ON THE EXISTENCE OF SOLUTIONS OF QUASI-EQUILIBRIUM PROBLEMS (UPQEP), (LPQEP), (UWQEP) AND (LWQEP) AND RELATED PROBLEMS

TRAN VAN SU ${ }^{1, *}$, THAN VAN DINH ${ }^{2}$
${ }^{1}$ Department of Mathematics, Quangnam University, 102 Hung Vuong, Tam Ky, Vietnam
${ }^{2}$ Department of of Natural Sciences, Colleges of Binhphuoc, Tan Binh, Dong Xoai, Binh Phuoc, Vietnam

Abstract

The purpose of the present paper is to prove two main theorems concerning C-monotone and C-convex multivalued mappings where C is given cone and its applications to the quasi-equilibrium problems (UPQEP), (LPQEP), (UWQEP) and (LWQEP). Moreover, we also derive some sufficient conditions on the existence of solutions of the general vector α optimization problems $(G V O P)_{\alpha}$ and derive a sufficient condition on the existence of equilibrium points.

Keywords. Upper Pareto quasi-equilibrium problems; Lower Pareto quasi-equilibrium problems; Upper Weakly quasi-equilibrium problems; Lower Weakly quasi-equilibrium problems.

1. Introduction

Let X and Y be real topological vector spaces and Y with partial order S generated by a convex cone C. Let us denote by $x-y \in C$ instead of $x S y$ for every $x, y \in Y$. Let M be a nonempty subset in Y, we define efficient sets of M with respect to C in different senses cases as $\operatorname{PMin}(M \mid C), \operatorname{IMin}(M \mid C), W \operatorname{Min}(M \mid C)$ and $\operatorname{PrMin}(M \mid C)$ (see Luc, D.T [7]). If $\bar{x} \in M$ is an element of efficient sets $\alpha \operatorname{Min}(M|C|$) (where $\alpha \in\{P, I, W, \operatorname{Pr}\}$), then point \bar{x} is called an α efficient point of M with respect to C. For instances, when $\alpha=I, \bar{x}$: Ideal efficient point; $\alpha=P, \bar{x}$: Pareto efficient point; $\alpha=W, \bar{x}$: Weak efficient point and $\alpha=\operatorname{Pr}, \bar{x}$: Proper efficient

[^0]point, etc. Let D be a nonempty subset in X , denote by 2^{D} indicates the family of all subsets of D. Let the multivalued mapping $F: D \longrightarrow 2^{Y}$. The general vector α optimization problem corresponding to D, F and C for $\alpha \in\{I, P, W, \operatorname{Pr}\}$ denoted by $(G V O P)_{\alpha}$, by means of finding $\bar{x} \in D$ such that
$$
(G V O P)_{\alpha} \quad F(\bar{x}) \cap \alpha \operatorname{Min}(F(D) \mid C) \neq \emptyset
$$

A point \bar{x} solved $(G V O P)_{\alpha}$ is called a solution of $(G V O P)_{\alpha}$ and a point $\bar{y} \in \alpha \operatorname{Min}(F(D) \mid C)$ is called α optimal value of $(G V O P)_{\alpha}$.

Let X, Y and Z be topological vector spaces with D and K be nonempty subsets in X and Z , respectively and let C be a cone in Y. Let us consider the multivalued mappings S, T, F, G and H, where $S: D \longrightarrow 2^{D}, T: D \times D \longrightarrow 2^{K}, F, G, H: K \times D \times D \longrightarrow 2^{Y}$. From now on, unless otherwise specify, we always suppose that G and H are two different multivalued mappings and let F of the form $F\left(y, x, x^{\prime}\right)=G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right)$ for all $\left(y, x, x^{\prime}\right) \in K \times D \times D$. In the present paper we shall deal with some problems related as follows:

Problem 1.1. [18] (UPQEP), Upper Pareto quasi-equilibrium problem. Find $\bar{x} \in D$ such that

$$
\begin{gathered}
\bar{x} \in S(\bar{x}) \text { and } \\
F(y, \bar{x}, x):=G(y, x, \bar{x})-H(y, \bar{x}, x) \not \subset-(C \backslash l(C)), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
\end{gathered}
$$

Problem 1.2. [18] (LPQEP), Lower Pareto quasi-equilibrium problem. Find $\bar{x} \in D$ such that

$$
\begin{gathered}
\bar{x} \in S(\bar{x}) \text { and } \\
(G(y, x, \bar{x})-H(y, \bar{x}, x)) \cap-(C \backslash l(C))=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
\end{gathered}
$$

Problem 1.3. [18] (UWQEP), Upper weakly quasi-equilibrium problem. Find $\bar{x} \in D$ such that

$$
\begin{gathered}
\bar{x} \in S(\bar{x}) \text { and } \\
F(y, \bar{x}, x):=G(y, x, \bar{x})-H(y, \bar{x}, x) \not \subset-\operatorname{int}(C), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
\end{gathered}
$$

Problem 1.4. [18] (LWQEP), Lower weakly quasi-equilibrium problem. Find $\bar{x} \in D$ such that

$$
\bar{x} \in S(\bar{x}) \text { and }
$$

$$
(G(y, x, \bar{x})-H(y, \bar{x}, x)) \cap-(\text { int } C)=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

The above problems are called γ quasi-equilibrium problems involving D, K, S, T, F with respect to C, where γ is respectively one of the following qualifications: Upper Pareto, Lower Pareto, Upper weakly and Lower weakly. The above problems are proposed by Lin and Tan [18] in which the existence of solutions are derived. The related problems has been studied by many other authors (see, e.g., Ansari [1], Chang and Pang [5], Luc and Tan [8], Minh and Tan [12], Tan [17], etc and the references therein).

The remainder of this paper is organized as follows. After some preliminaries and definitions, two main theorems for quasi-equilibrium problems concerning multivalued mappings in Hausdorff locally convex topological linear spaces are well-presented analysis in Section 3. As an application, we provide some sufficient conditions on the existence of solutions of general vector α optimization problems, where $\alpha \in\{I, P, \operatorname{Pr}, W\}$ and the existence of vector equilibrium points is also derived.

2. Preliminaries and definitions

In this subsection, let X, Y, D and F be given as in section 1. The effective domain of F is denoted as $\operatorname{dom} F=\{x \in D \mid F(x) \neq \emptyset\}$. We recall some definitions as follows:

Definition 2.1. [5, 6-8, 18] Let $F: D \longrightarrow 2^{Y}$ be a multivalued mapping
(i) F is said to be upper C-continuous at $\bar{x} \in \operatorname{dom} F$ if for all neighborhood V of the origin in Y there is a neighborhood U of \bar{x} such that

$$
F(x) \subset F(\bar{x})+V+C
$$

holds for all $x \in U \cap d o m F$.
(ii) F is said to be upper C-continuous on D if F is upper C-continuous at any point of $d o m F$.
(iii) F is said to be lower C-continuous at $\bar{x} \in \operatorname{domF}$ if for all neighborhood V of the origin in Y there is a neighborhood U of \bar{x} such that

$$
F(\bar{x}) \subset F(x)+V-C
$$

holds for all $x \in U \cap d o m F$.
(iv) F is said to be lower C-continuous on D if F is lower C-continuous at any point of $d o m F$.
(v) F is said to be C - continuous on D if F is simultaneously upper C-continuous and lower C-continuous on D.
(vi) F is said to be C - convex if D is convex and for any $x, y \in D$, any $t \in[0,1]$ we have

$$
t F(x)+(1-t) F(y) \subset F(t x+(1-t) y)+C .
$$

(vii) F is said to be C - concave if D is convex and for any $x, y \in D$, any $t \in[0,1]$ we have

$$
t F(x)+(1-t) F(y) \subset F(t x+(1-t) y)-C .
$$

Definition 2.2. [7] Let M be a nonempty subset of Y. We say that
(i) $x \in M$ is an ideal efficient (or ideal minimal) point of M with respect to C if $M \subset x+C$. The set of ideal minimal points of M is denoted by $\operatorname{IMin}(M \mid C)$.
(ii) $x \in M$ is an efficient (or Pareto minimal or nondominated) point of M with respect to C if $M \cap(x-C) \subset x+C \cap(-C)$. The set of efficient points of M is denoted by $\operatorname{PMin}(M \mid C)$.
(iii) $x \in M$ is a (global) proper efficient point of M with respect to C if there exists a convex cone \tilde{C} which is not the whole space and contains $C \backslash C \cap(-C)$ in its interior such that $x \in$ $\operatorname{PMin}(M \mid \tilde{C})$. The set of proper efficient points of M is denoted by $\operatorname{PrMin}(M \mid C)$.
(iv) Supposing that $\operatorname{int} C \neq \emptyset$, point $x \in M$ is a weak efficient point of M with respect to C if $x \in \operatorname{PMin}(M \mid \operatorname{int} C \cup\{0\})$. The set of weak efficient points of M is denoted by $\operatorname{WMin}(M \mid C)$.

Following Luc, T. D [7, Proposition 2.2] that

$$
\operatorname{PrMin}(M \mid C) \subset \operatorname{PMin}(M \mid C) \subset W \operatorname{Min}(M \mid C)
$$

and moreover $\operatorname{IMin}(M \mid C)=\operatorname{PMin}(M \mid C)$ if $\operatorname{IMin}(M \mid C) \neq \emptyset$.

3. Main results

From now on, unless otherwise specify let us always assume that X, Y and Z be Hausdorff locally convex topological vector spaces with D and K be nonempty compact convex subsets in X and Z, respectively and cone C pointed closed convex with its interior nonempty in Y. The multivalued mappings S, T, F, G, H are given as in section 2 with nonempty closed values.

3.1. Two main theorems for quasi-equilibrium problems concerning multivalued mappings and some problems related

Definition 3.1.1. Let $F: D \times D \longrightarrow 2^{Y}$ be a multivalued mapping with nonempty values. We say that F is upper C-monotone* if $F(x, y)+F(y, x) \subset-C$ holds for any $x, y \in D$.

Remark 3.1.2. If F is a vector valued function from $D \times D$ into Y and upper C-monotone* simultaneously, then F is upper C - monotone. In fact, by definition for every $(x, y) \in D \times D$, we get the inclusion of $F(x, y)+F(y, x) \subset-C$ holds, which is equivalent to $F(x, y) \subset-F(y, x)-C$. Consequently, F is upper C-monotone. Note that Definition 3.1.1 is new in this paper to us. From there we derive two main theorems concerning multivalued mappings as follows:

Theorem 3.1.3. Let $G, H: D \times D \longrightarrow 2^{Y}$ be multivalued mappings with nonempty values. Assume that all the following conditions are fulfilled
(A) $G(x, x)=\{0\}$ and $H(x, x)=\{0\}$ for all $x \in D$;
(B) G is upper C-monotone*;
(C) For all $x \in D, x=\sum_{i \in I} \lambda_{i} x_{i}$, where $x_{i} \in D, \lambda_{i} \in[0 ; 1]$ for all $i \in I, \sum_{i \in I} \lambda_{i}=1$, I is finite index set,

$$
G(y, x) \subset \sum_{i \in I} \lambda_{i} G\left(y, x_{i}\right)-C, \text { for all } y \in D
$$

(D) For all $x \in D$, the multivalued mapping $H(x,):. D \longrightarrow 2^{Y}$ is C-convex;
(E) For all $y \in D$, the set $A(y):=\{x \in D: G(y, x)-H(x, y) \subset \operatorname{int} C\}$ is open in D.

Then there exists a point $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \text { int } C, \text { for all } y \in D .
$$

Suppose, moreover, that Y has a countable neighborhood base and there exists a nonempty compact convex subset $B \subset Y$ does not contain zero such that $C=\{t b \mid b \in B, t \geq 0\}$ and for
every $c \in C \backslash\{0\}$, there exist unique $b \in B$ and $t>0$ such that $c=t b$. Then there exists at least one point $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset C \backslash\{0\}, \text { for all } y \in D .
$$

To prove the theorem we need the following proposition
Proposition 3.1.4. Let Y be Hausdorff locally convex topological vector space and let C be a cone in Y. Suppose, moreover, that there exists a compact convex subset $B \subset Y$ does not contain zero such that $C=\{t b \mid b \in B, t \geq 0\}$ and for every $c \in C \backslash\{0\}$, there exist unique $b \in B$ and $t>0$ such that $c=t b$. Then, if Y has a countable neighborhood base then there exists a pointed closed convex cone, say \tilde{C}, such that $\operatorname{int}(\tilde{C}) \neq \emptyset$ and $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$.

Proof. We denote by Y^{\prime} instead of the topological dual space of Y. Since B does not contain zero in Y, one can separate $\{0\}$ and B by a nonzero vector $\xi \in Y^{\prime}$ such that $\varepsilon:=\inf \{\xi(b) \mid b \in B\}>0$. By taking $S=\{b \in Y \mid \xi(b)>0\}$ and $V=\left\{x \in Y| | \xi(x) \left\lvert\, \leq \frac{\varepsilon}{2}\right.\right\}$. It is easy to see that V is a neighborhood of the origin in Y such that $B+V \subset S$. By choosing

$$
\widetilde{C}=\{t(b+v) \mid b \in B, v \in V, t \geq 0\}
$$

then \tilde{C} is pointed closed convex cone in Y and $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, which completes the proof.
Proof of Theorem 3.1.3. We first prove that there exists a point $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \text { int } C, \text { for all } y \in D
$$

For any fixed $y \in D$, we put

$$
S(y):=\{x \in D: G(y, x)-H(x, y) \not \subset \text { int } C\} .
$$

Obviously, $S(y)$ is nonempty subset in D for all $y \in D$. Furthermore, $S(y)$ is a closed subset in D because $S(y)=D \cap X \backslash A(y)$. We next prove that

$$
\cap_{y \in D} S(y) \neq \emptyset .
$$

In fact, we can consider $\left\{y_{i}: i \in I\right\}$ is a finite arbitrary subset in D. Thus, for every $z \in \operatorname{conv}\left\{y_{i}:\right.$ $i \in I\}$, we have a representation as follows

$$
z=\sum_{i \in I} \lambda_{i} y_{i}, \text { where } \lambda_{i} \in[0 ; 1] \forall i \in I, \sum_{i \in I} \lambda_{i}=1
$$

From there we conclude that

$$
z \in \cup_{i \in I} S\left(y_{i}\right)
$$

In fact, posit to the contrary that

$$
z \notin \cup_{i \in I} S\left(y_{i}\right)
$$

Therefore $z \notin S\left(y_{i}\right)$ for all $i \in I$. It follows from the definition that

$$
G\left(y_{i}, z\right)-H\left(z, y_{i}\right) \subset \operatorname{int}(C), \text { for all } i \in I .
$$

Consequently

$$
\begin{equation*}
\sum_{i \in I} \lambda_{i}\left(G\left(y_{i}, z\right)-H\left(z, y_{i}\right)\right) \subset \sum_{i \in I} \lambda_{i} \operatorname{int}(C) \subset \operatorname{int}(C) \tag{1}
\end{equation*}
$$

We invoke the hypotheses of (B) to deduce that the multivalued mapping G is upper C - monotone, which is equivalent to

$$
G\left(y_{i}, y_{j}\right)+G\left(y_{j}, y_{i}\right) \subset-C, \text { for all } i, j \in I .
$$

This together with the hypotheses (C), it leads to

$$
\begin{align*}
\sum_{i \in I} \lambda_{i} G\left(y_{i}, z\right) & =\sum_{i \in I} \lambda_{i} G\left(y_{i}, \sum_{j \in I} \lambda_{j} y_{j}\right) \subset \sum_{i, j \in I} \lambda_{i} \lambda_{j} G\left(y_{i}, y_{j}\right)-C \\
& =\frac{1}{2} \sum_{i, j \in I} \lambda_{i} \lambda_{j}\left(G\left(y_{i}, y_{j}\right)+G\left(y_{j}, y_{i}\right)\right)-C \tag{2}\\
& \subset-\sum_{i, j \in I} \lambda_{i} \lambda_{j} C-C \subset-C-C \subset-C
\end{align*}
$$

On the other hand, from (A) and (D) it follows that

$$
\begin{align*}
\sum_{i \in I} \lambda_{i} H\left(z, y_{i}\right) & \subset H\left(z, \sum_{i \in D} \lambda_{i} y_{i}\right)+C \tag{3}\\
& =H(z, z)+C=\{0\}+C=C
\end{align*}
$$

Combining (2) and (3), yields that

$$
\begin{equation*}
\sum_{i \in I} \lambda_{i}\left(G\left(y_{i}, z\right)-H\left(z, y_{i}\right)\right) \subset-C \tag{4}
\end{equation*}
$$

Since C is pointed cone, and this combines with both (1) and (4), we have a contradiction. From there we conclude that

$$
z \in \cup_{i \in I} S\left(y_{i}\right)
$$

Moreover, since $z \in \operatorname{conv}\left\{y_{i}: i \in I\right\}$ is arbitrary, thus

$$
\operatorname{conv}\left\{y_{i}: i \in I\right\} \subset \cup_{i \in I} S\left(y_{i}\right) .
$$

According to Lemma of KKM [2] (see, Chapper 1, Theorem 24), we have

$$
\cap_{i \in I} S\left(y_{i}\right) \neq \emptyset
$$

As $S(y)$ is closed subset for all $y \in D$ and moreover, D is compact set in $X, S(y) \subset D$, and this implies that

$$
\cap_{y \in D} S(y) \neq \emptyset
$$

From there there exists at least one element $\bar{x} \in D$ such that

$$
\bar{x} \in S(y), \text { for all } y \in D
$$

Consequently, there exists at least one element $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \text { int } C, \text { for all } y \in D
$$

For the last assertion, by taking into account Proposition 3.1.4, there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$. In the same way as above, where $C:=\tilde{C}$, there exists a point $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \operatorname{int}(\tilde{C})
$$

Therefore there exists $\bar{x} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset C \backslash\{0\}, \text { for all } y \in D
$$

From there completing the proof.
Remark 3.1.5. The condition (E) in Theorem 3.1.3 is correct. Indeed, let $G, H, F: D \times D \longrightarrow 2^{Y}$ be three multivalued mappings with nonempty values, $G \neq H$ and F has the form $F(x, y)=$ $G(y, x)-H(x, y)$ for all $(x, y) \in D \times D$, one can find some conditions for both G and H such that

F is upper C-continuous on $D \times D$. By direct applying Proposition 3.1.4 below, it follows that the set

$$
A(y):=\{x \in D: G(y, x)-H(x, y) \subset \operatorname{int} C\}
$$

is open in D for each $y \in D$.
Proposition 3.1.6. Let D be a nonempty subset in X and let C be a closed cone in Y. If the multivalued mapping $F: D \longrightarrow 2^{Y}$ with nonempty closed values is upper C-continuous on D, then the set $A:=\{x \in D \mid F(x) \subset \operatorname{int} C\}$ is open in D.

Proof. If $\operatorname{int} C=\emptyset$, nothing to prove. Conversely, let $\bar{x} \in A$ be arbitrary and $F(\bar{x}) \subset \operatorname{int} C$. Since F is upper $C-$ continuous on D , hence F is upper $C-$ continuous at $\bar{x} \in D$. Then for any neighborhood W of the origin in Y , one can find a neighborhood U of \bar{x} in $d o m F$ such that

$$
F(x) \subset F(\bar{x})+W+C, \text { for all } x \in U .
$$

Finally, we will check that for all $x \in U$ then $F(x) \subset \operatorname{int} C$. Posit to the contrary that, there is $x_{0} \in U$ with $F\left(x_{0}\right) \not \subset$ int C. Then there is $y_{0} \in F\left(x_{0}\right)$ but $y_{0} \notin$ int C. From there we infer that $y_{0} \in F(\bar{x})+W+C$. On the other hand, since W is an arbitrary neighborhood of the origin in Y , $F(\bar{x})$ is closed subset in Y and C is closed cone in Y , thus $y_{0} \in F(\bar{x})+C \subset \operatorname{int} C+C=\operatorname{int} C$ and it leads to a contradiction. Hence $U \cap D \subset A$ and the conclusion follows.

Proposition 3.1.7. Let D and C be given as in Proposition 3.1.4. Then, if the multivalued mapping $F: D \longrightarrow 2^{Y}$ with nonempty closed values is lower C-continuous on D then the set $A:=\{x \in D \mid F(x) \cap \operatorname{int} C \neq \emptyset\}$ is open in D.

Proof. If $A=\emptyset$, nothing to prove. Conversely, let $\bar{x} \in A$ be arbitrary such that $F(\bar{x}) \cap \operatorname{int} C \neq \emptyset$. Since F is lower C - continuous at \bar{x}, thus for any neighborhood W of the origin in Y one can find neighborhood U of \bar{x} such that

$$
F(\bar{x}) \subset F(x)+W-C, \text { for all } x \in U .
$$

We must show that for all $x \in U$ then $F(x) \cap \operatorname{int} C \neq \emptyset$. In the converse case, there exists $x_{0} \in$ U with $F\left(x_{0}\right) \cap \operatorname{int} C=\emptyset$. Because $F(\bar{x}) \subset F\left(x_{0}\right)+W-C, F\left(x_{0}\right)-C$ is a closed subset in Y and W is an arbitrary neighborhood of the origin in Y hence $F(\bar{x}) \cap \operatorname{int} C=\emptyset$ and we have a contradiction. So, the proposition 3.1.7 is proved complete.

Theorem 3.1.8. Let G, H be as in Theorem 3.1.3. Suppose that all the following conditions are fulfilled
(A) $G(x, x)=\{0\}$ and $H(x, x)=\{0\}$ for all $x \in D$;
(B) G is upper C-monotone*;
(C) For all $x \in D, x=\sum_{i \in I} \lambda_{i} x_{i}$, where $x_{i} \in D, \lambda_{i} \in[0 ; 1]$ for all $i \in I, \sum_{i \in I} \lambda_{i}=1$, I is finite index set,

$$
G(y, x) \subset \sum_{i \in I} \lambda_{i} G\left(y, x_{i}\right)-C, \text { for all } y \in D
$$

(D) For all $x \in D$, the multivalued mapping $H(x,):. D \longrightarrow 2^{Y}$ is C-convex;
(E) For all $y \in D$, the set $A(y):=\{x \in D: G(y, x)-H(x, y) \cap$ int $C \neq \emptyset\}$ is open in D.

Then there exists a point $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap \text { int } C=\emptyset, \text { for all } y \in D .
$$

Moreover, assume that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then there exists a point $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap C \backslash\{0\}=\emptyset, \text { for all } y \in D
$$

Proof. We first show that there exists a point $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap i n t C=\emptyset, \text { for all } y \in D
$$

For any fixed $y \in D$, we put

$$
S(y):=\{x \in D:(G(y, x)-H(x, y)) \cap \text { int } C=\emptyset\} .
$$

Obviously, $S(y)$ is nonempty closed subset in D for all $y \in D$. We second prove that

$$
\bigcap_{y \in D} S(y) \neq \emptyset
$$

In fact, let $\left\{y_{i}: i \in I\right\}$ be a finite arbitrary subset in D. Let us choose $z \in \operatorname{conv}\left\{y_{i}: i \in I\right\}$ be arbitrary and then write z of the form

$$
z=\sum_{i \in I} \lambda_{i} y_{i}, \text { where } \lambda_{i} \in[0 ; 1] \forall i \in I, \sum_{i \in I} \lambda_{i}=1
$$

From there we conclude that

$$
z \in \cup_{i \in I} S\left(y_{i}\right) .
$$

In fact, it it were not so, then we get

$$
z \notin \cup_{i \in I} S\left(y_{i}\right)
$$

which yields that $z \notin S\left(y_{i}\right)$ for all $i \in I$. By the definition, we obtain as follows

$$
\left(G\left(y_{i}, z\right)-H\left(z, y_{i}\right)\right) \cap \operatorname{int}(C) \neq \emptyset, \text { for all } i \in I
$$

Consequently

$$
\begin{equation*}
\sum_{i \in I} \lambda_{i}\left(G\left(y_{i}, z\right)-H\left(z, y_{i}\right)\right) \cap \operatorname{int}(C) \neq \emptyset . \tag{5}
\end{equation*}
$$

In view of the hypotheses of (B), the multivalued mapping G is upper C - monotone and this means that

$$
G\left(y_{i}, y_{j}\right)+G\left(y_{j}, y_{i}\right) \subset-C, \text { for all } i, j \in I .
$$

This combines with the hypotheses of (C), we obtain as follows

$$
\begin{align*}
\sum_{i \in I} \lambda_{i} G\left(y_{i}, z\right) & =\sum_{i \in I} \lambda_{i} G\left(y_{i}, \sum_{j \in I} \lambda_{j} y_{j}\right) \subset \sum_{i, j \in I} \lambda_{i} \lambda_{j} G\left(y_{i}, y_{j}\right)-C \\
& =\frac{1}{2} \sum_{i, j \in I} \lambda_{i} \lambda_{j}\left(G\left(y_{i}, y_{j}\right)+G\left(y_{j}, y_{i}\right)\right)-C \tag{6}\\
& \subset-\sum_{i, j \in I} \lambda_{i} \lambda_{j} C-C \subset-C-C \subset-C .
\end{align*}
$$

In other words, by (A) and (D), we also have

$$
\begin{align*}
\sum_{i \in I} \lambda_{i} H\left(z, y_{i}\right) & \subset H\left(z, \sum_{i \in D} \lambda_{i} y_{i}\right)+C \tag{7}\\
& =H(z, z)+C=\{0\}+C=C
\end{align*}
$$

Combining (6)-(7), yields that

$$
\begin{equation*}
\sum_{i \in I} \lambda_{i}\left(G\left(y_{i}, z\right)-H\left(z, y_{i}\right)\right) \subset-C . \tag{8}
\end{equation*}
$$

Since C is pointed cone, and this combines with both (5) and (8), we have a contradiction.
From there we conclude that

$$
z \in \cup_{i \in I} S\left(y_{i}\right)
$$

Moreover, since $z \in \operatorname{conv}\left\{y_{i}: i \in I\right\}$ is arbitrary, thus

$$
\operatorname{conv}\left\{y_{i}: i \in I\right\} \subset \cup_{i \in I} S\left(y_{i}\right) .
$$

According to Lemma of KKM [2] (see, Chapper 1, Theorem 24), we have

$$
\cap_{i \in I} S\left(y_{i}\right) \neq \emptyset .
$$

Since $S(y)$ is closed subset for all $y \in D$ and moreover, D is compact set in $\mathrm{X}, S(y) \subset D$, and this implies that

$$
\cap_{y \in D} S(y) \neq \emptyset
$$

From there there exists a point $\bar{x} \in D$ such that

$$
\bar{x} \in S(y), \text { for all } y \in D
$$

Consequently, there exists $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap \operatorname{int} C=\emptyset, \text { for all } y \in D
$$

For the last assertion, we assume that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset$ $\operatorname{int}(\tilde{C})$. By a similar argument as above, where $C:=\tilde{C}$, there exists a point $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap \operatorname{int}(\tilde{C})=\emptyset, \text { for all } y \in D
$$

So that there exists $\bar{x} \in D$ such that

$$
(G(y, \bar{x})-H(\bar{x}, y)) \cap C \backslash\{0\}=\emptyset, \text { for all } y \in D
$$

From there completing the proof.

3.2. Some applications

In this subsection, we lead to some sufficient conditions on existence of solutions of general vector α optimization problems (where $\alpha \in\{P, I, W, P r\}$) and the problems (UPQEP), (LPQUP), (UWQEP) and (LWQEP).

Theorem 3.2.1. We suppose that all the following conditions are fulfilled
(A) $G(y, x, x)=H(y, x, x)=\{0\}$ for all $y \in K, x \in D$;
(B) For all $y \in K$, the multivalued mapping $G(y, .,):. D \times D \longrightarrow 2^{Y}$ is upper C-monotone*;
(C) For all $x \in D, x=\sum_{i \in I} \lambda_{i} x_{i}$, where $x_{i} \in D, \lambda_{i} \in[0 ; 1]$ for all $i \in I, \sum_{i \in I} \lambda_{i}=1, I$ is finite index set,

$$
G(y, z, x) \subset \sum_{i \in I} \lambda_{i} G\left(y, z, x_{i}\right)-C, \text { for all }(y, z) \in K \times D
$$

(D) For all $(y, x) \in K \times D$, the multivalued mapping $H(y, x,):. D \longrightarrow 2^{Y}$ is C-convex on D;
(E) For all $(y, x) \in K \times D$, the set $A(y, x):=\left\{x^{\prime} \in D: G\left(y, x, x^{\prime}\right)-H\left(y, x^{\prime}, x\right) \subset\right.$ int $\left.C\right\}$ is open in D;
(F) S has nonempty values and $D \backslash S(x) \subset M(x)$ for all $x \in D$, where $M: D \longrightarrow 2^{D}$ is given by

$$
M(x)=\left\{x^{\prime} \in D \mid G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right) \subset \text { int } C, \text { for some } y \in T\left(x, x^{\prime}\right)\right\}
$$

Then there exists a point $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \not \subset-\operatorname{int}(C), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

Furthermore, assume that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then there exists a point $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \not \subset-(C \backslash\{0\}), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

Proof. For any fixed $y \in K$. According to Theorem 3.1.8, there exists $\bar{x} \in D$ such that

$$
G(y, x, \bar{x})-H(y, \bar{x}, x) \not \subset \text { int } C \quad \text { for all } x \in D .
$$

It is not difficult to see that $S(\bar{x}) \subset D$ and $T(\bar{x}, x) \subset K$. Therefore

$$
\begin{equation*}
G(y, x, \bar{x})-H(y, \bar{x}, x) \not \subset \text { int } C \quad \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) . \tag{9}
\end{equation*}
$$

From there we must show that $\bar{x} \in S(\bar{x})$. Posit to the contrary that, $x \notin S(x)$ for all $x \in D$. We consider the multivalued mapping $M: D \longrightarrow 2^{D}$ is defined as

$$
M(x)=\left\{x^{\prime} \in D \mid G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right) \subset \text { int } C, \text { for some } y \in T\left(x, x^{\prime}\right)\right\}
$$

By hypotheses, for every $x \in D$, it follows that $S(x) \neq \emptyset$ and $D \backslash S(x) \subset M(x)$. Hence $x \in M(x)$ for all $x \in D$. Next, we consider the multivalued mapping $N: D \longrightarrow 2^{D}$ is defined as

$$
N(x)=\left\{x^{\prime} \in D \mid G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right) \not \subset \text { int } C, \text { for all } x \in S\left(x^{\prime}\right), y \in T\left(x, x^{\prime}\right)\right\} .
$$

It follows from (9) that $\bar{x} \in N(\bar{x})$ and $N(x)=D \backslash M(x)$ for all $x \in D$. Consequently, $x \notin N(x)$ for all $x \in D$ and this leads to a contradiction. So, there exists $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \not \subset-\operatorname{int}(C), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x)
$$

On the other hand, by hypotheses there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset$ $\operatorname{int}(\tilde{C})$. By a similar argument as above, where $C:=\widetilde{C}$, there exists $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \not \subset-(C \backslash\{0\}), \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x)
$$

which the claim follows.
Theorem 3.2.2. Assume that all the following conditions are fulfilled
(A) $G(y, x, x)=H(y, x, x)=\{0\}$ for all $y \in K, x \in D$;
(B) For all $y \in K$, the multivalued mapping $G(y, .,):. D \times D \longrightarrow 2^{Y}$ is upper C-monotone*;
(C) For all $x \in D, x=\sum_{i \in I} \lambda_{i} x_{i}$, where $x_{i} \in D, \lambda_{i} \in[0 ; 1]$ for all $i \in I, \sum_{i \in I} \lambda_{i}=1$, I is finite index set,

$$
G(y, z, x) \subset \sum_{i \in I} \lambda_{i} G\left(y, z, x_{i}\right)-C, \text { for all }(y, z) \in K \times D
$$

(D) For all $(y, x) \in K \times D$, the multivalued mapping $H(y, x,):. D \longrightarrow 2^{Y}$ is C-convex;
(E) For all $(y, x) \in K \times D$, the set $A(y, x):=\left\{x^{\prime} \in D:\left(G\left(y, x, x^{\prime}\right)-H\left(y, x^{\prime}, x\right)\right) \cap\right.$ int $\left.C \neq \emptyset\right\}$ is open in D;
(F) S has nonempty values and $D \backslash S(x) \subset M(x)$ for all $x \in D$, where $M: D \longrightarrow 2^{D}$ is given by

$$
M(x)=\left\{x^{\prime} \in D \mid\left(G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right)\right) \cap \text { int } C \neq \emptyset, \text { for some } y \in T\left(x, x^{\prime}\right)\right\}
$$

Then there exists a point $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \cap-\operatorname{int}(C)=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

Furthermore, assume that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then there exists $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \cap-(C \backslash\{0\})=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

Proof. For any fixed $y \in K$. Making use of Theorem 3.1.8 we get there exists $\bar{x} \in D$ such that

$$
(G(y, x, \bar{x})-H(y, \bar{x}, x)) \cap \operatorname{int} C=\emptyset \quad \text { for all } x \in D
$$

It is clear that $S(\bar{x}) \subset D$ and $T(\bar{x}, x) \subset K$. Thus

$$
\begin{equation*}
(G(y, x, \bar{x})-H(y, \bar{x}, x)) \cap \operatorname{int} C=\emptyset \quad \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) . \tag{10}
\end{equation*}
$$

To finish the proof we must prove that $\bar{x} \in S(\bar{x})$. Posit to the contrary that, $x \notin S(x)$ for all $x \in D$. We define the multivalued mapping $M: D \longrightarrow 2^{D}$ is given by

$$
M(x)=\left\{x^{\prime} \in D \mid\left(G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right)\right) \cap \text { int } C \neq \emptyset, \text { for some } y \in T\left(x, x^{\prime}\right)\right\}
$$

By hypotheses, for all $x \in D, S(x) \neq \emptyset$ and $D \backslash S(x) \subset M(x)$. Hence $x \in M(x)$ for all $x \in D$. We next consider the multivalued mapping $N: D \longrightarrow 2^{D}$ by

$$
N(x)=\left\{x^{\prime} \in D \mid\left(G\left(y, x^{\prime}, x\right)-H\left(y, x, x^{\prime}\right)\right) \cap \operatorname{int} C=\emptyset, \text { for all } x \in S\left(x^{\prime}\right), y \in T\left(x, x^{\prime}\right)\right\} .
$$

By direct applying (10), yields that $\bar{x} \in N(\bar{x})$ and $N(x)=D \backslash M(x)$ for all $x \in D$. Consequently $x \notin N(x)$ for all $x \in D$ and this is a contradiction. So, there exists $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \cap-\operatorname{int}(C)=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x) .
$$

Suppose, in addition, that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$. In the similar way as above, where $C:=\tilde{C}$, there exists $\bar{x} \in D$ such that $\bar{x} \in S(\bar{x})$ and

$$
F(y, \bar{x}, x) \cap-(C \backslash\{0\})=\emptyset, \text { for all } x \in S(\bar{x}), y \in T(\bar{x}, x)
$$

and the claim follows.
Theorem 3.2.3. Assume that the C - convex vector valued function $F: D \longrightarrow Y$ is upper C continuous on D. Then
(A) There exists $\bar{x} \in D$ such that

$$
(G V O P)_{W}: \quad F(\bar{x}) \cap W \operatorname{Min}(F(D) \mid C) \neq \emptyset
$$

Furthermore, if there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then there exists $\bar{x} \in D$ such that

$$
(G V O P)_{P}: \quad F(\bar{x}) \cap P M i n(F(D) \mid C) \neq \emptyset
$$

In addition we also have

$$
\operatorname{PMin}(F(D) \mid C) \neq \emptyset, \quad W \operatorname{Min}(F(D) \mid C) \neq \emptyset
$$

(B) If the problem $(G V O P)_{P r}$ has solutions then the problems $(G V O P)_{\alpha}$ for $\alpha \in\{P, I, W\}$ also has solutions.

Proof. Let us consider the multivalued mappings H and G from $D \times D$ into 2^{Y} be given respectively as $H(x, y)=\{F(y)-F(x)\}, \forall(x, y) \in D \times D$ and $G(x, y)=\{0\}, \forall(x, y) \in D \times D$. Obviously, G satisfies all the conditions (A), (B) and (C) of Theorem 3.1.3 and furthermore $H(x, x)=\{F(x)-F(x)\}=\{0\}$ for all $x \in D$. So that condition (A) is satisfied. For any fixed $x \in D$, we must show that the multivalued mapping $H(x,):. D \longrightarrow 2^{Y}$ is C-convex. In fact, for any $a, b \in D$ and $t \in[0 ; 1]$, if we pick $z=t a+(1-t) b$ then $z \in D$ as D is convex subset in X . By hypotheses, for any $x \in D$, it is obvious that $t F(x)+(1-t) F(x)=F(x)$. Consequently

$$
\begin{aligned}
t H(x, a)+(1-t) H(x, b) & =t F(a)+(1-t) F(b)-(t F(x)+(1-t) F(x)) \\
& \subset F(t a+(1-t b))+C-(t F(x)+(1-t) F(x)) \\
& \subset F(z)-F(x)+C=H(x, z)+C,
\end{aligned}
$$

yields that the multivalued mapping $H(x,$.$) is C-convex. Finally, for all y \in D$, in view of Remark 3.1.2, the set $A(y):=\{x \in D: F(x)-F(y) \subset \operatorname{int} C\}$ is open on D. By taking account of Theorem 3.1.3 there exists $\bar{x} \in D$ such that $F(\bar{x})-F(y) \not \subset \operatorname{int}(C)$, for all $y \in D$. From here we conclude that there exists $\bar{y} \in F(\bar{x})$ such that

$$
F(D) \cap(\{\bar{y}\}-\operatorname{int}(C))=\emptyset .
$$

According to Luc [7, Proposition 2.3, p. 41-42], yields that

$$
\bar{y} \in F(\bar{x}) \cap W \operatorname{Min}(F(D) \mid C) .
$$

Therefore the problem $(G V O P)_{W}$ has solution. Furthermore, there exists $\bar{x} \in D$ such that

$$
F(\bar{x})-F(y) \not \subset(C \backslash\{0\}), \text { for all } y \in D,
$$

then there exists $\bar{y} \in F(\bar{x})$ such that $F(D) \cap(\bar{y}-C)=\{\bar{y}\}$. Making use of Proposition 2.3 in Luc [7, p. 41-42], we get

$$
\bar{y} \in F(\bar{x}) \cap \operatorname{PMin}(F(D) \mid C) .
$$

It means that the problem $(G V O P)_{P}$ has solution. For the last assertion: Obviously, if the problem $(G V O P)_{P r}$ has solutions, then by using Proposition 2.3 of Luc [7], we get the problems $(G V O P)_{P},(G V O P)_{I}$ and $(G V O P)_{W}$ has also solutions. The proof is completed.

As applications of the theorems 3.1.3 and 3.1.8, a sufficient condition on the existence of equilibrium points of the vector valued function $T: D_{1} \times D_{2} \subset X_{1} \times X_{2} \longrightarrow Y$ with respect to C is stated as follows

Theorem 3.2.4. Let X_{1}, X_{2} and Y be Hausdorff locally convex topological vector spaces, let $D_{1} \subset X_{1}, D_{2} \subset X_{2}$ be nonempty compact convex subsets in X_{1} and X_{2} respectively and let C be a pointed closed convex cone in Y. For a given vector valued function $T: D_{1} \times D_{2} \longrightarrow Y$. Assume, in addition, that the following conditions are fulfilled
(A) T is C-convex and upper C-continuous in the first variable;
(B) T is C-concave and lower C-continuous in the second variable;

Then there exists the pair $\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D_{1} \times D_{2}$ such that

$$
T\left(y_{1}, \overline{x_{2}}\right)-T\left(\overline{x_{1}}, y_{2}\right) \not \subset-\text { int } C \quad \text { for all }\left(y_{1}, y_{2}\right) \in D_{1} \times D_{2} .
$$

In addition, we assume that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then there exists a point $\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D_{1} \times D_{2}$ such that

$$
T\left(y_{1}, \overline{x_{2}}\right)-T\left(\overline{x_{1}}, y_{2}\right) \not \subset-(C \backslash l(C)) \quad \text { for all }\left(y_{1}, y_{2}\right) \in D_{1} \times D_{2}
$$

Proof. Firstly, we prove that there exists the pair $\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D_{1} \times D_{2}$ such that

$$
\begin{equation*}
T\left(y_{1}, \overline{x_{2}}\right)-T\left(\overline{x_{1}}, y_{2}\right) \not \subset-i n t C \quad \text { for all }\left(y_{1}, y_{2}\right) \in D_{1} \times D_{2} . \tag{11}
\end{equation*}
$$

We set

$$
X=X_{1} \times X_{2}, \quad D=D_{1} \times D_{2}
$$

Consider the multivalued mappings G and H from $D \times D$ into 2^{Y} are defined respectively by

$$
\begin{aligned}
& H(x, y)=\left\{T\left(y_{1}, x_{2}\right)-T\left(x_{1}, y_{2}\right)\right\} \quad \text { for all } x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in D \\
& \text { and } \quad G(x, y)=\{0\} \quad \text { for all } x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in D .
\end{aligned}
$$

It is clear that the multivalued mapping G satisfies all the conditions (A), (B) and (C) of Theorem 3.1.3 and the multivalued mapping H satisfies the condition (A). For any fixed $x=\left(x_{1}, x_{2}\right) \in D$, we show that $H(x,):. D \longrightarrow 2^{Y}$ is C-convex. In fact, for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in D$, for all $t \in[0 ; 1]$, denote by $z_{i}=t a_{i}+(1-t) b_{i} \in D_{i}, i=1,2$. Since D_{1}, D_{2} are nonempty convex subsets in X_{1} and X_{2} respectively, thus $D=D_{1} \times D_{2}$ is a nonempty convex subset in $X=X_{1} \times X_{2}$. Let us fix $z=\left(z_{1}, z_{2}\right) \in D$. Since T is C-convex in the first variable and C-concave in the second variable and $C+C \subset C$, hence the following inclusions hold

$$
\begin{aligned}
t H(x, a)+(1-t) H(x, b) & =\left\{t T\left(a_{1}, x_{2}\right)+(1-t) T\left(b_{1}, x_{2}\right)\right\}-\left\{t T\left(x_{1}, a_{2}\right)+(1-t) T\left(x_{1}, b_{2}\right)\right\} \\
& \subset\left\{T\left(t a_{1}+\left(1-t b_{1}, x_{2}\right)\right)\right\}+C-\left\{T\left(x_{1}, t a_{2}+(1-t) b_{2}\right)\right\} \\
& \subset\left\{T\left(z_{1}, x_{2}\right)-T\left(x_{1}, z_{2}\right)\right\}+C+C \subset H(x, z)+C .
\end{aligned}
$$

Thus the multivalued mapping $H(x,$.$) is C-convex on D. Finally for all y=\left(y_{1}, y_{2}\right) \in D$, we show that the set

$$
\begin{aligned}
A(y) & :=\left\{x=\left(x_{1}, x_{2}\right) \in D=D_{1} \times D_{2}: G(y, x)-H(x, y) \subset \operatorname{int} C\right\} \\
& =\left\{x \in D \mid\left\{T\left(x_{1}, y_{2}\right)\right\}-\left\{T\left(y_{1}, x_{2}\right)\right\} \subset \operatorname{int} C\right\}
\end{aligned}
$$

is open on D. Because $T\left(., y_{2}\right)$ is upper C-continuous in the first variable and $T\left(y_{1},.\right)$ is lower C-continuous in the second variable, thus $T\left(., y_{2}\right)-T\left(y_{1},.\right)$ is upper C-continuous. Making use of Remark 3.1.2, we get $A(y)$ is open subset in D. Furthermore, by using Theorem 3.1.2, yields there exists $\bar{x}=\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D=D_{1} \times D_{2}$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \operatorname{int}(C), \text { for all } y=\left(y_{1}, y_{2}\right) \in D=D_{1} \times D_{2}
$$

This leads to there exists $\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D$ such that (11) holds. Finally, we suppose that there exists a pointed closed convex cone \tilde{C} with $C \backslash\{0\} \subset \operatorname{int}(\tilde{C})$, then by virtue of Theorem 3.1.2, where
$C:=\widetilde{C}$, there exists $\bar{x}=\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D=D_{1} \times D_{2}$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset-(C \backslash l(C)), \text { for all } y=\left(y_{1}, y_{2}\right) \in D=D_{1} \times D_{2}
$$

This implies there exists $\left(\overline{x_{1}}, \overline{x_{2}}\right) \in D_{1} \times D_{2}$ such that $T\left(y_{1}, \overline{x_{2}}\right)-T\left(\overline{x_{1}}, y_{2}\right) \not \subset-(C \backslash l(C))$ for all $\left(y_{1}, y_{2}\right) \in D_{1} \times D_{2}$, which completes the proof.

Theorem 3.2.5. Let $X_{i}(i \in I, \operatorname{card}(I)=n)$ be Hausdorff locally convex topological vector spaces. For each $i \in I$, let $D_{i} \subset X_{i}$ be nonempty compact subsets. Let

$$
D=D_{1} \times D_{2} \times \ldots \times D_{n}=\prod_{i=1}^{n} D_{i}
$$

For every $i \in I, F_{i}: D \longrightarrow Y$. Assume, furthermore, that for each $i \in I$ such that
(i) $F_{i}: D \longrightarrow Y$ is $C-$ continuous on D;
(ii) $x^{i}=\left\{x_{j}\right\}_{j \in I \backslash i} \in D \backslash D_{i}$;
(iii) The vector valued functions $F_{i}\left(x^{i},.\right): D_{i} \longrightarrow Y$ are $C-$ convex on D_{i}.

Then there exists $\bar{x}=\left(\overline{x_{i}}\right)_{i \in I} \in D$ such that for all $i \in I$,

$$
F_{i}\left(\overline{x^{i}}, y_{i}\right)-F_{i}(\bar{x}) \notin-\text { int } C, \text { for all }\left(y_{i}\right)_{i} \in D .
$$

In addition, we assume that there exists a pointed closed convex cone \tilde{C} such that $C \backslash\{0\} \subset$ $\operatorname{int}(\tilde{C})$, then there exists $\bar{x}=\left(\overline{x_{i}}\right)_{i \in I} \in D$ such that for all $i \in I$,

$$
F_{i}\left(\overline{x^{i}}, y_{i}\right)-F_{i}(\bar{x}) \notin-(C \backslash l(C)), \text { for all }\left(y_{i}\right)_{i} \in D
$$

Proof. Let $X=\prod_{i=1}^{n} X_{i}$ and consider the multivalued mappings $G, H: D \times D \longrightarrow 2^{Y}$ be given respectively as

$$
\begin{gathered}
G(x, y)=\{0\} \\
H(x, y)=\left\{\sum_{i=1}^{n}\left(F_{i}\left(x^{i}, y_{i}\right)-F_{i}(x)\right)\right\}
\end{gathered}
$$

for all $x=\left(x_{i}\right)_{i \in I}, y=\left(y_{i}\right)_{i \in I} \in D$. By a similar argument as in the proof of Theorem 3.2.5, yields there exists $\bar{x}=\left(\overline{x_{i}}\right)_{i \in I} \in D$ such that

$$
G(y, \bar{x})-H(\bar{x}, y) \not \subset \text { int } C, \text { for all } y=\left(y_{i}\right)_{i \in I} \in D .
$$

In other words,

$$
G(y, \bar{x})-H(\bar{x}, y)=-\left\{\sum_{i=1}^{n}\left(F_{i}\left(x^{i}, y_{i}\right)-F_{i}(x)\right)\right\} \not \subset i n t C,
$$

for all $y=\left(y_{i}\right)_{i \in I} \in D$. Now, for any $i \in I, x_{i} \in D_{i}$ be arbitrary, let $y=\left(\overline{x_{i}}, y_{i}\right)$, then we obtain

$$
-\left(F_{i}\left(\bar{x}^{i}, y_{i}\right)-F_{i}(\bar{x})\right) \notin \operatorname{int} C,
$$

which is equivalent to

$$
F_{i}\left(\bar{x}^{i}, y_{i}\right)-F_{i}(\bar{x}) \notin-\text { int } C .
$$

From there we conclude that there is a point \bar{x} such that for all $i \in I$,

$$
F_{i}\left(\overline{x^{i}}, y_{i}\right)-F_{i}(\bar{x}) \notin-\operatorname{int} C \text {, for all }\left(y_{i}\right)_{i} \in D .
$$

Moreover, we assume that there exists a pointed closed convex cone \tilde{C} such that $C \backslash\{0\} \subset$ $\operatorname{int}(\tilde{C})$, then in a similar way as above, it follows that there exists $\bar{x} \in D$ such that

$$
F_{i}\left(\overline{x^{i}}, y_{i}\right)-F_{i}(\bar{x}) \notin-(C \backslash l(C)), \text { for all }\left(y_{i}\right)_{i} \in D, \forall i \in I,
$$

which completes the proof.

Acknowledgement

The authors are grateful to the reviewers for useful suggestions which improve the contents of this paper.

REFERENCES

[1] Q.H. Ansari, Vector Equilibrium Problems and Vector Variational Inequalites, Presented at 2nd World Congress of Nonlinear Analysis, Athens, (1996).
[2] J.P. Aubin, I. Ekland, Applied Nonlinear Analysis, Wiley Inter-Science, (1984).
[3] E. Blum, W. Oettli, From optimization and variational inequalites to equilibrium problems, Math. Stud. 63 (1994), 123-145.
[4] T.V. Su, Fritz John type optimality conditions for weak efficient solution of vector equilibrium problems with constraints in terms of contingent epiderivatives, Appl. Math. Sci. 9 (2015), 6249-6261.
[5] D. Chang, J.S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), 211222.
[6] A. Gurraggio, X.N. Tan, On general vector quasi-optimization problems, Math. Meth. Oper Res. 55 (2002), 347-358.
[7] D.T. Luc, Theory of vector optimization, Lect. notes in Eco. and Math. systems, Springer Verlag, Berlin, Germany, Vol 319, 1989.
[8] D.T. Luc, N.X. Tan, Existance conditions in variational inclusion with constraint, Optim. 53 (2004), 505-515.
[9] D.T. Luc, N.X. Tan, P.N. Tinh, Convex vector functions and their subdifferential, Acta. Math. Viet. 28 (1998), 107-127.
[10] L.J. Lin, Z.T. Yu, G. Kassay, Existance of equilibria for monotone multivaluted mappings and its applications to vectorial equilibria, J. Optim. Theory Appl. 114 (2002), 189-208.
[11] N.B. Minh, N.X. Tan, Some sufficient conditions for the existence of equilibrium points concerning multivaluted mappings, Vietnam J. Math. 28 (2000), 259-310.
[12] N.B. Minh, N.X. Tan, On the existence of solutions of quasivariational inclusion problems of Stampachia type, Adv. Nonlinear Var. Inequal. 8 (2005), 1-16.
[13] J.J. Moreau, Functional Analysis and Optimization, Academic Press, New York, 1966.
[14] S. Park, Fixed points and quasi-equilibrium problems, Nonlinear Oper. Theory Math. Comput. Model. 32 (2000), 1297-1304.
[15] J. Parida, A. Sen, A Variational like inequality for multifuntions with applications, J. Math. Anal. Appl. 124 (1987), 73-81.
[16] Y. Sawaragi, H. Nakayama, T.Tanino, Theory of multiobjective optimization, Academic Press INC., New York and London (1985).
[17] N.X. Tan, On the existence of solutions of quasivariational inclusion problems, J. Optim. Theory Appl. 123 (2004), 619-638.
[18] L.J. Lin, N.X. Tan, On Systems of quasivariational inclusion problems of type I and related problems, Vietnam J. Math. 34 (2006), 423-440.
[19] N.C. Yannelis, N. D. Prabhaker, Existance of minimax elements and equilibria in linear topological spaces, J. Math. Eco. 12 (1983), 233-245.
[20] T.V. Su, Second-order optimality conditions for vector equilibrium problems, J. Nonlinear Funct. Anal. 2015 (2015), Article ID 6.
[21] M. Bianchi, N. Hadjisavvas, S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92 (1997), 527-542.

[^0]: * Corresponding author.

 E-mail addresses: tranuu63@gmail.com (T.V. Su), dinhanalysis@gmail.com (T.V. Dinh)
 Received November 11, 2015

