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Abstract. The purpose of the present paper is to prove two main theorems concerning C-monotone and C-convex

multivalued mappings where C is given cone and its applications to the quasi-equilibrium problems (UPQEP),

(LPQEP), (UWQEP) and (LWQEP). Moreover, we also derive some sufficient conditions on the existence of

solutions of the general vector α optimization problems (GVOP)α and derive a sufficient condition on the existence

of equilibrium points.
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1. Introduction

Let X and Y be real topological vector spaces and Y with partial order S generated by a

convex cone C. Let us denote by x− y ∈ C instead of xSy for every x,y ∈ Y. Let M be a

nonempty subset in Y , we define efficient sets of M with respect to C in different senses cases

as PMin(M|C), IMin(M|C), WMin(M|C) and PrMin(M|C) (see Luc, D.T [7]). If x ∈ M is

an element of efficient sets αMin(M|C|) (where α ∈ {P, I,W,Pr}), then point x is called an

α efficient point of M with respect to C. For instances, when α = I, x : Ideal efficient point;

α = P, x : Pareto efficient point; α =W, x : Weak efficient point and α = Pr, x : Proper efficient
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point, etc. Let D be a nonempty subset in X, denote by 2D indicates the family of all subsets

of D. Let the multivalued mapping F : D −→ 2Y . The general vector α optimization problem

corresponding to D,F and C for α ∈ {I,P,W,Pr}denoted by (GVOP)α , by means of finding

x ∈ D such that

(GVOP)α F(x)∩αMin(F(D)|C) 6= /0.

A point x solved (GVOP)α is called a solution of (GVOP)α and a point y ∈ αMin(F(D)|C) is

called α optimal value of (GVOP)α .

Let X ,Y and Z be topological vector spaces with D and K be nonempty subsets in X and Z,

respectively and let C be a cone in Y . Let us consider the multivalued mappings S,T,F,G and

H, where S : D −→ 2D, T : D×D −→ 2K, F,G,H : K×D×D −→ 2Y . From now on, unless

otherwise specify, we always suppose that G and H are two different multivalued mappings and

let F of the form F(y,x,x′) = G(y,x′,x)−H(y,x,x′) for all (y,x,x′) ∈ K×D×D. In the present

paper we shall deal with some problems related as follows:

Problem 1.1. [18] (UPQEP), Upper Pareto quasi-equilibrium problem. Find x ∈ D such that

x ∈ S(x) and

F(y,x,x) := G(y,x,x)−H(y,x,x) 6⊂ −(C \ l(C)), for all x ∈ S(x), y ∈ T (x,x).

Problem 1.2. [18] (LPQEP), Lower Pareto quasi-equilibrium problem. Find x ∈ D such that

x ∈ S(x) and

(G(y,x,x)−H(y,x,x))∩−(C \ l(C)) = /0, for all x ∈ S(x), y ∈ T (x,x).

Problem 1.3. [18] (UWQEP), Upper weakly quasi-equilibrium problem. Find x ∈ D such that

x ∈ S(x) and

F(y,x,x) := G(y,x,x)−H(y,x,x) 6⊂ −int(C), for all x ∈ S(x), y ∈ T (x,x).

Problem 1.4. [18] (LWQEP), Lower weakly quasi-equilibrium problem. Find x ∈ D such that

x ∈ S(x) and
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(G(y,x,x)−H(y,x,x))∩−(intC) = /0, for all x ∈ S(x), y ∈ T (x,x).

The above problems are called γ quasi-equilibrium problems involving D,K,S,T,F with re-

spect to C, where γ is respectively one of the following qualifications: Upper Pareto, Lower

Pareto, Upper weakly and Lower weakly. The above problems are proposed by Lin and Tan

[18] in which the existence of solutions are derived. The related problems has been studied by

many other authors (see, e.g., Ansari [1], Chang and Pang [5], Luc and Tan [8], Minh and Tan

[12], Tan [17], etc and the references therein).

The remainder of this paper is organized as follows. After some preliminaries and defini-

tions, two main theorems for quasi-equilibrium problems concerning multivalued mappings in

Hausdorff locally convex topological linear spaces are well-presented analysis in Section 3. As

an application, we provide some sufficient conditions on the existence of solutions of general

vector α optimization problems, where α ∈ {I,P,Pr,W} and the existence of vector equilibrium

points is also derived.

2. Preliminaries and definitions

In this subsection, let X ,Y,D and F be given as in section 1. The effective domain of F is

denoted as domF = {x ∈ D |F(x) 6= /0}. We recall some definitions as follows:

Definition 2.1. [5, 6-8, 18] Let F : D−→ 2Y be a multivalued mapping

(i) F is said to be upper C-continuous at x ∈ domF if for all neighborhood V of the origin in Y

there is a neighborhood U of x such that

F(x)⊂ F(x)+V +C

holds for all x ∈U ∩domF.

(ii) F is said to be upper C-continuous on D if F is upper C-continuous at any point of domF.

(iii) F is said to be lower C-continuous at x ∈ domF if for all neighborhood V of the origin in Y

there is a neighborhood U of x such that

F(x)⊂ F(x)+V −C
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holds for all x ∈U ∩domF.

(iv) F is said to be lower C-continuous on D if F is lower C-continuous at any point of domF.

(v) F is said to be C− continuous on D if F is simultaneously upper C-continuous and lower

C-continuous on D.

(vi) F is said to be C− convex if D is convex and for any x,y ∈ D, any t ∈ [0,1] we have

tF(x)+(1− t)F(y)⊂ F(tx+(1− t)y)+C.

(vii) F is said to be C− concave if D is convex and for any x,y ∈ D, any t ∈ [0,1] we have

tF(x)+(1− t)F(y)⊂ F(tx+(1− t)y)−C.

Definition 2.2. [7] Let M be a nonempty subset of Y. We say that

(i) x ∈M is an ideal efficient (or ideal minimal) point of M with respect to C if M ⊂ x+C. The

set of ideal minimal points of M is denoted by IMin(M|C).

(ii) x ∈M is an efficient (or Pareto minimal or nondominated) point of M with respect to C if

M∩ (x−C)⊂ x+C∩ (−C). The set of efficient points of M is denoted by PMin(M|C).

(iii) x ∈M is a (global) proper efficient point of M with respect to C if there exists a convex

cone
∼
C which is not the whole space and contains C \C∩ (−C) in its interior such that x ∈

PMin(M|
∼
C). The set of proper efficient points of M is denoted by PrMin(M|C).

(iv) Supposing that intC 6= /0, point x ∈M is a weak efficient point of M with respect to C if

x ∈ PMin(M|intC∪{0}). The set of weak efficient points of M is denoted by WMin(M|C).

Following Luc, T. D [7, Proposition 2.2] that

PrMin(M|C)⊂ PMin(M|C)⊂WMin(M|C)

and moreover IMin(M|C) = PMin(M|C) if IMin(M|C) 6= /0.

3. Main results
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From now on, unless otherwise specify let us always assume that X ,Y and Z be Hausdorff

locally convex topological vector spaces with D and K be nonempty compact convex subsets in

X and Z, respectively and cone C pointed closed convex with its interior nonempty in Y. The

multivalued mappings S,T,F,G,H are given as in section 2 with nonempty closed values.

3.1. Two main theorems for quasi-equilibrium problems concerning multivalued map-

pings and some problems related

Definition 3.1.1. Let F : D×D −→ 2Y be a multivalued mapping with nonempty values. We

say that F is upper C-monotone∗ if F(x,y)+F(y,x)⊂−C holds for any x,y ∈ D.

Remark 3.1.2. If F is a vector valued function from D×D into Y and upper C-monotone∗

simultaneously, then F is upper C−monotone. In fact, by definition for every (x,y)∈D×D, we

get the inclusion of F(x,y)+F(y,x)⊂−C holds, which is equivalent to F(x,y)⊂−F(y,x)−C.

Consequently, F is upper C-monotone. Note that Definition 3.1.1 is new in this paper to us.

From there we derive two main theorems concerning multivalued mappings as follows:

Theorem 3.1.3. Let G,H : D×D −→ 2Y be multivalued mappings with nonempty values.

Assume that all the following conditions are fulfilled

(A) G(x,x) = {0} and H(x,x) = {0} for all x ∈ D;

(B) G is upper C-monotone∗;

(C) For all x ∈D, x = ∑
i∈I

λi xi, where xi ∈D,λi ∈ [0;1] for all i ∈ I, ∑
i∈I

λi = 1, I is finite index set,

G(y,x)⊂∑
i∈I

λiG(y,xi)−C, for all y ∈ D.

(D) For all x ∈ D, the multivalued mapping H(x, . ) : D−→ 2Y is C-convex;

(E) For all y ∈ D, the set A(y) := {x ∈ D : G(y,x)−H(x,y)⊂ intC} is open in D.

Then there exists a point x ∈ D such that

G(y,x)−H(x,y) 6⊂ intC, for all y ∈ D.

Suppose, moreover, that Y has a countable neighborhood base and there exists a nonempty

compact convex subset B ⊂ Y does not contain zero such that C = {tb |b ∈ B, t ≥ 0} and for
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every c ∈C \{0}, there exist unique b ∈ B and t > 0 such that c = tb. Then there exists at least

one point x ∈ D such that

G(y,x)−H(x,y) 6⊂C \{0}, for all y ∈ D.

To prove the theorem we need the following proposition

Proposition 3.1.4. Let Y be Hausdorff locally convex topological vector space and let C be a

cone in Y. Suppose, moreover, that there exists a compact convex subset B⊂Y does not contain

zero such that C = {tb |b ∈ B, t ≥ 0} and for every c ∈ C \ {0}, there exist unique b ∈ B and

t > 0 such that c = tb. Then, if Y has a countable neighborhood base then there exists a pointed

closed convex cone, say
∼
C, such that int(

∼
C) 6= /0 and C \{0} ⊂ int(

∼
C).

Proof. We denote by Y ′ instead of the topological dual space of Y. Since B does not contain zero

in Y, one can separate {0} and B by a nonzero vector ξ ∈Y ′ such that ε := in f{ξ (b) |b∈B}> 0.

By taking S = {b ∈ Y |ξ (b) > 0} and V = {x ∈ Y | |ξ (x)| ≤ ε

2}. It is easy to see that V is a

neighborhood of the origin in Y such that B+V ⊂ S. By choosing

∼
C = {t(b+ v) | b ∈ B,v ∈V, t ≥ 0},

then
∼
C is pointed closed convex cone in Y and C \{0} ⊂ int(

∼
C), which completes the proof.

Proof of Theorem 3.1.3. We first prove that there exists a point x ∈ D such that

G(y,x)−H(x,y) 6⊂ intC, for all y ∈ D.

For any fixed y ∈ D, we put

S(y) := {x ∈ D : G(y,x)−H(x,y) 6⊂ intC}.

Obviously, S(y) is nonempty subset in D for all y ∈ D. Furthermore, S(y) is a closed subset in

D because S(y) = D∩X \A(y). We next prove that

∩
y∈D

S(y) 6= /0.
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In fact, we can consider {yi : i∈ I} is a finite arbitrary subset in D. Thus, for every z∈ conv{yi :

i ∈ I}, we have a representation as follows

z = ∑
i∈I

λiyi, where λi ∈ [0;1]∀i ∈ I, ∑
i∈I

λi = 1.

From there we conclude that

z ∈ ∪
i∈I

S(yi).

In fact, posit to the contrary that

z 6∈ ∪
i∈I

S(yi).

Therefore z 6∈ S(yi) for all i ∈ I. It follows from the definition that

G(yi,z)−H(z,yi)⊂ int(C), for all i ∈ I.

Consequently

∑
i∈I

λi

(
G(yi,z)−H(z,yi)

)
⊂∑

i∈I
λiint(C)⊂ int(C). (1)

We invoke the hypotheses of (B) to deduce that the multivalued mapping G is upper C− mono-

tone, which is equivalent to

G(yi,y j)+G(y j,yi)⊂−C, for all i, j ∈ I.

This together with the hypotheses (C), it leads to

∑
i∈I

λiG(yi,z) = ∑
i∈I

λiG(yi,∑
j∈I

λ jy j)⊂ ∑
i, j∈I

λiλ jG(yi,y j)−C

=
1
2 ∑

i, j∈I
λiλ j

(
G(yi,y j)+G(y j,yi)

)
−C

⊂− ∑
i, j∈I

λiλ jC−C ⊂−C−C ⊂−C.

(2)

On the other hand, from (A) and (D) it follows that

∑
i∈I

λiH(z,yi)⊂ H(z, ∑
i∈D

λiyi)+C

= H(z,z)+C = {0}+C =C
(3)

Combining (2) and (3), yields that

∑
i∈I

λi

(
G(yi,z)−H(z,yi)

)
⊂−C. (4)
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Since C is pointed cone, and this combines with both (1) and (4), we have a contradiction. From

there we conclude that

z ∈ ∪
i∈I

S(yi).

Moreover, since z ∈ conv{yi : i ∈ I} is arbitrary, thus

conv{yi : i ∈ I} ⊂ ∪
i∈I

S(yi).

According to Lemma of KKM [2] (see, Chapper 1, Theorem 24), we have

∩i∈IS(yi) 6= /0.

As S(y) is closed subset for all y ∈ D and moreover, D is compact set in X , S(y) ⊂ D, and this

implies that

∩y∈DS(y) 6= /0.

From there there exists at least one element x ∈ D such that

x ∈ S(y), for all y ∈ D.

Consequently, there exists at least one element x ∈ D such that

G(y,x)−H(x,y) 6⊂ intC, for all y ∈ D.

For the last assertion, by taking into account Proposition 3.1.4, there exists a pointed closed

convex cone
∼
C with C \ {0} ⊂ int(

∼
C). In the same way as above, where C :=

∼
C, there exists a

point x ∈ D such that

G(y,x)−H(x,y) 6⊂ int(
∼
C).

Therefore there exists x ∈ D such that

G(y,x)−H(x,y) 6⊂C \{0}, for all y ∈ D.

From there completing the proof.

Remark 3.1.5. The condition (E) in Theorem 3.1.3 is correct. Indeed, let G,H,F : D×D−→ 2Y

be three multivalued mappings with nonempty values, G 6= H and F has the form F(x,y) =

G(y,x)−H(x,y) for all (x,y) ∈D×D, one can find some conditions for both G and H such that
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F is upper C-continuous on D×D. By direct applying Proposition 3.1.4 below, it follows that

the set

A(y) := {x ∈ D : G(y,x)−H(x,y)⊂ intC}

is open in D for each y ∈ D.

Proposition 3.1.6. Let D be a nonempty subset in X and let C be a closed cone in Y . If the

multivalued mapping F : D −→ 2Y with nonempty closed values is upper C-continuous on D,

then the set A := {x ∈ D |F(x)⊂ intC} is open in D.

Proof. If intC = /0, nothing to prove. Conversely, let x ∈ A be arbitrary and F(x) ⊂ intC.

Since F is upper C− continuous on D, hence F is upper C− continuous at x ∈ D. Then for any

neighborhood W of the origin in Y, one can find a neighborhood U of x in domF such that

F(x)⊂ F(x)+W +C, for all x ∈U.

Finally, we will check that for all x ∈U then F(x) ⊂ intC. Posit to the contrary that, there is

x0 ∈ U with F(x0) 6⊂ intC. Then there is y0 ∈ F(x0) but y0 6∈ intC. From there we infer that

y0 ∈ F(x)+W +C. On the other hand, since W is an arbitrary neighborhood of the origin in Y,

F(x) is closed subset in Y and C is closed cone in Y, thus y0 ∈ F(x)+C ⊂ intC+C = intC and

it leads to a contradiction. Hence U ∩D⊂ A and the conclusion follows.

Proposition 3.1.7. Let D and C be given as in Proposition 3.1.4. Then, if the multivalued

mapping F : D −→ 2Y with nonempty closed values is lower C-continuous on D then the set

A := {x ∈ D |F(x)∩ intC 6= /0} is open in D.

Proof. If A = /0, nothing to prove. Conversely, let x ∈ A be arbitrary such that F(x)∩ intC 6= /0.

Since F is lower C− continuous at x, thus for any neighborhood W of the origin in Y one can

find neighborhood U of x such that

F(x)⊂ F(x)+W −C, for all x ∈U.

We must show that for all x ∈U then F(x)∩ intC 6= /0. In the converse case, there exists x0 ∈

U with F(x0)∩ intC = /0. Because F(x) ⊂ F(x0)+W −C, F(x0)−C is a closed subset in Y

and W is an arbitrary neighborhood of the origin in Y hence F(x)∩ intC = /0 and we have a

contradiction. So, the proposition 3.1.7 is proved complete.
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Theorem 3.1.8. Let G,H be as in Theorem 3.1.3. Suppose that all the following conditions are

fulfilled

(A) G(x,x) = {0} and H(x,x) = {0} for all x ∈ D;

(B) G is upper C-monotone∗;

(C) For all x ∈D, x = ∑
i∈I

λi xi, where xi ∈D,λi ∈ [0;1] for all i ∈ I, ∑
i∈I

λi = 1, I is finite index set,

G(y,x)⊂∑
i∈I

λiG(y,xi)−C, for all y ∈ D.

(D) For all x ∈ D, the multivalued mapping H(x, . ) : D−→ 2Y is C-convex;

(E) For all y ∈ D, the set A(y) := {x ∈ D : G(y,x)−H(x,y)∩ intC 6= /0} is open in D.

Then there exists a point x ∈ D such that(
G(y,x)−H(x,y)

)
∩ intC = /0, for all y ∈ D.

Moreover, assume that there exists a pointed closed convex cone
∼
C with C \{0} ⊂ int(

∼
C), then

there exists a point x ∈ D such that(
G(y,x)−H(x,y)

)
∩C \{0}= /0, for all y ∈ D.

Proof. We first show that there exists a point x ∈ D such that(
G(y,x)−H(x,y)

)
∩ intC = /0, for all y ∈ D.

For any fixed y ∈ D, we put

S(y) := {x ∈ D :
(

G(y,x)−H(x,y)
)
∩ intC = /0}.

Obviously, S(y) is nonempty closed subset in D for all y ∈ D. We second prove that

∩
y∈D

S(y) 6= /0.

In fact, let {yi : i ∈ I} be a finite arbitrary subset in D. Let us choose z ∈ conv{yi : i ∈ I} be

arbitrary and then write z of the form

z = ∑
i∈I

λiyi, where λi ∈ [0;1]∀i ∈ I, ∑
i∈I

λi = 1.
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From there we conclude that

z ∈ ∪
i∈I

S(yi).

In fact, it it were not so, then we get

z 6∈ ∪
i∈I

S(yi),

which yields that z 6∈ S(yi) for all i ∈ I. By the definition, we obtain as follows(
G(yi,z)−H(z,yi)

)
∩ int(C) 6= /0, for all i ∈ I.

Consequently

∑
i∈I

λi

(
G(yi,z)−H(z,yi)

)
∩ int(C) 6= /0. (5)

In view of the hypotheses of (B), the multivalued mapping G is upper C− monotone and this

means that

G(yi,y j)+G(y j,yi)⊂−C, for all i, j ∈ I.

This combines with the hypotheses of (C), we obtain as follows

∑
i∈I

λiG(yi,z) = ∑
i∈I

λiG(yi,∑
j∈I

λ jy j)⊂ ∑
i, j∈I

λiλ jG(yi,y j)−C

=
1
2 ∑

i, j∈I
λiλ j

(
G(yi,y j)+G(y j,yi)

)
−C

⊂− ∑
i, j∈I

λiλ jC−C ⊂−C−C ⊂−C.

(6)

In other words, by (A) and (D), we also have

∑
i∈I

λiH(z,yi)⊂ H(z, ∑
i∈D

λiyi)+C

= H(z,z)+C = {0}+C =C.

(7)

Combining (6)-(7), yields that

∑
i∈I

λi

(
G(yi,z)−H(z,yi)

)
⊂−C. (8)

Since C is pointed cone, and this combines with both (5) and (8), we have a contradiction.

From there we conclude that

z ∈ ∪
i∈I

S(yi).



12 T.V. SU, T.V. DINH

Moreover, since z ∈ conv{yi : i ∈ I} is arbitrary, thus

conv{yi : i ∈ I} ⊂ ∪
i∈I

S(yi).

According to Lemma of KKM [2] (see, Chapper 1, Theorem 24), we have

∩i∈IS(yi) 6= /0.

Since S(y) is closed subset for all y ∈ D and moreover, D is compact set in X, S(y) ⊂ D, and

this implies that

∩y∈DS(y) 6= /0.

From there there exists a point x ∈ D such that

x ∈ S(y), for all y ∈ D.

Consequently, there exists x ∈ D such that(
G(y,x)−H(x,y)

)
∩ intC = /0, for all y ∈ D.

For the last assertion, we assume that there exists a pointed closed convex cone
∼
C with C\{0}⊂

int(
∼
C). By a similar argument as above, where C :=

∼
C, there exists a point x ∈ D such that(

G(y,x)−H(x,y)
)
∩ int(

∼
C) = /0, for all y ∈ D.

So that there exists x ∈ D such that(
G(y,x)−H(x,y)

)
∩C \{0}= /0, for all y ∈ D.

From there completing the proof.

3.2. Some applications

In this subsection, we lead to some sufficient conditions on existence of solutions of gen-

eral vector α optimization problems (where α ∈ {P, I,W,Pr}) and the problems (UPQEP),

(LPQUP), (UWQEP) and (LWQEP).

Theorem 3.2.1. We suppose that all the following conditions are fulfilled

(A) G(y,x,x) = H(y,x,x) = {0} for all y ∈ K, x ∈ D;
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(B) For all y ∈ K, the multivalued mapping G(y, . , . ) : D×D−→ 2Y is upper C-monotone∗;

(C) For all x ∈D, x = ∑
i∈I

λi xi, where xi ∈D,λi ∈ [0;1] for all i ∈ I, ∑
i∈I

λi = 1, I is finite index set,

G(y,z,x)⊂∑
i∈I

λiG(y,z,xi)−C, for all (y,z) ∈ K×D;

(D) For all (y,x) ∈ K×D, the multivalued mapping H(y,x, . ) : D−→ 2Y is C-convex on D;

(E) For all (y,x) ∈ K×D, the set A(y,x) := {x′ ∈ D : G(y,x,x′)−H(y,x′,x)⊂ intC} is open in

D;

(F) S has nonempty values and D\S(x)⊂M(x) for all x ∈ D, where M : D−→ 2D is given by

M(x) = {x′ ∈ D |G(y,x′,x)−H(y,x,x′)⊂ intC, for some y ∈ T (x,x′)}.

Then there exists a point x ∈ D such that x ∈ S(x) and

F(y,x,x) 6⊂ −int(C), for all x ∈ S(x), y ∈ T (x,x).

Furthermore, assume that there exists a pointed closed convex cone
∼
C with C \ {0} ⊂ int(

∼
C),

then there exists a point x ∈ D such that x ∈ S(x) and

F(y,x,x) 6⊂ −(C \{0}), for all x ∈ S(x), y ∈ T (x,x).

Proof. For any fixed y ∈ K. According to Theorem 3.1.8, there exists x ∈ D such that

G(y,x,x)−H(y,x,x) 6⊂ intC for all x ∈ D.

It is not difficult to see that S(x)⊂ D and T (x,x)⊂ K. Therefore

G(y,x,x)−H(y,x,x) 6⊂ intC for all x ∈ S(x), y ∈ T (x,x). (9)

From there we must show that x ∈ S(x). Posit to the contrary that, x 6∈ S(x) for all x ∈ D. We

consider the multivalued mapping M : D−→ 2D is defined as

M(x) = {x′ ∈ D |G(y,x′,x)−H(y,x,x′)⊂ intC, for some y ∈ T (x,x′)}.

By hypotheses, for every x ∈ D, it follows that S(x) 6= /0 and D\S(x)⊂M(x). Hence x ∈M(x)

for all x ∈ D. Next, we consider the multivalued mapping N : D−→ 2D is defined as

N(x) = {x′ ∈ D|G(y,x′,x)−H(y,x,x′) 6⊂ intC, for all x ∈ S(x′), y ∈ T (x,x′)}.
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It follows from (9) that x ∈ N(x) and N(x) = D\M(x) for all x ∈D. Consequently, x 6∈ N(x) for

all x ∈ D and this leads to a contradiction. So, there exists x ∈ D such that x ∈ S(x) and

F(y,x,x) 6⊂ −int(C), for all x ∈ S(x), y ∈ T (x,x).

On the other hand, by hypotheses there exists a pointed closed convex cone
∼
C with C \ {0} ⊂

int(
∼
C). By a similar argument as above, where C :=

∼
C, there exists x ∈D such that x ∈ S(x) and

F(y,x,x) 6⊂ −(C \{0}), for all x ∈ S(x), y ∈ T (x,x),

which the claim follows.

Theorem 3.2.2. Assume that all the following conditions are fulfilled

(A) G(y,x,x) = H(y,x,x) = {0} for all y ∈ K, x ∈ D;

(B) For all y ∈ K, the multivalued mapping G(y, . , . ) : D×D−→ 2Y is upper C-monotone∗;

(C) For all x ∈D, x = ∑
i∈I

λi xi, where xi ∈D,λi ∈ [0;1] for all i ∈ I, ∑
i∈I

λi = 1, I is finite index set,

G(y,z,x)⊂∑
i∈I

λiG(y,z,xi)−C, for all (y,z) ∈ K×D.

(D) For all (y,x) ∈ K×D, the multivalued mapping H(y,x, . ) : D−→ 2Y is C-convex;

(E) For all (y,x) ∈ K×D, the set A(y,x) := {x′ ∈ D :
(

G(y,x,x′)−H(y,x′,x)
)
∩ intC 6= /0} is

open in D;

(F) S has nonempty values and D\S(x)⊂M(x) for all x ∈ D, where M : D−→ 2D is given by

M(x) = {x′ ∈ D |
(

G(y,x′,x)−H(y,x,x′)
)
∩ intC 6= /0, for some y ∈ T (x,x′)}.

Then there exists a point x ∈ D such that x ∈ S(x) and

F(y,x,x)∩−int(C) = /0, for all x ∈ S(x), y ∈ T (x,x).

Furthermore, assume that there exists a pointed closed convex cone
∼
C with C \ {0} ⊂ int(

∼
C),

then there exists x ∈ D such that x ∈ S(x) and

F(y,x,x)∩−(C \{0}) = /0, for all x ∈ S(x), y ∈ T (x,x).
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Proof. For any fixed y ∈ K. Making use of Theorem 3.1.8 we get there exists x ∈ D such that

(
G(y,x,x)−H(y,x,x)

)
∩ intC = /0 for all x ∈ D.

It is clear that S(x)⊂ D and T (x,x)⊂ K. Thus

(
G(y,x,x)−H(y,x,x)

)
∩ intC = /0 for all x ∈ S(x), y ∈ T (x,x). (10)

To finish the proof we must prove that x ∈ S(x). Posit to the contrary that, x 6∈ S(x) for all x ∈D.

We define the multivalued mapping M : D−→ 2D is given by

M(x) = {x′ ∈ D |
(

G(y,x′,x)−H(y,x,x′)
)
∩ intC 6= /0, for some y ∈ T (x,x′)}.

By hypotheses, for all x ∈ D, S(x) 6= /0 and D\S(x)⊂M(x). Hence x ∈M(x) for all x ∈ D. We

next consider the multivalued mapping N : D−→ 2D by

N(x) = {x′ ∈ D |
(

G(y,x′,x)−H(y,x,x′)
)
∩ intC = /0, for allx ∈ S(x′), y ∈ T (x,x′)}.

By direct applying (10), yields that x ∈ N(x) and N(x) = D\M(x) for all x ∈ D. Consequently

x 6∈ N(x) for all x ∈ D and this is a contradiction. So, there exists x ∈ D such that x ∈ S(x) and

F(y,x,x)∩−int(C) = /0, for all x ∈ S(x), y ∈ T (x,x).

Suppose, in addition, that there exists a pointed closed convex cone
∼
C with C \{0} ⊂ int(

∼
C). In

the similar way as above, where C :=
∼
C, there exists x ∈ D such that x ∈ S(x) and

F(y,x,x)∩−(C \{0}) = /0, for all x ∈ S(x), y ∈ T (x,x)

and the claim follows.

Theorem 3.2.3. Assume that the C− convex vector valued function F : D −→ Y is upper C-

continuous on D. Then

(A) There exists x ∈ D such that

(GVOP)W : F(x)∩WMin
(

F(D)|C
)
6= /0.
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Furthermore, if there exists a pointed closed convex cone
∼
C with C \ {0} ⊂ int(

∼
C), then there

exists x ∈ D such that

(GVOP)P : F(x)∩PMin
(

F(D)|C
)
6= /0.

In addition we also have

PMin(F(D) |C) 6= /0, WMin(F(D) |C) 6= /0.

(B) If the problem (GVOP)Pr has solutions then the problems (GVOP)α for α ∈ {P, I,W} also

has solutions.

Proof. Let us consider the multivalued mappings H and G from D×D into 2Y be given re-

spectively as H(x,y) = {F(y)−F(x)}, ∀(x,y) ∈ D×D and G(x,y) = {0}, ∀(x,y) ∈ D×D.

Obviously, G satisfies all the conditions (A), (B) and (C) of Theorem 3.1.3 and furthermore

H(x,x) = {F(x)−F(x)} = {0} for all x ∈ D. So that condition (A) is satisfied. For any fixed

x ∈ D, we must show that the multivalued mapping H(x, .) : D−→ 2Y is C-convex. In fact, for

any a,b ∈ D and t ∈ [0;1], if we pick z = ta+(1− t)b then z ∈ D as D is convex subset in X.

By hypotheses, for any x ∈ D, it is obvious that tF(x)+(1− t)F(x) = F(x). Consequently

tH(x,a)+(1− t)H(x,b) = tF(a)+(1− t)F(b)−
(

tF(x)+(1− t)F(x)
)

⊂ F(ta+(1− tb))+C−
(

tF(x)+(1− t)F(x)
)

⊂ F(z)−F(x)+C = H(x,z)+C,

yields that the multivalued mapping H(x, .) is C-convex. Finally, for all y ∈ D, in view of

Remark 3.1.2, the set A(y) := {x ∈D : F(x)−F(y)⊂ intC} is open on D. By taking account of

Theorem 3.1.3 there exists x ∈ D such that F(x)−F(y) 6⊂ int(C), for all y ∈ D. From here we

conclude that there exists y ∈ F(x) such that

F(D)∩
(
{y}− int(C)

)
= /0.

According to Luc [7, Proposition 2.3, p. 41-42], yields that

y ∈ F(x)∩WMin(F(D) |C).
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Therefore the problem (GVOP)W has solution. Furthermore, there exists x ∈ D such that

F(x)−F(y) 6⊂ (C \{0}), for all y ∈ D,

then there exists y∈ F(x) such that F(D)∩(y−C) = {y}. Making use of Proposition 2.3 in Luc

[7, p. 41-42], we get

y ∈ F(x)∩PMin(F(D) |C).

It means that the problem (GVOP)P has solution. For the last assertion: Obviously, if the

problem (GVOP)Pr has solutions, then by using Proposition 2.3 of Luc [7], we get the problems

(GVOP)P, (GVOP)I and (GVOP)W has also solutions. The proof is completed.

As applications of the theorems 3.1.3 and 3.1.8, a sufficient condition on the existence of

equilibrium points of the vector valued function T : D1×D2 ⊂ X1×X2 −→Y with respect to C

is stated as follows

Theorem 3.2.4. Let X1,X2 and Y be Hausdorff locally convex topological vector spaces, let

D1 ⊂ X1, D2 ⊂ X2 be nonempty compact convex subsets in X1 and X2 respectively and let C

be a pointed closed convex cone in Y. For a given vector valued function T : D1×D2 −→ Y.

Assume, in addition, that the following conditions are fulfilled

(A) T is C-convex and upper C-continuous in the first variable;

(B) T is C-concave and lower C-continuous in the second variable;

Then there exists the pair (x1,x2) ∈ D1×D2 such that

T (y1,x2)−T (x1,y2) 6⊂ −intC for all (y1,y2) ∈ D1×D2.

In addition, we assume that there exists a pointed closed convex cone
∼
C with C \{0} ⊂ int(

∼
C),

then there exists a point (x1,x2) ∈ D1×D2 such that

T (y1,x2)−T (x1,y2) 6⊂ −(C \ l(C)) for all (y1,y2) ∈ D1×D2.

Proof. Firstly, we prove that there exists the pair (x1,x2) ∈ D1×D2 such that

T (y1,x2)−T (x1,y2) 6⊂ −intC for all (y1,y2) ∈ D1×D2. (11)
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We set

X = X1×X2, D = D1×D2.

Consider the multivalued mappings G and H from D×D into 2Y are defined respectively by

H(x,y) = {T (y1,x2)−T (x1,y2)} for all x = (x1,x2),y = (y1,y2) ∈ D

and G(x,y) = {0} for all x = (x1,x2),y = (y1,y2) ∈ D.

It is clear that the multivalued mapping G satisfies all the conditions (A), (B) and (C) of Theorem

3.1.3 and the multivalued mapping H satisfies the condition (A). For any fixed x = (x1,x2) ∈D,

we show that H(x, .) : D−→ 2Y is C-convex. In fact, for all a = (a1,a2), b = (b1,b2) ∈ D, for

all t ∈ [0;1], denote by zi = tai +(1− t)bi ∈ Di, i = 1,2. Since D1,D2 are nonempty convex

subsets in X1 and X2 respectively, thus D=D1×D2 is a nonempty convex subset in X =X1×X2.

Let us fix z = (z1,z2) ∈D. Since T is C-convex in the first variable and C-concave in the second

variable and C+C ⊂C, hence the following inclusions hold

tH(x,a)+(1− t)H(x,b) = {tT (a1,x2)+(1− t)T (b1,x2)}−{tT (x1,a2)+(1− t)T (x1,b2)}

⊂ {T (ta1 +(1− tb1,x2))}+C−{T (x1, ta2 +(1− t)b2)}

⊂ {T (z1,x2)−T (x1,z2)}+C+C ⊂ H(x,z)+C.

Thus the multivalued mapping H(x, .) is C-convex on D. Finally for all y = (y1,y2) ∈ D, we

show that the set

A(y) := {x = (x1,x2) ∈ D = D1×D2 : G(y,x)−H(x,y)⊂ intC}

= {x ∈ D |{T (x1,y2)}−{T (y1,x2)} ⊂ intC}

is open on D. Because T (.,y2) is upper C-continuous in the first variable and T (y1, .) is lower

C-continuous in the second variable, thus T (.,y2)−T (y1, .) is upper C-continuous. Making use

of Remark 3.1.2, we get A(y) is open subset in D. Furthermore, by using Theorem 3.1.2, yields

there exists x = (x1,x2) ∈ D = D1×D2 such that

G(y,x)−H(x,y) 6⊂ int(C), for all y = (y1,y2) ∈ D = D1×D2.

This leads to there exists (x1,x2) ∈ D such that (11) holds. Finally, we suppose that there exists

a pointed closed convex cone
∼
C with C \{0} ⊂ int(

∼
C), then by virtue of Theorem 3.1.2, where
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C :=
∼
C, there exists x = (x1,x2) ∈ D = D1×D2 such that

G(y,x)−H(x,y) 6⊂ −(C \ l(C)), for all y = (y1,y2) ∈ D = D1×D2.

This implies there exists (x1,x2) ∈D1×D2 such that T (y1,x2)−T (x1,y2) 6⊂ −(C\ l(C)) for all

(y1,y2) ∈ D1×D2, which completes the proof.

Theorem 3.2.5. Let Xi (i ∈ I, card(I) = n) be Hausdorff locally convex topological vector

spaces. For each i ∈ I, let Di ⊂ Xi be nonempty compact subsets. Let

D = D1×D2× ...×Dn =
n

∏
i=1

Di.

For every i ∈ I, Fi : D−→ Y. Assume, furthermore, that for each i ∈ I such that

(i) Fi : D−→ Y is C− continuous on D;

(ii) xi = {x j} j∈I\i ∈ D\Di;

(iii) The vector valued functions Fi(xi, . ) : Di −→ Y are C− convex on Di.

Then there exists x = (xi)i∈I ∈ D such that for all i ∈ I,

Fi(xi,yi)−Fi(x) 6∈ −intC, for all (yi)i ∈ D.

In addition, we assume that there exists a pointed closed convex cone
∼
C such that C \ {0} ⊂

int(
∼
C), then there exists x = (xi)i∈I ∈ D such that for all i ∈ I,

Fi(xi,yi)−Fi(x) 6∈ −(C \ l(C)), for all (yi)i ∈ D.

Proof. Let X = ∏
n
i=1 Xi and consider the multivalued mappings G,H : D×D −→ 2Y be given

respectively as

G(x,y) = {0},

H(x,y) = {
n

∑
i=1

(Fi(xi,yi)−Fi(x))}

for all x= (xi)i∈I,y= (yi)i∈I ∈D. By a similar argument as in the proof of Theorem 3.2.5, yields

there exists x = (xi)i∈I ∈ D such that

G(y,x)−H(x,y) 6⊂ intC, for all y = (yi)i∈I ∈ D.
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In other words,

G(y,x)−H(x,y) =−{
n

∑
i=1

(Fi(xi,yi)−Fi(x))} 6⊂ intC,

for all y = (yi)i∈I ∈ D. Now, for any i ∈ I, xi ∈ Di be arbitrary, let y = (xi,yi), then we obtain

−
(

Fi(xi,yi)−Fi(x)
)
6∈ intC,

which is equivalent to

Fi(xi,yi)−Fi(x) 6∈ −intC.

From there we conclude that there is a point x such that for all i ∈ I,

Fi(xi,yi)−Fi(x) 6∈ −intC, for all (yi)i ∈ D.

Moreover, we assume that there exists a pointed closed convex cone
∼
C such that C \ {0} ⊂

int(
∼
C), then in a similar way as above, it follows that there exists x ∈ D such that

Fi(xi,yi)−Fi(x) 6∈ −(C \ l(C)), for all (yi)i ∈ D, ∀ i ∈ I,

which completes the proof.
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