some weak convergence theorems using suitable conditions in the framework of uniformly con-

vex Banach space.
In 2012, Guo et al. [4] studied the iteration scheme defined as follows:

Mixed type iteration scheme
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X1 = x€K,
Xop1 = P((1— )8, + o, 71 (PT1)" 1y,),

4) Yn = P((l _Bn)SIlen+ﬁnT2(PT2)n_1xn)a ne€N,

where S, S2: K — K are two asymptotically nonexpansive self mappings and 77, T5: K — E
are two asymptotically nonexpansive non-self mappings and {a,}, {B,} are real sequences in
[0,1), and proved some strong and weak convergence theorems for mixed type asymptotically

nonexpansive mappings.
Recently, Wei and Guo [5] studied the iteration scheme defined as follows:
Mixed type iteration scheme with errors

Let E be a real Banach space, K be a nonempty closed convex subset of E and P: E — K
is a nonexpansive retraction of £ onto K. Let S, S2: K — K be two asymptotically nonexpan-
sive self mappings and 77, T : K — E are two asymptotically nonexpansive non-self mappings.

Then Wei and Guo [5] defined the new iteration scheme of mixed type with mean errors as

follows:
x1 = x€Kk,
Xn+l = P(“ns?xn+ﬁnT1(PTl>n71Yn+'}/nun)7
(5) ya = P(a!Six,+ BT (PT)" 'x, 4+ 7)), n €N,

where {u,}, {u},} are bounded sequences in E, {¢,}, {Bn}, {wm}. {o}, {B,}. {y,} are real
sequences in [0, 1) satisfying o, + B, + 1 =1 = o, + B, + 7, for all n > 1, and proved some

weak convergence theorems in the setting of real uniformly convex Banach spaces.
It is to be noted that (5) reduces to
e (4) when y, =17, =0foralln e N.

Inspired and motivated by [4], [5] and some others, we proposed the following iteration

scheme:

Hybrid mixed type iteration scheme with errors
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Let E be a real Banach space, K be a nonempty closed convex subset of £ and P: E — K
is a nonexpansive retraction of E onto K. Let S1,S5,: K — K be two nearly asymptotically
nonexpansive self mappings and 77, 7> : K — E are two asymptotically nonexpansive non-self

mappings, then we defined the hybrid mixed type iteration scheme as follows:

x1 = xeKk,
Xnr1 = P((1—ap—cp)STxn+a,Th (PTl)”_lyn+cnun),
yo = P((1—=by—d,)Shxn +bnT2(PT2)”_1xn +dyvy), n €N,

(6)

where {a, }, {bn}, {cn}, {dn} are four real sequences in [0, 1] satisfying a, +¢c, < 1, b, +d, < 1

and {u,}, {v,} are bounded sequences in K.

The aim of this paper is to study and establish some weak convergence theorems of iteration
scheme (6) for mentioned scheme and mappings in the setting of uniformly convex Banach

spaces. Our results extend and generalize several results from the current existing literature.
For the sake of convenience, we restate the following notion and results.

Let E be a Banach space with its dimension greater than or equal to 2. The modulus of

convexity of E is the function g (€): (0,2] — [0, 1] defined by

) 1
8e(e) = inf{1 = |5 r+ )l s ¥l = 1, Il = 1, & = e =l }.

A Banach space E is uniformly convex if and only if dg(g) > 0 for all € € (0,2].

Definition 1.3. Let ¥ = {x € E : ||x|| = 1} and let E* be the dual of E, that is, the space of all
continuous linear functionals f on E. The space E has:

(d) Gateaux differentiable norm if

e B
t—0 t

exists for each x and y in ..
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(d») Fréchet differentiable norm [6] if for each x in .#, the above limit exists and is attained

uniformly for y in .%’ and in this case, it is also well-known that

1 1
(h, 90+ 3l < S+l

IN

(h,J(X)>+%IIXII2+b(IIXI|) (FDN)

for all x, i € E, where J is the Fréchet derivative of the functional §||.||* atx € E, {..) is the pair-
b(1)

ing between E and E*, and b is an increasing function defined on [0, o) such that lim,_¢ - =0.

(d3) Opial condition [7] if for any sequence {x,} in E, x, converges to x weakly it follows
that limsup,,_,., ||x, —x|| < limsup,_.., ||x, —y|| for all y € E with y # x. Examples of Banach
spaces satisfying Opial condition are Hilbert spaces and all spaces /7 (1 < p < ). On the other
hand, L”[0,2x] with 1 < p # 2 fail to satisfy Opial condition.

Definition 1.4. A mapping 7': K — K is said to be demiclosed at zero, if for any sequence {x, }

in K, the condition x,, converges weakly to x € K and Tx,, converges strongly to O imply 7x = 0.

Definition 1.5. A Banach space E has the Kadec-Klee property [8] if for every sequence {x,}

in E, x, — x weakly and |[|x,|| — ||x]| it follows that ||x,, —x|| — 0.

Let 6 be the modulus of uniform convexity. Recall that E is a uniformly convex Banach

space then if (see [9])
lex+(1=t)y[| <1=2e(1=1)é([x—y[) ~ (UCBS)

for all 7 € [0, 1] and for all x,y € E such that ||x|| <1,

<1
Next we state the following useful lemmas to prove our main results.

Lemma 1.1. [10] Let {o,}7 . {Bu}ir.; and {rn};_, be sequences of nonnegative numbers
satisfying the inequality 0,1 < (14 By)Q+rn, Vo> 1.If Y By <ocand Y~ ry < oo, then
(i) lim,,_ 0 O, exists,
(ii) In particular, if {0}, has a subsequence which converges strongly to zero, then

Lemma 1.2. [11] Let E be a uniformly convex Banach space and 0 < o <t, < B < 1 for all

n € N. Suppose further that {x,} and {y,} are sequences of E such that limsup,_,., ||x,|| < a,
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limsup,,_,, |[ya|| < aandlimy,_e ||tnx, + (1 —1,)yn|| = a hold for some a > 0. Then lim,_ ||x, —

)’nH =0.

Lemma 1.3. [8] Let E be a real reflexive Banach space with its dual E* has the Kadec-Klee
property. Let {x,} be a bounded sequence in E and p, q € w,(x,) (where wy,(x,) denotes the
set of all weak subsequential limits of {x,}). Suppose lim,_« ||tx, + (1 — 1) p — q|| exists for all
t €10,1]. Then p = q.

Lemma 1.4. [8] Let K be a nonempty convex subset of a uniformly convex Banach space
E. Then there exists a strictly increasing continuous convex function ¢ : [0,00) — [0,00) with

¢(0) = 0 such that for each Lipschitzian mapping T : K — K with the Lipschitz constant L,
_ 1
ITx+ (1 =)Ty=T(ex+ (1 =)l < Lo~ (e =yl = 7 I Tx =T

forallx,y € K and all t € [0,1].
2. Weak convergence theorems

In this section, we prove some convergence theorems of iteration scheme (6) for two near-
ly asymptotically nonexpansive self mappings and two asymptotically nonexpansive non-self

mappings in real uniformly convex Banach spaces. First, we shall need the following lemmas.

Lemma 2.1. Let E be a real Banach space, K be a nonempty closed convex subset of E.
Let S1,8,: K — K be two nearly asymptotically nonexpansive self mappings with sequences
{€),,kn}, {€) kn} suchthat ¥, e, <oo, ¥ (kn—1) <eoand Ty, Tr: K — E are two asymp-
totically nonexpansive non-self mappings with a sequence {l,,} € [1,o0) such thaty ;> (l,—1) <
oo, Suppose that F = F (S1) N F(S2) NF(Ty) N F(T2) #0. Let M = sup,, a, and {a,}, {b,}, {ca},
{d} are four real sequences in [0, 1] which satisfy the following conditions:

(D) Ty cn < o0, oy dy < o

(ii) Mp < 1.

Let {x, } be the sequence defined by (6), then lim,_,« ||x, — q|| and lim,,_,c d (x,,, F) both exist
foreach g e F.
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Proof. Let g € F. Let e, = max{e),.€}, } and h, = max{ky,l,} with Y>> e, <oo, Yo | (h,—1) <
oo and p = sup, h,. From (6), we have

lyn =gl < (1= bn— dn)S5x0 + baT2(PT2)" ™ty + duv — ]|

(1 = by — dy) (S5% — q) + b (T (PT2)" ' x0 — @) + du (v — q) |

< (1= by —dy) IS5 — gll + bl 2(PT2)" ™ xn — gl + dal[va — ]
< (1 =bn—dp)[kn(|lxa = qll + €)] + bulnllxn — gl +dulva — 4|
< (1 =bp—dp) (|0 = qll + €n)] + baha] X0 = q|| + dn|va — 4]
< (1 =bn)[hn([lxn — gll +en)] + buhn|xn — gll + dnl[ve — 4
= [(1=bu) + balhnlxn — gll +dnl[ve — gl + (1 = bn)en

) <l =gl +dullva — gl + en.

Again using (7) and (8), we have

[xn41 =gl < H(l_an_Cn)S’fxn+anTl(PTl)n_1yn+cn”n_‘IH

(1= an = ) (St = )+ an(Ti (PT1)" 0 = ) + enlitn — )|

IN

(1= an — )81 — gll +anl| Ty (PT1)" ™"y — gl + cullutn — g

IN

(1 —dn _Cn)[kn(Hxn - QH +e;)] "‘anlnHyn _QH +Cn||un - CI“

IN

(1= an =) [hn([|lxn = ql| + €n)] + anhtnllyn — ql| + callun = gl

IN

(1 = apn) [ (||xn — ql| + en)] + anhn||yn — ql| + cnllun — q||

®)

IN

(1 = an)hnllxn — gl + anhn|yn — gl + en + cnllun — ql|-
Using equation (7) in (8), we obtain

X1 —ql < (1_an)honn_qu+anhn[hn||xn_qn

+dy||ve —q|| +€n] +callun —ql| +en

IA

(1 _an)h;%Hxn —q|| +anh;%||xn —q|| + anhndn||va — q|| + cullun — q|| + anhnen + ey
= hp|lxn — qll + anhadn||ve — gl + calltn — gl + (@nhn + 1)en
= [1 + (hrzl - 1)]||xn —q|| + anhndp||vn — ql| + cullun — ql| + (anhy + 1)ey

) = [1+“n]||xn_qn+vn7
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where (1, = (hy —1) and Vy, = @uhudy|[va — gl| + callun — g + (@nhn +1)e,. Hence, we have

[}

iﬂn = ihz—l Y (hn+1)(hy— 1)
n=1 n=1

n=1

< p+lih—1

and boundedness of the sequences {||u, — ¢l }, {||v» — ¢q||} with condition (i) of the lemma

Yo -
n=1

s

[anhndy ||V — ql| + cnl|lun — gl + (anhn +1)ey)

3
I
—_

I
s

anhndy||ve — gl + Z cnllun — gl + Z (anhn +1)en
n=1 n=1

3
I
R

Mp Y dullva =gl + Y callun —ql

IN

(Mp+1)2en<oo.

n=1
Now taking s, = ||x, — ¢|| in (9), we obtain s,+1 < (1+ W,)s, + v,,. Hence by Lemma 1.1 (i),
we have lim,,_,, ||x, — g|| exists.

Now, taking the infimum over all g € F in (9), we have
(10) d(xn—}—l;F) < [1+I«Ln]d(xnaF)+Vn

forall n € N. It follows from } ;> | 1, < oo, Y~ , v, <ocoand Lemma 1.1 (i) that lim,, e d (X, F)

exists. This completes the proof.

Lemma 2.2. Let E be a real uniformly convex Banach space, K be a nonempty closed convex
subset of E. Let S1,S>: K — K be two nearly asymptotically nonexpansive self mappings with
sequences {€},,kn}, {€)l,ky} such that Y7 e, < oo, Yoo |(ky—1) <ooand Ty, Tr: K — E are
two asymptotically nonexpansive non-self mappings with a sequence {l,} € [1,e) such that
Yo (In—1) <oo. Suppose that F = F(S1) N\ F(S2) F(T1) N F(T2) # 0. Let M = sup,, a, and
{an}, {bn}, {cn}, {dn} are four real sequences in |0, 1] which satisfy the following conditions:

() Xmy Cn <00, YLy dn <o)

(iii) Mp < 1, where p is taken as in Lemma 2.1;

(idi) e = Ty (PT)"'yll < IS = Ty (PT1)"'yl| and ||x = T(PT;)" x|
< ||S7x — T:(PT;)"'x|| for all x,y € K and fori=1,2.
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Let {x,} be the sequence defined by (6). Then lim,_,c ||x, — Six,|| = 0 and lim,, e ||x, —
Tixy|| =0 fori=1,2.
Proof. By Lemma 2.1, lim,,_, ||x,, — ¢|| exists for all g € F and therefore {x,} is bounded. Let

lim,,_,e ||X, — ¢|| = z. Then z > 0 otherwise there is nothing to prove. Now (7) implies that

(11) limsup ||y, —¢q|| < z.

n—soo

Also, we have
15250 — gl < kn(llx — gl +€5) < hu(llx0 — gl +-en), YV > 1,

I (PT2)" 20 —gl| < lulbin — gl < hulbin —qll, ¥ > 1,

and

150 = gl < kn(llxn = qll + &) < hn(|lxn — gll + ), Vn = 1.

Hence, we have

(12) limsup[|S5x, —ql| < z,
n—soo
(13) limsup | >(PT)"'x, —q|| < =z,
n—oo
and
(14) limsup ||STx, —¢q] < z.
n—soo

Note that ||7; (PT})" 'y, — q| < Li||yn — q|| < hal|yn — ¢|| By virtue of (11), we find that

(15) limsupHTl(PTl)”’lyn—qH < z.

n—oo -
AIS(), lt f()ll()WS from
< lim Hxn—i-l QH
n—oo

= lim H(l _an_cn)Srllxn +anT1(PTl)n_lyn+cn”n_QH

n—soo
= tim (1) [(S}x, — ) + €t — S},
+an[(Th (PTl)n_l)’n —q) + cn(un — Stxn)] ||
and Lemma 1.2 that

(16) lim S, — Ty (PT))" 1y, = 0.
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By condition (iii), it follows that ||x, — T3 (PT1)" 'ya|| < ||S7x, — Ti (PT1)" " y,||. From (16), we

have
(17) Tim [lx, = T3 (PT1)" ™~ yul| = 0.
Since
=gl < %= Ti(PT)" " yull + | TV (PT)" ™y — gl
< = Ti(PTL)" ™yl + Lullyn — 4|

< Jon = T(PT)" " yull + Allyn = gll,

and taking limitinf on both sides in the above inequality, we have liminf, e ||y, — ¢|| > z. By

(17), we have
(18) lim ||y, —¢|| = z.
n—»oo
Now, note that
2= lim [}y, —g]
= lim ||(1 — b, — dy)S5x, + b, T (PT2)" ' x + dputy, — g

n—oo

= Iim [[(1 =bn)[(S3% — ¢) +dn(va = S32)] + bul(To(PT2)" " X0 — q) + d (v — Shxn)]|-
It follows from Lemma 1.2 that
(19) lim 5, — T>(PT>)" x| = 0.
n—oo

By condition (iii), we have ||x, — T2 (PT2)" 'x,|| < ||S8x, — To(PT2)" x| In view of (19), we

have
(20) lim ||x, — T>(PT>)" 'x,|| = 0.
n—oo
Since S5x, = P(Shx,) and P: E — K is a nonexpansive retraction of E onto K, we have
v —S3xall = ||(1 = by — dn) S50 + ba T (PT)" ™ x4 dyvy — S|
= [|bn(S3xn — T2<PT2)n_1xn) + dp (v — S5 |

< anngn - TZ(PTZ)H_]xn” +dp||vi — ngﬂ”
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and so
1) lim ||y, — S5x,|| = 0.
n—roo
Again, we have
||yrz _an < ||yn _ngnH + Hngn - T2(PT2)n_1xn|| + ||T2(PT2)”_1xn _an-
Thus, it follows from (19), (20) and (21) that
22) lim [y, x| = 0.

Note that [|x, — T3 (PT1)" 'yu|| < ||S%x, — Ty (PT1)" 'y, ||. By condition (iii),

IS = T1(PT1)" x| < (18T = TL(PT)™ 'yl |+ [T (PT)™ Yy = T1(PT1)™ |

IN

18960 — T3 (PT)" ™yl | + ol [y — x|

< 18P = Ti(PT)" vl B lyn — x|
and using (16), (22) and h,, — 1 as n — oo, we have
(23) Tim 1S, — 71 (PTy )Ly, || = 0.
It follows from condition (iii) that
(24) Tim [lx, — Ty (PT1)" 'x,|| = 0.
It follows from

[xn+1 = Sixal| = |P((1 —an—cn)STxn +anT1(PTl)n_1Yn+Cn”n) — P(S7xn)||

IN

|(1—an—cn)Stxn+anTh (PTl)”_lyn + cptn — STx||

< a||Stx — Ti (PT)" 'yul| + cullun — S|

IN

MHS?xn -1 (PTl)n_lynH "‘Cn””n - ’llan:
(16) and ¢, — 0 as n — oo that
(25) lim ||x,41 — STx,]| = 0.
n—roo
In addition, we have

Pene1 = T1(PT)™ 'yl < st — STl + (180 = T1(PT1)" -
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Using (16) and (25), we have
(26) lim [lx, 1 =T (PT1)" 'yul =0.
Now, using (23), (24) and the inequality
I —xall - < 18T = T2 (PT)" |+ | T3 (PT1 )" ot — 0
we have lim,,_,c, [|S7x, — x,, || = 0. It follows from (20) and the inequality

1S90 = T (PT)" 'l < (180 =6l | + [0 — T2(PT2)" |

that

(27) lim S, — T>(PT>)" x| = 0.
Nn—oco

Since

b1 = To(PT)" " yall - < (%t = Sl + [1STx — T2(PT2)"™ Vol |+l =y

< lngr = Stxal| + (17X — TZ(PTZ)nilxn” + B X0 = yull,
from (22), (25), (27) and h,, — 1 as n — oo, it follows that
(28) lim [l 1~ T2(PT3)" 3| = 0.

Since T; for i = 1,2 is uniformly continuous, P is nonexpansive retraction, it follows from (28)

that

IT(PT)" yut = Tixall = | T(PT)(PT)" ) yu1] = Ti(Px) |

(29) — 0asn — oo,
for i = 1,2. Moreover, we have

[Pone1 =l < [Poner = Tr(PT)" ™yl + 71 (PT1)" ™y =6l [0 =y
Using (17), (22) and (26), we have

(30) 1im {41 = yal| = 0.
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In addition, we have
e = Tixall - < [l = T (PT)" | + | (PT)" 2y — T (PT)" ™y |
+ T (PT)" yne1 — Tixa|
<l = TL(PT)" sl Lalln = yu 1 |+ |1 T (P vt — Tixal|
< o = Tr(PT)™ | 4 Bl X0 — Yt | 4 | T (PT)™ et — Tica -

Thus, it follows from (24), (29), (30) and /&, — 1 as n — o, that
31 lim ||x, — T1x,|| = 0.
n—oo
Similarly, we can prove that
(32) lim ||x, — Thx,|| = 0.
n—oo
Finally, we have
[0 = S1xa|l < [l —Th (PTl)n_lan + 1S1x =T (PTl)n_lan
< -1 (PTl)n_lan + 18T — T (PTl)”_lan
(by cond. (iii)).
Thus, it follows from (23) and (24) that
(33) lim ||x, — S1x,|| = 0.
n—o0
Similarly, we can prove that
(34) lim ||x,, — S>x,|| = 0.
n—yoo
This completes the proof.

Lemma 2.3. Under the assumptions of Lemma 2.1, for all 1, g2 € F = F(S1)NF(S2)NF(T;)N
F(T3), the limit lim, e |tx, + (1 —1)q1 — q2|| exists for all t € [0,1], where {x,} is the sequence
defined by (6).

Proof. By Lemma 2.1, lim,_,. ||x, — z|| exists for all z € F and therefore {x,} is bounded.
Letting a,(t) = ||tx, + (1 —t)g1 — g2|| for all ¢ € [0,1]. Then lim,_,.a,(0) = ||g1 — g2 and
lim, e an(1) = ||x, — g2|| exists by Lemma 2.1. It, therefore, remains to prove the Lemma 2.3

fort € (0,1). For all x € K, we define the mapping %,,: K — K by %, (x) =P((1 —a,—c,)S{x+
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a,Ti (PTy)" e, (x) + cou,) where o7, (x) = P((1 — b, — dn)Shx+ b,T>»(PT»)" 'x+d,v,). Then
it follows that x,, 1| = Znx,, %Z,p = p for all p € F. Now from (7) and (9) of Lemma 2.1, we
see that ||, (x) — #,(y)[| < hn(|[x—yl[+en) and

120 () = Zn )| < [T+ ] [lx = [ + ¢

(35) = Fllx—y[[ + ¢,

where , = (h2 —1) and ¢, = (1 +a,hy)hye, with Yo My <o, Y Oy < oo, Iy =1+, and

S, — 1 as n — oo. Setting

(36) Sn,m = f%n+m71%n+m72 oS, m> 1.

)

From (35) and (36), we have

1S0.m(®) =SumO) < Frim | Brim—2 .- - Ron(x) — B - - - BV || + O
< Inim 1 Inim-2|Bnim—3 - .- Bn(x) = Bnsm—3 - % (Y)|
+Optm—1+ Gnym—2
nt-m—1 ntm—1
< I1 7))l =yl + Y o
(37) = Gumllx =Yl + fam

for all x,y € K, where ¥, ,, = H?;“,;"_l Fis fam = yrm=lg, Sn,mXn = Xn+m and Sp mp = p for

1=n

all pe F.
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For the sake of simplicity, set

fn,m = Z (pi? fn:Z¢i7

n+m—1

o = (1 7). (119)

i=n

th = txp+(1—1)qi,

Onm = tGumllxn—q1ll + fam,

P = (1 =)GumllXn —qrll + fom;

Vam = [tq1+ (1 —=21)Sy mtn — (1 —1)Sn mXn],
PBum = [Sn,mtn — 1S, m¥n — (1 —=1)q1)]|1xn — q1]],
D = a1+ Sn,mXn — 28n, mtn) frm:

Wom = (a1 —Sn,mtn)/Onm,

Zom = (Snmtn— Sn,m*n)/Pnm,

)vmm = 6n,mpn,m-

Then

Zaml =

H Sn.,mtn_QI H
G| Xn = q1l| + fram

tgn,mnxn —q1 || +fn,m .
1Gnm||1Xn = q1 [ + fam a

Similarly, we have || Z, || < 1. Notice that

Sn,m +Pnm = %m[tﬂxn —qu||+ (1 =1)[]xn —q1 ||] +2fnm

= gn.,m”xn —{q1 || +2fn,m-
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Moreover,
—Sumt Sumtn — S
||7/n7m _ %17’"” _ qi n,mln— On,mln n,mXn
6n,m Pn,m
_ q91Pn.m — pn,mSn,mtn - 6n,mSn,mtn + Sn,mSn,mxn
/’Ln,m
— q1Pn,m — [gmm Hxn —dq1 H + 2fn,m]Sn,mtn + 5n,mSn,mxn
An,m
_ || B = Zam H
)«n,m
because
| Bon — Dl = H 1 — @1 | St — 11X — @1 1Snmtn — (1 = £)g1 150 — 1|
_q1fn7m - fn,mSn,mxn + 2fn,mSn,mtn
= H - [(1 - t) Hxn —4q1 H +fn,m]q1 + [“xn —q1 “ +2fn,m]Sn,mtn
_[tHxn —4q1 ” +fn,m]Sn,mxn
and

_ 1_ o
[+ (1 =) Z Ht(cn Spmtn) (1 =1)(Sn.mln — Sn.m%n)

6n,m Pnm
_ H tpn,m(QI - Sn,mtn) + (1 _t)6n7m(Sn,mtn - Sn,mxn) ’
;Ln,m
1
= 0=l — a1l + fumli (g1 = Suta)
Anm
+tGumlxn — gl + fum] (1 =) (S, mtn — Sn,mxn)
1
- 2 Ht(l_t)gn,m||xn_q1||+tchfn,m
n,m
_t(l - t)gn,msn,mtnnxn —{q1 || - lSn,mtnfn,m
"‘t(l - t)gn,men —q1 ||Sn,mln + (1 _t)fn,mSn,mtn
_t(l _t)gn,mnxn —q1 ||Sn,mxn - (1 _t)fn,msn,mxn
1
= [ = 0%l — il (@1 = Sumi)
A
g1+ (1= 20)Sp mtn — (1= 1)S. ] me
1

= Ht(l - t)g’l,mnxn —4q1 ||(ql _xn+m) +Vn,mfn,mH-

FP
3
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From inequality (UCBS), we get

\Mﬁg;jaﬁu

21(1 = 1) = A= 111 =D)lla = 1]} (@1 = 3m)
Vi fam|
< =100 =)= [ — a1
+lvamll fum-

But

D = (oaml¥a = @1+ fum ) (1= )Gl = a1+ o
= G2t (1= 0)% = @12+ G frmla — a1

+(1 =)y mfamlln — a1l + frm

Gt (L=1) %0 = @1 |2+ G Frm 15— a1 | +

Gir(1=0)llva =12+ Gallva — 1| + il fo

< Gl =1)|xn —ai|* + i,

IA

where J£1 = sup,{%,||x, — q1|| + f»}. Therefore

2 8 (L= Zenly < g2y, — g o L
~[lxn = qulllar = %o-mll + %
Let A = sup{A4,%, : n € N}. Since E is uniformly convex 8(s)/s is nondecreasing. Therefore
25(1 2 Znl) < g2, g
o= anller =] + Ll

Moreover 6(0) = 0, limy, 0 f;, = 0, lim,, %, = 1 and 9§ is continuous, therefore
lim || Bpm— Duml| = 0.
m,n—yoo
By the triangle inequality, we have

||<%)n,mn < ||'@n,m - @n,mn + ||-@n,mn

= ||@n,m - @n,mH +<%/2fn,m
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for some % > 0. This gives limy y—se0 || By m|| = 0. Since lim, e ||x, — g1|| > 0, we have

limy,; ;00 || S, mtn — tSn mXn — (1 —1)g1|| = 0. Finally, from

an+m(t) = ||txn+m+(1_t)Q1_CI2H

IN

||Sn,mfn — |+ ||Sn,mtn — 1S, mXn — (1 —1)q1|

IN

Gmlltn = @2l S+ 1S, mitn = 1Sn,mn — (1 =1)qu |

< ggnnl‘n - QZH +fn + ||Sn,mtn _tSn,mxn - (1 _I)Ql ||7

we get

limsupa, () < lirgiolgf (%th —q| —I—fn>

m—yoo

+limsup (HSn,mtn —tSpmXn — (1 =1)q1 H)

m—oo

= ll,ﬂlo‘}f“n(’)-
Thus limsup,_..,a,(f) < liminf, . a,(t). It follows that
lim Jex, + (1-1)g1 — g2

exists for all # € [0, 1]. This completes the proof.

Lemma 2.4. Under the assumptions of Lemma 2.1, if E has a Fréchet differentiable norm,
then forall q1,q> € F =F(S1)NF(S2) NF(T1) NF(T2), the limit lim,_o(x,,,J (g1 — q2)) exists,
where {x,} is the sequence defined by (6), if W,,({x,}) denotes the set of all weak subsequential
limits of {x,}, then (u; —uz,J(q1 — q2)) =0 for all q1, g2 € F and uy, uy € W,,({x,}).

Proof. Suppose that x = g; — g» with q| # ¢ and h = t(x, — ¢) in inequality (FDN). Then,

we get

1
t{xn—q1,J(q1 —q2)) + §||611 — ¢

1
< EHtanr(l ~q1—q?

1
< t{xn—q1, (@1 —612)>+§||611 — g

+b(t]|xn — q1])-
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Since sup,,~ 1 [[x, — q1]| < % for some Z > 0, we have

) 1
t limsup (x, —q1,J(q1 — q2)) + 5“(]1 — |

n—soo

IN

..
Egl_rg; [tx0+ (1—1)q1 — qo|*

. 1
< rliminf (v, —q1,J (91— 92)) + 5 |1 —q?

H—>o0

+b(t%).

That is,
limsup (x, —q1,J(q1 — q2))

n—soo

b(t#
< liminf(x, —q1,J(q1 — q2)) + ( )9?

n—oo t,@

If + — 0, then lim, e (x, — q1,J(q1 — g2)) exists for all g1, g> € F; in particular, we have

(w1 —u2, J(q1 — q2)) = 0 for all uy, uy € W,,({x,}). This completes the proof.

Theorem 2.1. Under the assumptions of Lemma 2.2, if E has Fréchet differentiable norm, then

the sequence {x,} defined by (6) converges weakly to a common fixed point of Sy, S», Ty and T.

Proof. By Lemma 2.4, (u; —up, J(q1 — q2)) = 0 for all uy, up € W,,({x,}). Therefore ||¢g* —
p*II> = (¢" — p*, J(g* — p*)) = 0 implies ¢* = p*. Consequently, {x,} converges weakly to a
common fixed pointin F = F(S;) NF(S2) NF(T1) N F(T3). This completes the proof.

Theorem 2.2. Under the assumptions of Lemma 2.2, if the dual space E* of E has the Kadec-
Klee (KK) property and the mappings I — S; and [ — T; for i = 1,2, where I denotes the identity
mapping, are demiclosed at zero, then the sequence {x,} defined by (6) converges weakly to a

common fixed point of Sy, S», Ty and T5.
Proof. By Lemma 2.1, {x,} is bounded and since E is reflexive, there exists a subsequence
{xn,} of {x,} which converges weakly to some u* € K. By Lemma 2.2, we have

lim ||x,, — Six,,. || = 0and lim ||x,, — Tix, || =0

r—o0 r—oo

for i = 1,2. Since by hypothesis the mappings / — S; and / — T; for i = 1,2 are demiclosed at
zero, therefore S;u* = u* and Tju* = u* for i = 1,2, which means u* € F = F(S1)NF(S3) N
F(T1) N F(T;). Now, we show that {x,} converges weakly to u*. Suppose {x,,} is another

subsequence of {x,} converges weakly to some v* € K. By the same method as above, we have
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v* € F and u*,v* € W,,({x,}). By Lemma 2.3, the limit lim,_,c [|tx, + (1 —#)u* — v*|| exists
for all # € [0, 1] and so u* = v* by Lemma 1.3. Thus, the sequence {x,} converges weakly to

u* € F. This completes the proof.

Theorem 2.3. Under the assumptions of Lemma 2.2, if E satisfies Opial’s condition and the
mappings I — S; and I — T; for i = 1,2, where I denotes the identity mapping, are demiclosed at
zero, then the sequence {x,} defined by (6) converges weakly to a common fixed point of Sy, S»,

T and T>.

Proof. Let g, € F, from Lemma 2.1 the sequence { ||x, — g.|| } is convergent and hence bounded.
Since E is uniformly convex, every bounded subset of E is weakly compact. Thus there exists
a subsequence {x,, } C {x,} such that {x, } converges weakly to f* € K. From Lemma 2.2,
we have lim,_,c || X, — Sixp, || = 0 and 1lim, e ||x,,, — Tixp, || = O for i = 1,2. Since the mappings
I—S; and I —T; for i = 1,2 are demiclosed at zero, therefore S;f* = f* and T;f* = f* for
i = 1,2, which means f* € F. Finally, let us prove that {x,} converges weakly to f*. Suppose
on contrary that there is a subsequence {x,, } C {x,} such that {x,, } converges weakly to h* € K
and f* £ h*. Then by the same method as given above, we can also prove that #* € F. From
Lemma 2.1 the limits lim, e ||x, — f*|| and lim,_,e ||x, — A*|| exist. By virtue of the Opial

condition of E, we obtain

. % - . %
tim [~ = lim o,
< lim [jx,, — A
ny—oo
= lim [jx, — h"||
n—so0
— i [, — |
Ng—roo
. *
< 1im v~ £

J— 3 _ *
= gim [lu,— £

which derives a contradiction, so f* = h*. Thus {x,} converges weakly to a common fixed

point of Sy, S2, 71 and 7;. This completes the proof.
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Example 2.1. Let R be the real line with the usual norm |.| and let K = [—1,1]. Define two

mappings S, T: K — K by

—2sin%, ifx e [0,1],

T(x) =
2sinj, ifxe[-1,0)

and
x, ifxel0,1],

) = —x, ifxe[-1,0).

Then both S and T are asymptotically nonexpansive mappings with constant sequence {k, } =
{1} for all n > 1 and uniformly L-Lipschtzian mappings with L = sup,»{k,} and hence they
are nearly asymptotically nonexpansive mappings by Remark 1.1. Also the unique common

fixed point of S and 7, that is, F = F(S) N F(T) = {0}.
3. Conclusion

In this paper, we study hybrid mixed type iteration scheme for two nearly asymptotically
nonexpansive self mappings and two asymptotically nonexpansive non-self mappings and es-
tablish some weak convergence theorems using the following conditions: (1) the space E has a
Fréchet differentiable norm (2) dual space E* of E has the Kadec-Klee (KK) property (3) the
space E satisfies Opial’s condition. Our results extend and generalize the corresponding results
of [3]-[6] [11]-[17], and many others from the existing literature to the case of more general

class of mappings and newly proposed hybrid mixed type iteration scheme considered in this

paper.
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