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Abstract. In this paper, we proposed a new two-step iteration scheme of hybrid mixed type for two nearly asymp-

totically nonexpansive self mappings and two asymptotically nonexpansive non-self mappings. Weak convergence

theorems are established in uniformly convex Banach spaces. Our results extend and generalize the corresponding

results given in the current existing literature.
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1. Introduction and Preliminaries

Let K be a nonempty subset of a real Banach space E and let T : K→ K be a nonlinear map-

ping. In this paper, we denote the set of all fixed points of T by F(T ). The set of common fixed

points of four mappings S1, S2, T1 and T2 is denoted by F = F(S1)
⋂

F(S2)
⋂

F(T1)
⋂

F(T2).

Recall the following definitions.

T is said to be asymptotically nonexpansive [1] if there exists a positive sequence {kn} in

[1,∞) with limn→∞ kn = 1 such that

‖T n(x)−T n(y)‖ ≤ kn‖x− y‖, ∀x,y ∈ K, n ∈ N.
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T is said to be uniformly L-Lipschitzian if for some L > 0 such that

‖T n(x)−T n(y)‖ ≤ L‖x− y‖, ∀x,y ∈ K, n ∈ N.

Also T is called a contraction if for some 0 < k < 1 such that

‖T (x)−T (y)‖ ≤ k‖x− y‖, ∀x,y ∈ K.

Fix a sequence {en} ⊂ [0,∞) with limn→∞ en = 0, then according to Agarwal et al. [2], T is

said to be nearly asymptotically nonexpansive if kn ≥ 1 for all n ∈ N with limn→∞ kn = 1 such

that

‖T n(x)−T n(y)‖ ≤ kn(‖x− y‖+ en), ∀x,y ∈ K.

T will be nearly uniformly L-Lipschitzian if kn ≤ L for all n ∈ N.

Remark 1.1. Every asymptotically nonexpansive mapping is nearly asymptotically nonexpan-

sive and every nearly asymptotically nonexpansive mapping is nearly uniformly L-Lipschitzian.

Definition 1.1. A subset K of a Banach space E is said to be a retract of E if there exists a

continuous mapping P : E → K (called a retraction) such that P(x) = x for all x ∈ K. If, in

addition P is nonexpansive, then P is said to be a nonexpansive retract of E.

If P : E → K is a retraction, then P2 = P. A retract of a Hausdorff space must be a closed

subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Chidume et al. [3] introduced the concept of non-self asymptotically nonexpansive mappings

as follows.

Definition 1.2. Let K be a nonempty subset of a real Banach space E and let P : E → K be a

nonexpansive retraction of E onto K. A non-self mapping T : K→E is said to be asymptotically

nonexpansive if there exists a positive sequence {kn} in [1,∞) with limn→∞ kn = 1 such that

‖T (PT )n−1(x)−T (PT )n−1(y)‖ ≤ kn‖x− y‖, ∀x,y ∈ K, n ∈ N.

Example 1.1. Let E = R be a normed linear space, K = [0,1] and P be the identity mapping.

For each x ∈ K, we define

T (x) =

 λ x, if x 6= 0,

0, if x = 0,



NEARLY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS 3

where 0 < λ < 1. Then |T nx−T ny|= λ n|x− y| ≤ |x− y| for all x,y ∈ K and n ∈ N.

Thus T is an asymptotically nonexpansive mapping with constant sequence {kn} = {1} for

all n≥ 1 and uniformly L-Lipschtzian mappings with L = supn≥1{kn}.

We know that the following iteration scheme for a mapping T : K→K are defined as follows:

Picard iteration scheme

x1 = x ∈ K,

xn+1 = T xn, n ∈ N.(1)

Mann iteration scheme

x1 = x ∈ K,

xn+1 = (1−αn)xn +αnT xn, n ∈ N,(2)

where {αn} is a real sequence in (0,1).

In 2007, Agarwal et al. [1] introduced the following iteration scheme:

Modified S-iteration scheme

x1 = x ∈ K,

xn+1 = (1−αn)T nxn +αnT nyn,

yn = (1−βn)xn +βnT nxn, n ∈ N,(3)

where {αn} and {βn} are sequences in (0,1). They showed that this process converge at a rate

same as that of Picard iteration and faster than Mann for contractions and also they established

some weak convergence theorems using suitable conditions in the framework of uniformly con-

vex Banach space.

In 2012, Guo et al. [4] studied the iteration scheme defined as follows:

Mixed type iteration scheme
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x1 = x ∈ K,

xn+1 = P((1−αn)Sn
1xn +αnT1(PT1)

n−1yn),

yn = P((1−βn)Sn
2xn +βnT2(PT2)

n−1xn), n ∈ N,(4)

where S1, S2 : K → K are two asymptotically nonexpansive self mappings and T1, T2 : K → E

are two asymptotically nonexpansive non-self mappings and {αn}, {βn} are real sequences in

[0,1), and proved some strong and weak convergence theorems for mixed type asymptotically

nonexpansive mappings.

Recently, Wei and Guo [5] studied the iteration scheme defined as follows:

Mixed type iteration scheme with errors

Let E be a real Banach space, K be a nonempty closed convex subset of E and P : E → K

is a nonexpansive retraction of E onto K. Let S1, S2 : K→ K be two asymptotically nonexpan-

sive self mappings and T1, T2 : K→ E are two asymptotically nonexpansive non-self mappings.

Then Wei and Guo [5] defined the new iteration scheme of mixed type with mean errors as

follows:

x1 = x ∈ K,

xn+1 = P(αnSn
1xn +βnT1(PT1)

n−1yn + γnun),

yn = P(α ′nSn
2xn +β

′
nT2(PT2)

n−1xn + γ
′
nu′n), n ∈ N,(5)

where {un}, {u′n} are bounded sequences in E, {αn}, {βn}, {γn}, {α ′n}, {β ′n}, {γ ′n} are real

sequences in [0,1) satisfying αn +βn + γn = 1 = α ′n +β ′n + γ ′n for all n ≥ 1, and proved some

weak convergence theorems in the setting of real uniformly convex Banach spaces.

It is to be noted that (5) reduces to

• (4) when γn = γ ′n = 0 for all n ∈ N.

Inspired and motivated by [4], [5] and some others, we proposed the following iteration

scheme:

Hybrid mixed type iteration scheme with errors



NEARLY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS 5

Let E be a real Banach space, K be a nonempty closed convex subset of E and P : E → K

is a nonexpansive retraction of E onto K. Let S1, S2 : K → K be two nearly asymptotically

nonexpansive self mappings and T1, T2 : K→ E are two asymptotically nonexpansive non-self

mappings, then we defined the hybrid mixed type iteration scheme as follows:

x1 = x ∈ K,

xn+1 = P((1−an− cn)Sn
1xn +anT1(PT1)

n−1yn + cnun),

yn = P((1−bn−dn)Sn
2xn +bnT2(PT2)

n−1xn +dnvn), n ∈ N,

(6)

where {an}, {bn}, {cn}, {dn} are four real sequences in [0,1] satisfying an+cn ≤ 1, bn+dn ≤ 1

and {un}, {vn} are bounded sequences in K.

The aim of this paper is to study and establish some weak convergence theorems of iteration

scheme (6) for mentioned scheme and mappings in the setting of uniformly convex Banach

spaces. Our results extend and generalize several results from the current existing literature.

For the sake of convenience, we restate the following notion and results.

Let E be a Banach space with its dimension greater than or equal to 2. The modulus of

convexity of E is the function δE(ε) : (0,2]→ [0,1] defined by

δE(ε) = inf
{

1−‖1
2
(x+ y)‖ : ‖x‖= 1, ‖y‖= 1, ε = ‖x− y‖

}
.

A Banach space E is uniformly convex if and only if δE(ε)> 0 for all ε ∈ (0,2].

Definition 1.3. Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E, that is, the space of all

continuous linear functionals f on E. The space E has:

(d1) Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖−‖x‖
t

exists for each x and y in S .
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(d2) Fréchet differentiable norm [6] if for each x in S , the above limit exists and is attained

uniformly for y in S and in this case, it is also well-known that

〈h, J(x)〉+ 1
2
‖x‖2 ≤ 1

2
‖x+h‖2

≤ 〈h, J(x)〉+ 1
2
‖x‖2 +b(‖x‖) (FDN)

for all x, h∈ E, where J is the Fréchet derivative of the functional 1
2‖.‖

2 at x∈ E, 〈. .〉 is the pair-

ing between E and E∗, and b is an increasing function defined on [0,∞) such that limt→0
b(t)

t = 0.

(d3) Opial condition [7] if for any sequence {xn} in E, xn converges to x weakly it follows

that limsupn→∞ ‖xn− x‖ < limsupn→∞ ‖xn− y‖ for all y ∈ E with y 6= x. Examples of Banach

spaces satisfying Opial condition are Hilbert spaces and all spaces lp(1 < p < ∞). On the other

hand, Lp[0,2π] with 1 < p 6= 2 fail to satisfy Opial condition.

Definition 1.4. A mapping T : K→ K is said to be demiclosed at zero, if for any sequence {xn}

in K, the condition xn converges weakly to x∈K and T xn converges strongly to 0 imply T x = 0.

Definition 1.5. A Banach space E has the Kadec-Klee property [8] if for every sequence {xn}

in E, xn→ x weakly and ‖xn‖→ ‖x‖ it follows that ‖xn− x‖→ 0.

Let δ be the modulus of uniform convexity. Recall that E is a uniformly convex Banach

space then if (see [9])

‖tx+(1− t)y‖ ≤ 1−2t(1− t)δ (‖x− y‖) (UCBS)

for all t ∈ [0,1] and for all x,y ∈ E such that ‖x‖ ≤ 1, ‖y‖ ≤ 1.

Next we state the following useful lemmas to prove our main results.

Lemma 1.1. [10] Let {αn}∞
n=1, {βn}∞

n=1 and {rn}∞
n=1 be sequences of nonnegative numbers

satisfying the inequality αn+1 ≤ (1+βn)αn+ rn, ∀n≥ 1. If ∑
∞
n=1 βn < ∞ and ∑

∞
n=1 rn < ∞, then

(i) limn→∞ αn exists;

(ii) In particular, if {αn}∞
n=1 has a subsequence which converges strongly to zero, then

limn→∞ αn = 0.

Lemma 1.2. [11] Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all

n ∈ N. Suppose further that {xn} and {yn} are sequences of E such that limsupn→∞ ‖xn‖ ≤ a,
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limsupn→∞ ‖yn‖≤ a and limn→∞ ‖tnxn+(1−tn)yn‖= a hold for some a≥ 0. Then limn→∞ ‖xn−

yn‖= 0.

Lemma 1.3. [8] Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee

property. Let {xn} be a bounded sequence in E and p, q ∈ ww(xn) (where ww(xn) denotes the

set of all weak subsequential limits of {xn}). Suppose limn→∞ ‖txn +(1− t)p−q‖ exists for all

t ∈ [0,1]. Then p = q.

Lemma 1.4. [8] Let K be a nonempty convex subset of a uniformly convex Banach space

E. Then there exists a strictly increasing continuous convex function φ : [0,∞)→ [0,∞) with

φ(0) = 0 such that for each Lipschitzian mapping T : K→ K with the Lipschitz constant L,

‖tT x+(1− t)Ty−T (tx+(1− t)y)‖ ≤ Lφ
−1
(
‖x− y‖− 1

L
‖T x−Ty‖

)

for all x, y ∈ K and all t ∈ [0,1].

2. Weak convergence theorems

In this section, we prove some convergence theorems of iteration scheme (6) for two near-

ly asymptotically nonexpansive self mappings and two asymptotically nonexpansive non-self

mappings in real uniformly convex Banach spaces. First, we shall need the following lemmas.

Lemma 2.1. Let E be a real Banach space, K be a nonempty closed convex subset of E.

Let S1, S2 : K → K be two nearly asymptotically nonexpansive self mappings with sequences

{e′n,kn}, {e′′n,kn} such that ∑
∞
n=1 en < ∞, ∑

∞
n=1(kn−1)< ∞ and T1, T2 : K→ E are two asymp-

totically nonexpansive non-self mappings with a sequence {ln}∈ [1,∞) such that ∑
∞
n=1(ln−1)<

∞. Suppose that F =F(S1)
⋂

F(S2)
⋂

F(T1)
⋂

F(T2) 6= /0. Let M = supn an and {an}, {bn}, {cn},

{dn} are four real sequences in [0,1] which satisfy the following conditions:

(i) ∑
∞
n=1 cn < ∞, ∑

∞
n=1 dn < ∞;

(ii) Mρ < 1.

Let {xn} be the sequence defined by (6), then limn→∞ ‖xn−q‖ and limn→∞ d(xn,F) both exist

for each q ∈ F.
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Proof. Let q∈ F . Let en =max{e′n.e′′n} and hn =max{kn, ln}with ∑
∞
n=1 en <∞, ∑

∞
n=1(hn−1)<

∞ and ρ = supn hn. From (6), we have

‖yn−q‖ ≤ ‖(1−bn−dn)Sn
2xn +bnT2(PT2)

n−1xn +dnvn−q‖

= ‖(1−bn−dn)(Sn
2xn−q)+bn(T2(PT2)

n−1xn−q)+dn(vn−q)‖

≤ (1−bn−dn)‖Sn
2xn−q‖+bn‖T2(PT2)

n−1xn−q‖+dn‖vn−q‖

≤ (1−bn−dn)[kn(‖xn−q‖+ e′′n)]+bnln‖xn−q‖+dn‖vn−q‖

≤ (1−bn−dn)[hn(‖xn−q‖+ en)]+bnhn‖xn−q‖+dn‖vn−q‖

≤ (1−bn)[hn(‖xn−q‖+ en)]+bnhn‖xn−q‖+dn‖vn−q‖

= [(1−bn)+bn]hn‖xn−q‖+dn‖vn−q‖+(1−bn)en

≤ hn‖xn−q‖+dn‖vn−q‖+ en.(7)

Again using (7) and (8), we have

‖xn+1−q‖ ≤ ‖(1−an− cn)Sn
1xn +anT1(PT1)

n−1yn + cnun−q‖

= ‖(1−an− cn)(Sn
1xn−q)+an(T1(PT1)

n−1yn−q)+ cn(un−q)‖

≤ (1−an− cn)‖Sn
1xn−q‖+an‖T1(PT1)

n−1yn−q‖+ cn‖un−q‖

≤ (1−an− cn)[kn(‖xn−q‖+ e′n)]+anln‖yn−q‖+ cn‖un−q‖

≤ (1−an− cn)[hn(‖xn−q‖+ en)]+anhn‖yn−q‖+ cn‖un−q‖

≤ (1−an)[hn(‖xn−q‖+ en)]+anhn‖yn−q‖+ cn‖un−q‖

≤ (1−an)hn‖xn−q‖+anhn‖yn−q‖+ en + cn‖un−q‖.(8)

Using equation (7) in (8), we obtain

‖xn+1−q‖ ≤ (1−an)hn‖xn−q‖+anhn[hn‖xn−q‖

+dn‖vn−q‖+ en]+ cn‖un−q‖+ en

≤ (1−an)h2
n‖xn−q‖+anh2

n‖xn−q‖+anhndn‖vn−q‖+ cn‖un−q‖+anhnen + en

= h2
n‖xn−q‖+anhndn‖vn−q‖+ cn‖un−q‖+(anhn +1)en

= [1+(h2
n−1)]‖xn−q‖+anhndn‖vn−q‖+ cn‖un−q‖+(anhn +1)en

= [1+µn]‖xn−q‖+νn,(9)
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where µn = (h2
n−1) and νn = anhndn‖vn−q‖+ cn‖un−q‖+(anhn +1)en. Hence, we have

∞

∑
n=1

µn =
∞

∑
n=1

(h2
n−1) =

∞

∑
n=1

(hn +1)(hn−1)

≤ (ρ +1)
∞

∑
n=1

(hn−1)< ∞,

and boundedness of the sequences {‖un−q‖}, {‖vn−q‖} with condition (i) of the lemma

∞

∑
n=1

νn =
∞

∑
n=1

[anhndn‖vn−q‖+ cn‖un−q‖+(anhn +1)en]

=
∞

∑
n=1

anhndn‖vn−q‖+
∞

∑
n=1

cn‖un−q‖+
∞

∑
n=1

(anhn +1)en

≤ Mρ

∞

∑
n=1

dn‖vn−q‖+
∞

∑
n=1

cn‖un−q‖

(Mρ +1)
∞

∑
n=1

en < ∞.

Now taking sn = ‖xn− q‖ in (9), we obtain sn+1 ≤ (1+ µn)sn +νn. Hence by Lemma 1.1 (i),

we have limn→∞ ‖xn−q‖ exists.

Now, taking the infimum over all q ∈ F in (9), we have

d(xn+1,F) ≤ [1+µn]d(xn,F)+νn(10)

for all n∈N. It follows from ∑
∞
n=1 µn <∞, ∑

∞
n=1 νn <∞ and Lemma 1.1 (i) that limn→∞ d(xn,F)

exists. This completes the proof.

Lemma 2.2. Let E be a real uniformly convex Banach space, K be a nonempty closed convex

subset of E. Let S1, S2 : K→ K be two nearly asymptotically nonexpansive self mappings with

sequences {e′n,kn}, {e′′n,kn} such that ∑
∞
n=1 en < ∞, ∑

∞
n=1(kn− 1) < ∞ and T1, T2 : K → E are

two asymptotically nonexpansive non-self mappings with a sequence {ln} ∈ [1,∞) such that

∑
∞
n=1(ln−1)< ∞. Suppose that F = F(S1)

⋂
F(S2)

⋂
F(T1)

⋂
F(T2) 6= /0. Let M = supn an and

{an}, {bn}, {cn}, {dn} are four real sequences in [0,1] which satisfy the following conditions:

(i) ∑
∞
n=1 cn < ∞, ∑

∞
n=1 dn < ∞;

(iii) Mρ < 1, where ρ is taken as in Lemma 2.1;

(iii) ‖x−T1(PT1)
n−1y‖ ≤ ‖Sn

1x−T1(PT1)
n−1y‖ and ‖x−Ti(PTi)

n−1x‖

≤ ‖Sn
i x−Ti(PTi)

n−1x‖ for all x,y ∈ K and for i = 1,2.
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Let {xn} be the sequence defined by (6). Then limn→∞ ‖xn− Sixn‖ = 0 and limn→∞ ‖xn−

Tixn‖= 0 for i = 1,2.

Proof. By Lemma 2.1, limn→∞ ‖xn−q‖ exists for all q ∈ F and therefore {xn} is bounded. Let

limn→∞ ‖xn−q‖= z. Then z > 0 otherwise there is nothing to prove. Now (7) implies that

limsup
n→∞

‖yn−q‖ ≤ z.(11)

Also, we have

‖Sn
2xn−q‖ ≤ kn(‖xn−q‖+ e′′n)≤ hn(‖xn−q‖+ en), ∀n≥ 1,

‖T2(PT2)
n−1xn−q‖ ≤ ln‖xn−q‖ ≤ hn‖xn−q‖, ∀n≥ 1,

and

‖Sn
1xn−q‖ ≤ kn(‖xn−q‖+ e′n)≤ hn(‖xn−q‖+ en), ∀n≥ 1.

Hence, we have

limsup
n→∞

‖Sn
2xn−q‖ ≤ z,(12)

limsup
n→∞

‖T2(PT2)
n−1xn−q‖ ≤ z,(13)

and

limsup
n→∞

‖Sn
1xn−q‖ ≤ z.(14)

Note that ‖T1(PT1)
n−1yn−q‖ ≤ ln‖yn−q‖ ≤ hn‖yn−q‖ By virtue of (11), we find that

limsup
n→∞

‖T1(PT1)
n−1yn−q‖ ≤ z.(15)

Also, it follows from

z = lim
n→∞
‖xn+1−q‖

= lim
n→∞
‖(1−an− cn)Sn

1xn +anT1(PT1)
n−1yn + cnun−q‖

= lim
n→∞
‖(1−an)[(Sn

1xn−q)+ cn(un−Sn
1xn)]

+an[(T1(PT1)
n−1yn−q)+ cn(un−Sn

1xn)]‖

and Lemma 1.2 that

lim
n→∞
‖Sn

1xn−T1(PT1)
n−1yn‖= 0.(16)
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By condition (iii), it follows that ‖xn−T1(PT1)
n−1yn‖ ≤ ‖Sn

1xn−T1(PT1)
n−1yn‖. From (16), we

have

lim
n→∞
‖xn−T1(PT1)

n−1yn‖= 0.(17)

Since

‖xn−q‖ ≤ ‖xn−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn−q‖

≤ ‖xn−T1(PT1)
n−1yn‖+ ln‖yn−q‖

≤ ‖xn−T1(PT1)
n−1yn‖+hn‖yn−q‖,

and taking limitinf on both sides in the above inequality, we have liminfn→∞ ‖yn− q‖ ≥ z. By

(17), we have

lim
n→∞
‖yn−q‖= z.(18)

Now, note that

z = lim
n→∞
‖yn−q‖

= lim
n→∞
‖(1−bn−dn)Sn

2xn +bnT2(PT2)
n−1xn +dnun−q‖

= lim
n→∞
‖(1−bn)[(Sn

2xn−q)+dn(vn−Sn
2xn)]+bn[(T2(PT2)

n−1xn−q)+dn(vn−Sn
2xn)]‖.

It follows from Lemma 1.2 that

lim
n→∞
‖Sn

2xn−T2(PT2)
n−1xn‖= 0.(19)

By condition (iii), we have ‖xn−T2(PT2)
n−1xn‖ ≤ ‖Sn

2xn−T2(PT2)
n−1xn‖. In view of (19), we

have

lim
n→∞
‖xn−T2(PT2)

n−1xn‖= 0.(20)

Since Sn
2xn = P(Sn

2xn) and P : E→ K is a nonexpansive retraction of E onto K, we have

‖yn−Sn
2xn‖ = ‖(1−bn−dn)Sn

2xn +bnT2(PT2)
n−1xn +dnvn−Sn

2xn‖

= ‖bn(Sn
2xn−T2(PT2)

n−1xn)+dn(vn−Sn
2xn)‖

≤ bn‖Sn
2xn−T2(PT2)

n−1xn‖+dn‖vn−Sn
2xn‖
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and so

lim
n→∞
‖yn−Sn

2xn‖= 0.(21)

Again, we have

‖yn− xn‖ ≤ ‖yn−Sn
2xn‖+‖Sn

2xn−T2(PT2)
n−1xn‖+‖T2(PT2)

n−1xn− xn‖.

Thus, it follows from (19), (20) and (21) that

lim
n→∞
‖yn− xn‖= 0.(22)

Note that ‖xn−T1(PT1)
n−1yn‖ ≤ ‖Sn

1xn−T1(PT1)
n−1yn‖. By condition (iii),

‖Sn
1xn−T1(PT1)

n−1xn‖ ≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+‖T1(PT1)
n−1yn−T1(PT1)

n−1xn‖

≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+ ln‖yn− xn‖

≤ ‖Sn
1xn−T1(PT1)

n−1yn‖+hn‖yn− xn‖,

and using (16), (22) and hn→ 1 as n→ ∞, we have

lim
n→∞
‖Sn

1xn−T1(PT1)
n−1xn‖= 0.(23)

It follows from condition (iii) that

lim
n→∞
‖xn−T1(PT1)

n−1xn‖= 0.(24)

It follows from

‖xn+1−Sn
1xn‖ = ‖P((1−an− cn)Sn

1xn +anT1(PT1)
n−1yn + cnun)−P(Sn

1xn)‖

≤ ‖(1−an− cn)Sn
1xn +anT1(PT1)

n−1yn + cnun−Sn
1xn‖

≤ an‖Sn
1xn−T1(PT1)

n−1yn‖+ cn‖un−Sn
1xn‖

≤ M‖Sn
1xn−T1(PT1)

n−1yn‖+ cn‖un−Sn
1xn‖,

(16) and cn→ 0 as n→ ∞ that

lim
n→∞
‖xn+1−Sn

1xn‖= 0.(25)

In addition, we have

‖xn+1−T1(PT1)
n−1yn‖ ≤ ‖xn+1−Sn

1xn‖+‖Sn
1xn−T1(PT1)

n−1yn‖.
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Using (16) and (25), we have

lim
n→∞
‖xn+1−T1(PT1)

n−1yn‖= 0.(26)

Now, using (23), (24) and the inequality

‖Sn
1xn− xn‖ ≤ ‖Sn

1xn−T1(PT1)
n−1xn‖+‖T1(PT1)

n−1xn− xn‖,

we have limn→∞ ‖Sn
1xn− xn‖= 0. It follows from (20) and the inequality

‖Sn
1xn−T2(PT2)

n−1xn‖ ≤ ‖Sn
1xn− xn‖+‖xn−T2(PT2)

n−1xn‖

that

lim
n→∞
‖Sn

1xn−T2(PT2)
n−1xn‖= 0.(27)

Since

‖xn+1−T2(PT2)
n−1yn‖ ≤ ‖xn+1−Sn

1xn‖+‖Sn
1xn−T2(PT2)

n−1xn‖+ ln‖xn− yn‖

≤ ‖xn+1−Sn
1xn‖+‖Sn

1xn−T2(PT2)
n−1xn‖+hn‖xn− yn‖,

from (22), (25), (27) and hn→ 1 as n→ ∞, it follows that

lim
n→∞
‖xn+1−T2(PT2)

n−1yn‖= 0.(28)

Since Ti for i = 1,2 is uniformly continuous, P is nonexpansive retraction, it follows from (28)

that

‖Ti(PTi)
n−1yn−1−Tixn‖ = ‖Ti[(PTi)(PT )n−2)yn−1]−Ti(Pxn)‖

→ 0 as n→ ∞,(29)

for i = 1,2. Moreover, we have

‖xn+1− yn‖ ≤ ‖xn+1−T1(PT1)
n−1yn‖+‖T1(PT1)

n−1yn− xn‖+‖xn− yn‖.

Using (17), (22) and (26), we have

lim
n→∞
‖xn+1− yn‖= 0.(30)



14 G. S. SALUJA

In addition, we have

‖xn−T1xn‖ ≤ ‖xn−T1(PT1)
n−1xn‖+‖T1(PT1)

n−1xn−T1(PT1)
n−1yn−1‖

+‖T1(PT1)
n−1yn−1−T1xn‖

≤ ‖xn−T1(PT1)
n−1xn‖+ ln‖xn− yn−1‖+‖T1(PT1)

n−1yn−1−T1xn‖

≤ ‖xn−T1(PT1)
n−1xn‖+hn‖xn− yn−1‖+‖T1(PT1)

n−1yn−1−T1xn‖.

Thus, it follows from (24), (29), (30) and hn→ 1 as n→ ∞, that

lim
n→∞
‖xn−T1xn‖= 0.(31)

Similarly, we can prove that

lim
n→∞
‖xn−T2xn‖= 0.(32)

Finally, we have

‖xn−S1xn‖ ≤ ‖xn−T1(PT1)
n−1xn‖+‖S1xn−T1(PT1)

n−1xn‖

≤ ‖xn−T1(PT1)
n−1xn‖+‖Sn

1xn−T1(PT1)
n−1xn‖

(by cond. (iii)).

Thus, it follows from (23) and (24) that

lim
n→∞
‖xn−S1xn‖= 0.(33)

Similarly, we can prove that

lim
n→∞
‖xn−S2xn‖= 0.(34)

This completes the proof.

Lemma 2.3. Under the assumptions of Lemma 2.1, for all q1, q2 ∈F =F(S1)∩F(S2)∩F(T1)∩

F(T2), the limit limn→∞ ‖txn+(1− t)q1−q2‖ exists for all t ∈ [0,1], where {xn} is the sequence

defined by (6).

Proof. By Lemma 2.1, limn→∞ ‖xn− z‖ exists for all z ∈ F and therefore {xn} is bounded.

Letting an(t) = ‖txn +(1− t)q1− q2‖ for all t ∈ [0,1]. Then limn→∞ an(0) = ‖q1− q2‖ and

limn→∞ an(1) = ‖xn−q2‖ exists by Lemma 2.1. It, therefore, remains to prove the Lemma 2.3

for t ∈ (0,1). For all x∈K, we define the mapping Rn : K→K by Rn(x)=P((1−an−cn)Sn
1x+
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anT1(PT1)
n−1An(x)+cnun) where An(x) = P((1−bn−dn)Sn

2x+bnT2(PT2)
n−1x+dnvn). Then

it follows that xn+1 = Rnxn, Rn p = p for all p ∈ F . Now from (7) and (9) of Lemma 2.1, we

see that ‖An(x)−An(y)‖ ≤ hn(‖x− y‖+ en) and

‖Rn(x)−Rn(y)‖ ≤ [1+µn]‖x− y‖+φn

= In‖x− y‖+φn,(35)

where µn = (h2
n−1) and φn = (1+anhn)hnen with ∑

∞
n=1 µn < ∞, ∑

∞
n=1 φn < ∞, In = 1+µn and

In→ 1 as n→ ∞. Setting

Sn,m = Rn+m−1Rn+m−2 . . .Rn, m≥ 1.(36)

From (35) and (36), we have

‖Sn,m(x)−Sn,m(y)‖ ≤ In+m−1‖Rn+m−2 . . .Rn(x)−Rn+m−2 . . .Rn(y)‖+φn+m−1

≤ In+m−1In+m−2‖Rn+m−3 . . .Rn(x)−Rn+m−3 . . .Rn(y)‖

+φn+m−1 +φn+m−2

...

≤
(n+m−1

∏
i=n

Ii

)
‖x− y‖+

n+m−1

∑
i=n

φi

= Gn,m‖x− y‖+ fn,m(37)

for all x,y ∈ K, where Gn,m = ∏
n+m−1
i=n Ii, fn,m = ∑

n+m−1
i=n φi, Sn,mxn = xn+m and Sn,m p = p for

all p ∈ F .
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For the sake of simplicity, set

fn,m =
n+m−1

∑
i=n

φi, fn =
∞

∑
i=n

φi,

Gn,m =
(n+m−1

∏
i=n

Ii

)
, Gn =

( ∞

∏
i=n

Ii

)
,

tn = txn +(1− t)q1,

δn,m = tGn,m‖xn−q1‖+ fn,m,

ρn,m = (1− t)Gn,m‖xn−q1‖+ fn,m,

vn,m = [tq1 +(1−2t)Sn,mtn− (1− t)Sn,mxn],

Bn,m = [Sn,mtn− tSn,mxn− (1− t)q1)]‖xn−q1‖,

Dn,m = [q1 +Sn,mxn−2Sn,mtn] fn,m,

Wn,m = (q1−Sn,mtn)/δn,m,

Zn,m = (Sn,mtn−Sn,mxn)/ρn,m,

λn,m = δn,mρn,m.

Then

‖Wn,m‖ =
∥∥∥ Sn,mtn−q1

tGn,m‖xn−q1‖+ fn,m

∥∥∥
≤

tGn,m‖xn−q1‖+ fn,m

tGn,m‖xn−q1‖+ fn,m
= 1.

Similarly, we have ‖Zn,m‖ ≤ 1. Notice that

δn,m +ρn,m = Gn,m[t‖xn−q1‖+(1− t)‖xn−q1‖]+2 fn,m

= Gn,m‖xn−q1‖+2 fn,m.
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Moreover,

‖Wn,m−Zn,m‖ =
∥∥∥q1−Sn,mtn

δn,m
−

Sn,mtn−Sn,mxn

ρn,m

∥∥∥
=

∥∥∥q1ρn,m−ρn,mSn,mtn−δn,mSn,mtn +δn,mSn,mxn

λn,m

∥∥∥
=

∥∥∥q1ρn,m− [Gn,m‖xn−q1‖+2 fn,m]Sn,mtn +δn,mSn,mxn

λn,m

∥∥∥
=

∥∥∥Bn,m−Dn,m

λn,m

∥∥∥
because

‖Bn,m−Dn,m‖ =
∥∥∥‖xn−q1‖Sn,mtn−‖xn−q1‖tSn,mxn− (1− t)q1‖xn−q1‖

−q1 fn,m− fn,mSn,mxn +2 fn,mSn,mtn
∥∥∥

=
∥∥∥− [(1− t)‖xn−q1‖+ fn,m]q1 +[‖xn−q1‖+2 fn,m]Sn,mtn

−[t‖xn−q1‖+ fn,m]Sn,mxn

∥∥∥
and

‖tWn,m +(1− t)Zn,m‖ =
∥∥∥t(q1−Sn,mtn)

δn,m
−

(1− t)(Sn,mtn−Sn,mxn)

ρn,m

∥∥∥
=

∥∥∥tρn,m(q1−Sn,mtn)+(1− t)δn,m(Sn,mtn−Sn,mxn)

λn,m

∥∥∥
=

1
λn,m

∥∥∥[(1− t)Gn,m‖xn−q1‖+ fn,m]t(q1−Sn,mtn)

+[tGn,m‖xn−q1‖+ fn,m](1− t)(Sn,mtn−Sn,mxn)
∥∥∥

=
1

λn,m

∥∥∥t(1− t)Gn,m‖xn−q1‖+ tq1 fn,m

−t(1− t)Gn,mSn,mtn‖xn−q1‖− tSn,mtn fn,m

+t(1− t)Gn,m‖xn−q1‖Sn,mtn +(1− t) fn,mSn,mtn

−t(1− t)Gn,m‖xn−q1‖Sn,mxn− (1− t) fn,mSn,mxn

∥∥∥
=

1
λn,m

∥∥∥t(1− t)Gn,m‖xn−q1‖(q1−Sn,mxn)

+[tq1 +(1−2t)Sn,mtn− (1− t)Sn,mxn] fn,m

∥∥∥
=

1
λn,m

∥∥∥t(1− t)Gn,m‖xn−q1‖(q1− xn+m)+ vn,m fn,m

∥∥∥.
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From inequality (UCBS), we get

2t(1− t)λn,mδ

(‖Bn,m−Dn,m‖
λn,m

)
= λn,m−‖t(1− t)‖xn−q1‖(q1− xn+m)

+vn,m fn,m‖

≤ λn,m− t(1− t)‖xn−q1‖‖xn+m−q1‖

+‖vn,m‖ fn,m.

But

λn,m =
(

tGn,m‖xn−q1‖+ fn,m

)(
(1− t)Gn,m‖xn−q1‖+ fn,m

)
= G 2

n,mt(1− t)‖xn−q1‖2 + tGn,m fn,m‖xn−q1‖

+(1− t)Gn,m fn,m‖xn−q1‖+ f 2
n,m

= G 2
n,mt(1− t)‖xn−q1‖2 +Gn,m fn,m‖xn−q1‖+ f 2

n,m

≤ G 2
n t(1− t)‖xn−q1‖2 +[Gn‖xn−q1‖+ fn] fn

≤ G 2
n t(1− t)‖xn−q1‖2 +K1 fn,

where K1 = supn{Gn‖xn−q1‖+ fn}. Therefore

2λn,mδ

(‖Bn,m−Dn,m‖
λn,m

)
≤ G 2

n ‖xn−q1‖2 +
K1 fn

t(1− t)

−‖xn−q1‖‖q1− xn+m‖+
‖vn,m‖ fn,m

t(1− t)
.

Let λ = sup{λnGn : n ∈ N}. Since E is uniformly convex δ (s)/s is nondecreasing. Therefore

2λδ

(‖Bn,m−Dn,m‖
λ

)
≤ G 2

n ‖xn−q1‖2 +
K1 fn

t(1− t)

−‖xn−q1‖‖q1− xn+m‖+
‖vn,m‖ fn,m

t(1− t)
.

Moreover δ (0) = 0, limn→∞ fn = 0, limn→∞ Gn = 1 and δ is continuous, therefore

lim
m,n→∞

‖Bn,m−Dn,m‖= 0.

By the triangle inequality, we have

‖Bn,m‖ ≤ ‖Bn,m−Dn,m‖+‖Dn,m‖

= ‖Bn,m−Dn,m‖+K2 fn,m
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for some K2 > 0. This gives limm,n→∞ ‖Bn,m‖ = 0. Since limn→∞ ‖xn− q1‖ > 0, we have

limm,n→∞ ‖Sn,mtn− tSn,mxn− (1− t)q1‖= 0. Finally, from

an+m(t) = ‖txn+m +(1− t)q1−q2‖

≤ ‖Sn,mtn−q2‖+‖Sn,mtn− tSn,mxn− (1− t)q1‖

≤ Gn,m‖tn−q2‖+ fn,m +‖Sn,mtn− tSn,mxn− (1− t)q1‖

≤ Gn‖tn−q2‖+ fn +‖Sn,mtn− tSn,mxn− (1− t)q1‖,

we get

limsup
m→∞

an+m(t) ≤ liminf
n→∞

(
Gn‖tn−q2‖+ fn

)
+ limsup

m→∞

(
‖Sn,mtn− tSn,mxn− (1− t)q1‖

)
= liminf

n→∞
an(t).

Thus limsupn→∞ an(t)≤ liminfn→∞ an(t). It follows that

lim
n→∞
‖txn +(1− t)q1−q2‖

exists for all t ∈ [0,1]. This completes the proof.

Lemma 2.4. Under the assumptions of Lemma 2.1, if E has a Frěchet differentiable norm,

then for all q1, q2 ∈ F = F(S1)∩F(S2)∩F(T1)∩F(T2), the limit limn→∞〈xn,J(q1−q2)〉 exists,

where {xn} is the sequence defined by (6), if Ww({xn}) denotes the set of all weak subsequential

limits of {xn}, then 〈u1−u2,J(q1−q2)〉= 0 for all q1, q2 ∈ F and u1, u2 ∈Ww({xn}).

Proof. Suppose that x = q1− q2 with q1 6= q2 and h = t(xn− q1) in inequality (FDN). Then,

we get

t 〈xn−q1, J(q1−q2)〉+
1
2
‖q1−q2‖2

≤ 1
2
‖txn +(1− t)q1−q2‖2

≤ t 〈xn−q1, J(q1−q2)〉+
1
2
‖q1−q2‖2

+b(t‖xn−q1‖).
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Since supn≥1 ‖xn−q1‖ ≤R for some R > 0, we have

t limsup
n→∞

〈xn−q1, J(q1−q2)〉+
1
2
‖q1−q2‖2

≤ 1
2

lim
n→∞
‖txn +(1− t)q1−q2‖2

≤ t liminf
n→∞

〈xn−q1, J(q1−q2)〉+
1
2
‖q1−q2‖2

+b(tR).

That is,

limsup
n→∞

〈xn−q1, J(q1−q2)〉

≤ liminf
n→∞

〈xn−q1, J(q1−q2)〉+
b(tR)

tR
R.

If t → 0, then limn→∞ 〈xn− q1, J(q1− q2)〉 exists for all q1, q2 ∈ F ; in particular, we have

〈u1−u2, J(q1−q2)〉= 0 for all u1, u2 ∈Ww({xn}). This completes the proof.

Theorem 2.1. Under the assumptions of Lemma 2.2, if E has Frěchet differentiable norm, then

the sequence {xn} defined by (6) converges weakly to a common fixed point of S1, S2, T1 and T2.

Proof. By Lemma 2.4, 〈u1− u2, J(q1− q2)〉 = 0 for all u1, u2 ∈Ww({xn}). Therefore ‖q∗−

p∗‖2 = 〈q∗− p∗, J(q∗− p∗)〉 = 0 implies q∗ = p∗. Consequently, {xn} converges weakly to a

common fixed point in F = F(S1)∩F(S2)∩F(T1)∩F(T2). This completes the proof.

Theorem 2.2. Under the assumptions of Lemma 2.2, if the dual space E∗ of E has the Kadec-

Klee (KK) property and the mappings I−Si and I−Ti for i = 1,2, where I denotes the identity

mapping, are demiclosed at zero, then the sequence {xn} defined by (6) converges weakly to a

common fixed point of S1, S2, T1 and T2.

Proof. By Lemma 2.1, {xn} is bounded and since E is reflexive, there exists a subsequence

{xnr} of {xn} which converges weakly to some u∗ ∈ K. By Lemma 2.2, we have

lim
r→∞
‖xnr −Sixnr‖= 0 and lim

r→∞
‖xnr −Tixnr‖= 0

for i = 1,2. Since by hypothesis the mappings I− Si and I−Ti for i = 1,2 are demiclosed at

zero, therefore Siu∗ = u∗ and Tiu∗ = u∗ for i = 1,2, which means u∗ ∈ F = F(S1)∩F(S2)∩

F(T1)∩F(T2). Now, we show that {xn} converges weakly to u∗. Suppose {xns} is another

subsequence of {xn} converges weakly to some v∗ ∈ K. By the same method as above, we have
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v∗ ∈ F and u∗, v∗ ∈Ww({xn}). By Lemma 2.3, the limit limn→∞ ‖txn +(1− t)u∗− v∗‖ exists

for all t ∈ [0,1] and so u∗ = v∗ by Lemma 1.3. Thus, the sequence {xn} converges weakly to

u∗ ∈ F . This completes the proof.

Theorem 2.3. Under the assumptions of Lemma 2.2, if E satisfies Opial’s condition and the

mappings I−Si and I−Ti for i = 1,2, where I denotes the identity mapping, are demiclosed at

zero, then the sequence {xn} defined by (6) converges weakly to a common fixed point of S1, S2,

T1 and T2.

Proof. Let g∗ ∈F , from Lemma 2.1 the sequence {‖xn−g∗‖} is convergent and hence bounded.

Since E is uniformly convex, every bounded subset of E is weakly compact. Thus there exists

a subsequence {xnr} ⊂ {xn} such that {xnr} converges weakly to f ∗ ∈ K. From Lemma 2.2,

we have limr→∞ ‖xnr−Sixnr‖= 0 and limr→∞ ‖xnr−Tixnr‖= 0 for i = 1,2. Since the mappings

I − Si and I − Ti for i = 1,2 are demiclosed at zero, therefore Si f ∗ = f ∗ and Ti f ∗ = f ∗ for

i = 1,2, which means f ∗ ∈ F . Finally, let us prove that {xn} converges weakly to f ∗. Suppose

on contrary that there is a subsequence {xns}⊂ {xn} such that {xns} converges weakly to h∗ ∈K

and f ∗ 6= h∗. Then by the same method as given above, we can also prove that h∗ ∈ F . From

Lemma 2.1 the limits limn→∞ ‖xn− f ∗‖ and limn→∞ ‖xn− h∗‖ exist. By virtue of the Opial

condition of E, we obtain

lim
n→∞
‖xn− f ∗‖ = lim

nr→∞
‖xnr − f ∗‖

< lim
nr→∞

‖xnr −h∗‖

= lim
n→∞
‖xn−h∗‖

= lim
ns→∞

‖xns−h∗‖

< lim
ns→∞

‖xns− f ∗‖

= lim
n→∞
‖xn− f ∗‖,

which derives a contradiction, so f ∗ = h∗. Thus {xn} converges weakly to a common fixed

point of S1, S2, T1 and T2. This completes the proof.



22 G. S. SALUJA

Example 2.1. Let R be the real line with the usual norm |.| and let K = [−1,1]. Define two

mappings S, T : K→ K by

T (x) =

 −2sin x
2 , if x ∈ [0,1],

2sin x
2 , if x ∈ [−1,0)

and

S(x) =

 x, if x ∈ [0,1],

−x, if x ∈ [−1,0).

Then both S and T are asymptotically nonexpansive mappings with constant sequence {kn}=

{1} for all n ≥ 1 and uniformly L-Lipschtzian mappings with L = supn≥1{kn} and hence they

are nearly asymptotically nonexpansive mappings by Remark 1.1. Also the unique common

fixed point of S and T , that is, F = F(S)∩F(T ) = {0}.

3. Conclusion

In this paper, we study hybrid mixed type iteration scheme for two nearly asymptotically

nonexpansive self mappings and two asymptotically nonexpansive non-self mappings and es-

tablish some weak convergence theorems using the following conditions: (1) the space E has a

Frěchet differentiable norm (2) dual space E∗ of E has the Kadec-Klee (KK) property (3) the

space E satisfies Opial’s condition. Our results extend and generalize the corresponding results

of [3]-[6] [11]-[17], and many others from the existing literature to the case of more general

class of mappings and newly proposed hybrid mixed type iteration scheme considered in this

paper.
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