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IMPROVED CONVERGENCE ANALYSIS FOR KING-WERNER-LIKE METHODS
FREE OF DERIVATIVES USING RESTRICTED CONVERGENCE
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Abstract. We present a semilocal and local convergence analysis of some efficient King-Werner-like methods of

order 1+
√

2 free of derivatives in a Banach space setting. We use our idea of restricted domains, where the iterates

lie leading to smaller Lipschitz constants yielding in turn to a more precise local as well as semilocal convergence

analysis than in earlier studies. Numerical examples are presented to illustrate the theoretical results.
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1. Introduction

In [6], Argyros and Ren studied King-Werner-like methods for approximating a locally unique

solution x? of equation

(1) F(x) = 0,

where F is Fréchet-differentiable operator defined on a convex subset of a Banach space B1

with values in a Banach space B2.
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In particular, they studied the semilocal convergence analysis of method defined for n =

0,1,2, . . . by

(2)
xn+1 = xn−A−1

n F(xn),

yn+1 = xn+1−A−1
n F(xn+1),

where x0,y0 are initial points, An = [xn,yn;F ] and [x,y;F ] denotes a divided difference of order

one for operator F at points x,y ∈Ω [2, 4, 7] satisfying

(3) [x,y;F ](x− y) = F(x)−F(y) f or each x,y ∈Ω with x 6= y.

If F is Fréchet-differentiable on Ω, then F ′(x) = [x,x;F ] for each x ∈Ω. The local convergence

analysis of method (2) was given in [9] in the special case when B1 =B2 =R. The convergence

order of method (2) was shown to be 1+
√

2. Using the idea of restricted convergence domains,

we improve the applicability of method (2).

The paper is organized as follows: Section 2 contains the semilocal convergence analysis of

method (2), and Section 3 contains the local convergence analysis of method (2). The numerical

examples including favorable comparisons with earlier studies such as [6,9] are presented in the

concluding Section 4.

2. Semilocal convergence of method (2)

For the semilocal convergence analysis of method (2) requires the following auxiliary result on

majorizing sequences. The proof of these results can be found in see [6].

Lemma 2.1. Let L0 > 0, L > 0, s0 ≥ 0, t1 ≥ 0 be given parameters. Denote by α the only root

in the interval (0,1) of polynomial p defined by

(4) p(t) = L0t3 +L0t2 +2Lt−2L.

Suppose that

(5) 0 <
L(t1 + s0)

1−L0(t1 + s1 + s0)
≤ α ≤ 1− 2L0t1

1−L0s0
,

where

(6) s1 = t1 +L(t1 + s0)t1.
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Then, scalar sequence {tn} defined for each n = 1,2, . . . by

(7)
t0 = 0,sn+1 = tn+1 +

L(tn+1−tn+sn−tn)(tn+1−tn)
1−L0(tn−t0+sn+s0)

, f or each n = 1,2, . . . ,

tn+2 = tn+1 +
L(tn+1−tn+sn−tn)(tn+1−tn)

1−L0(tn+1−t0+sn+1+s0)
, f or each n = 0,1,2, ...

is well defined, increasing, bounded above by

(8) t?? =
t1

1−α

and converges to its unique least upper bound t? which satisfies

(9) t1 ≤ t? ≤ t??.

Moreover, the following estimates hold

(10) sn− tn ≤ α(tn− tn−1)≤ α
n(t1− t0),

(11) tn+1− tn ≤ α(tn− tn−1)≤ α
n(t1− t0)

and

(12) tn ≤ sn

for each n = 1,2, ....

Denote by U(w,ξ ), U(w,ξ ), the open and closed balls in B1, respectively, with center w∈B1

and of radius ξ > 0. Next, we present the semilocal convergence of method (2) using {tn} as a

majorizing sequence.

Theorem 2.2. Let F : Ω ⊂ B1→ B2 be a Fréchet-differentiable operator. Suppose that there

exists a divided differentiable [., ., ;F ] of order one for operator F on Ω×Ω. Moreover, suppose

that there exist x0,y0 ∈Ω, L0 > 0, L > 0, s0 ≥ 0, t1 ≥ 0 such that

(13) A−1
0 ∈ L(B2,B1)

(14) ‖A−1
0 F(x0)‖ ≤ t1,

(15) ‖x0− y0‖ ≤ s0,
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(16) ‖A−1
0 ([x,y;F ]−A0)‖ ≤ L0(‖x− x0‖+‖y− y0‖), for each x,y ∈Ω

‖A−1
0 ([x,y;F ]− [z,v;F ])‖ ≤ L(‖x− z‖+‖y− v‖),(17)

for each x,y,z ∈Ω1 = Ω∩U(x0,
1

2L0
)

(18) U(x0, t?)⊆Ω

and hypotheses of Lemma 2.1 hold, where A0 = [x0;y0;F ] and t? is given in Lemma 2.1. Then,

sequence {xn} generated by method (2) is well defined, remains in U(x0, t?) and converges to a

unique solution x? ∈U(x0, t?) of equation F(x) = 0. Moreover, the following estimates hold for

each n = 0,1,2, ...

(19) ‖xn− x?‖ ≤ t?− tn.

Furthermore, if there exists R > t? such that

(20) U(x0,R)⊆Ω

and

(21) L0(t?+R+ s0)< 1,

then, the point x? is the only solution of equation F(x) = 0 in U(x0,R).

Proof. Simply notice that the iterates remain in Ω1 which is a more precise location than Ω

used in [6], since Ω1 ⊆ Ω. Then, in view of this the proof follows from the corresponding one

in [6].

�

Remark 2.3. (a) The limit point t? can be replaced by t?? given in closed form by (8) in Theorem

2.1.

(b) In [6], Argyros and Ren used the stronger condition

‖A−1
0 ([x,y;F ]− [z,v;F ])‖ ≤ L1(‖x− z‖+‖y− v‖) for each x,y,z,v ∈Ω.

Notice that from we have

L0 ≤ L1 and L≤ L1
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holds in general and L1
L0

can be arbitrarily large [2–6]. Moreover, it follows from the proof of

Theorem 2.2 that hypothesis (17) is not needed to compute an upper bound for ‖A−1
0 F(x1)‖.

Hence, we can define the more precise (than {tn}) majorizing sequence {tn} (for {xn}) by

(22)
t0 = 0, t1 = t1,s0 = s0,s1 = t1 +L0(t1 + s0)t1,

sn+1 = tn+1 +
L(tn+1−tn+sn−tn)(tn+1−tn)

1−L0(tn−t0+sn+s0)
f or each n = 1,2, ...

and

(23) tn+2 = tn+1 +
L(tn+1−tn+sn−tn)(tn+1−tn)

1−L0(tn+1−t0+sn+1+s0)
f or each n = 0,1, ...

Then, using a simple induction argument we have that

(24) tn ≤ tn,

(25) sn ≤ sn,

(26) tn+1− tn ≤ tn+1− tn,

(27) sn− tn ≤ sn− tn

and

(28) t? = lim
n→∞

tn ≤ t?.

Furthermore, if L0 < L, then (24)-(27) are strict for n ≥ 2, n ≥ 1, n ≥ 1, n ≥ 1, respectively.

Clearly, sequence {tn} increasing converges to t? under the hypotheses of Lemma 2.1 and can

replace {tn} as a majorizing sequence for {xn} in Theorem 2.2. Finally, the old sequences using

L1 instead of L in [6] are less precise than the new ones.

3. Local convergence of method (2)

We present the local convergence of method (2) in this section. We have:



6 I. K. ARGYROS, S. GEORGE

Theorem 3.1. Let F : Ω ⊆ B1→ B2 be a Fréchet-differentiable operator. Suppose that there

exist x? ∈Ω, l0 > 0 and l > 0 such that for each x,y,z,u ∈Ω

(29) F(x?) = 0, F ′(x?)−1 ∈ L(B2,B1),

(30) ‖F ′(x?)−1([x,y;F ]−F ′(x?))‖ ≤ l0(‖x− x?‖+‖y− x?‖) for each x,y ∈Ω

‖F ′(x?)−1([x,y;F ]− [z,u;F ])‖ ≤ l(‖x− z‖+‖y−u‖),(31)

for each x,y,z,u ∈Ω2 := Ω∩U(x∗,
1

2l0
)

and

(32) U(x?,ρ)⊆Ω,

where

(33) ρ =
1

(1+
√

2)l +2l0
.

Then, sequence {xn} generated by method (2) is well defined, remains in U(x?,ρ) and converges

to x? with order of 1+
√

2 at least, provided that x0,y0 ∈ U(x?,ρ). Moreover, the following

estimates

(34) ‖xn+2− x?‖ ≤
√

2−1
ρ2 ‖xn+1− x?‖2‖xn− x?‖

and

(35) ‖xn− x?‖ ≤ (

√√
2−1
ρ

)Fn−1‖x1− x?‖Fn

hold for each n = 1,2, . . ., where Fn is a generalized Fibonacci sequence defined by F1 = F2 = 1

and Fn+2 = 2Fn+1 +Fn.

Proof. As in the proof of Theorem 2.2.

�
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Remark 3.2. (a) For the special case B1 = B2 = R, the radius of convergence ball for method

(2) is given in [10] by

(36) ρ? =
s?

M
,

where s? ≈ 0.55279 is a constant and M > 0 is the upper bound for |F(x?)−1F ′′(x)| in the given

domain Ω. Using (31) we have

(37) ‖F ′(x?)−1(F ′(x)−F ′(y))‖ ≤ 2l‖x− y‖ f or any x,y ∈Ω.

That is, we can choose l = M
2 . Simply set l0 = l, we have from (33) that

(38) ρ =
2

(3+
√

2)M
=

2(3−
√

2)
5M

≈ 0.63432
M

>
s?

M
= ρ?.

Therefore, even in this special case, a bigger radius of convergence ball for method (2) has been

given in Theorem 3.1.

(b) Notice that we have

(39) l0 ≤ l1 and l ≤ l1

‖A−1
0 ([x,y;F ]− [z,u;F ])‖ ≤ l1(‖x− z‖+‖y−u‖) for each x,y,z,u ∈Ω.

The radius given in [6]:

(40) ρ0 =
1

(1+
√

2)l1 + l0
≤ ρ.

Moreover, if l < l1, then ρ0 < ρ and the new error bounds(34) and (35) are tighter than the old

ones in [6] using ρ0 instead of ρ.

4. Numerical examples

We present some numerical examples in this section.

Example 4.1. Let B1 = B2 = R, Ω = (−1,1) and define F on Ω by

(41) F(x) = ex−1.
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Then, x? = 0 is a solution of Eq. (1.1), and F ′(x?) = 1. Note that for any x,y,z,u ∈Ω, we have

(42)

|F ′(x?)−1([x,y;F ]− [z,u;F ])|

= |
∫ 1

0 (F
′(tx+(1− t)y)−F ′(tz+(1− t)u))dt|

= |
∫ 1

0
∫ 1

0 (F
′′(θ(tx+(1− t)y)+(1−θ)(tz+(1− t)u)

)
×
(
tx+(1− t)y− (tz+(1− t)u)

)
dθdt|

= |
∫ 1

0
∫ 1

0 (e
θ(tx+(1−t)y)+(1−θ)(tz+(1−t)u)(tx+(1− t)y− (tz+(1− t)u)

)
dθdt|

≤
∫ 1

0 e|t(x− z)+(1− t)(y−u)|dt

≤ e
2(|x− z|+ |y−u|)

and

(43)

|F ′(x?)−1([x,y;F ]− [x?,x?;F ])|= |
∫ 1

0 F ′(tx+(1− t)y)dt−F ′(x?)|

= |
∫ 1

0 (e
tx+(1−t)y−1)dt|

= |
∫ 1

0 (tx+(1− t)y)(1+ tx+(1−t)y
2! + (tx+(1−t)y)2

3! + · · ·)dt|

≤ |
∫ 1

0 (tx+(1− t)y)(1+ 1
2! +

1
3! + · · ·)dt|

≤ e−1
2 (|x− x?|+ |y− x?|).

That is to say, the Lipschitz condition (31) and the center-Lipschitz condition (30) are true for

l1 = e
2 , l =

e
1

e−1
2 and l0 = e−1

2 , respectively. Using (33) in Theorem 3.1, we can deduce that the

radius of convergence ball for method (2) is given by

(44) ρ0 =
1

(1+
√

2)l1 +2l0
=

2
(3+
√

2)e−2
≈ 0.200018471,

which is smaller than the corresponding radius

(45) ρ =
1

(1+
√

2)l +2l0
≈ 0.2578325131698342986

Let us choose x0 = 0.2,y0 = 0.199. Suppose sequences {xn} and {yn} are generated by

method (2). Table 1 gives a comparison results of error estimates for Example 4.1, which shows

that tighter error estimates can be obtained from the new (34) or (35) using ρ instead of ρ0 used

in [6].

Hence the new results are more precise than the old ones in [6].
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TABLE 1. The comparison results of error estimates for Example 4.1

n using ρ using ρ0

new (35) old (35)

3 0.0498 0.0828

4 0.0031 0.0142

5 2.9778e-06 1.7305e-04

6 1.7108e-13 4.4047e-09

7 5.4309e-31 3.4761e-20

Example 4.2. Let B1 = B2 = C[0,1], the space of continuous functions defined on [0,1], e-

quipped with the max norm and Ω =U(0,1). Define function F on Ω, given by

(46) F(x)(s) = x(s)−5
∫ 1

0
stx3(t)dt,

and the divided difference of F is defined by

(47) [x,y;F ] =
∫ 1

0
F ′(tx+(1− t)y)dt.

Then, we have

(48) [F ′(x)y](s) = y(s)−15
∫ 1

0
stx2(t)y(t)dt, f or all y ∈Ω.

We have x?(s) = 0 for all s ∈ [0,1], l0 = 3.75 and l = l1 = 7.5. Using Theorem 3.1, we can

deduce that the radius of convergence ball for method (2) is given by

(49) ρ0 = ρ =
1

(1+
√

2)l +2l0
≈ 0.039052429.

Example 4.3. Let B1 = B2 =C[0,1] be equipped with the max norm and Ω =U(0,r) for some

r > 1. Define F on Ω by

F(x)(s) = x(s)− y(s)−µ

∫ 1

0
G(s, t)x3(t)dt, x ∈C[0,1], s ∈ [0,1].

y ∈C[0,1] is given, µ is a real parameter and the Kernel G is the Green’s function defined by

G(s, t) =

 (1− s)t if t ≤ s,

s(1− t) if s≤ t.
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Then, the Fréchet derivative of F is defined by

(F ′(x)(w))(s) = w(s)−3µ

∫ 1

0
G(s, t)x2(t)w(t)dt, w ∈C[0,1], s ∈ [0,1].

Let us choose x0(s) = y0(s) = y(s) = 1 and |µ|< 8
3 . Then, we have that

‖I−A0‖ ≤ 3
8 µ, A−1

0 ∈ L(B2,B1),

‖A−1
0 ‖ ≤

8
8−3|µ| , s0 = 0, t1 =

|µ|
8−3|µ| , L0 =

3(1+r)|µ|
2(8−3|µ|) ,

and

L =
3r|µ|

8−3|µ|
.

Let us choose r = 3 and µ = 1
2 . Then, we have that

t1 = 0.076923077, L0 ≈ 0.461538462, L = L1 ≈ 0.692307692

and
L(t1 + s0)

1−L0(t1 + s1 + s0)
≈ 0.057441746, α ≈ 0.711345739,

1− 2L0t1
1−L0s0

≈ 0.928994083.

That is, condition (5) is satisfied and Theorem 2.2 applies.
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