

# Communications in Optimization Theory

Available online at http://cot.mathres.org



# SPLITTING ALGORITHMS FOR COMMON SOLUTIONS OF NONLINEAR PROBLEMS

**QING YUAN** 

Department of Mathematics, Linyi University, Linyi, China

**Abstract.** The aim of this paper is to study common solution problems of two nonlinear problems. A weak convergence theorem is obtained in a Banach space. The results improve and extend the corresponding results announced recently.

**Keywords.** Accretive operator; Monotone operator; Variational inequality; Projection; Convergence.

## 1. Introduction-Preliminaries

Let *E* be a real Banach space with the dual  $E^*$ . Recall the following generalized duality map  $\mathfrak{J}_q(x): E \to 2^{E^*}$ , where q > 1, defined as

$$\mathfrak{J}_q(x) := \{x^* \in E^* : \langle x^*, x \rangle = ||x||^q, ||x^*|| = ||x||^{q-1}\}, \quad \forall x \in E.$$

Recall that the normalized duality mapping J from E to  $2^{E^*}$  is defined by

$$Jx = \{f^* \in E^* : ||x||^2 = \langle x, f^* \rangle = ||f^*||^2\}.$$

Let  $U_E = \{x \in E : ||x|| = 1\}$ . Recall that a Banach space E is said to be strictly convex if and only if ||x+y|| < 2 for all  $x,y \in U_E$  with  $x \neq y$ . E is said to be uniformly convex if and only if  $\lim_{n\to\infty} ||u_n-v_n|| = 0$ , where  $\{u_n\}$  and  $\{v_n\}$  in  $U_E$  and  $\lim_{n\to\infty} ||u_n+v_n|| = 2$ .

Let  $\rho_E:[0,\infty) \to [0,\infty)$  be the modulus of smoothness of E by

$$\rho_E(t) = \sup \{ \frac{\|x+y\| - \|x-y\|}{2} - 1 : x \in U_E, \|y\| \le t \}.$$

E-mail address: zjyuanq@hotmail.com

Received February 23, 2016

A Banach space E is said to be uniformly smooth if  $\frac{\rho_E(t)}{t} \to 0$  as  $t \to 0$ . Let q > 1. E is said to be q-uniformly smooth if there exists a fixed constant c > 0 such that  $\rho_E(t) \le ct^q$ . It is known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet differentiable. If E is q-uniformly smooth, then  $q \le 2$  and E is uniformly smooth, and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable.

Let T be a mapping on E. The fixed point set of T is denoted by F(T). Recall that T is said to be nonexpansive iff

$$||Tx - Ty|| \le ||x, y||, \quad \forall x, y \in C.$$

Let *I* denote the identity operator on *E*. An operator  $A \subset E \times E$  with domain  $D(A) = \{z \in E : Az \neq \emptyset\}$  and range  $R(A) = \bigcup \{Az : z \in D(A)\}$  is said to be accretive if, for t > 0 and  $x, y \in D(A)$ ,

$$||x - y|| \le ||x - y + t(u - v)||, \quad \forall u \in Ax, v \in Ay.$$

It follows from Kato [1] that A is accretive if and only if, for  $x, y \in D(A)$ , there exists  $j(x_1 - x_2) \in J(x_1 - x_2)$  such that

$$\langle u - v, j(x - y) \rangle \ge 0.$$

An accretive operator A is said to be m-accretive if R(I+rA)=E for all r>0. In a real Hilbert space, an operator A is m-accretive if and only if A is maximal monotone. For an accretive operator A, we can define a nonexpansive single valued mapping  $J_r^A: R(I+rA) \to D(A)$  by  $J_r^A = (I+rA)^{-1}$  for each r>0, which is called the resolvent of A.

Recall that a single valued operator  $A: E \to E$  is said to be  $\alpha$ -inverse strongly accretive if there exists a constant  $\alpha > 0$  and some  $j(x-y) \in J(x-y)$  such that

$$\langle Ax - Ay, J(x - y) \rangle \ge \alpha ||Ax - Ay||^2, \quad \forall x, y \in E.$$

Recently, zero point problems of accretive operators have been extensively investigated via fixed point methods; see [2-13] and the references therein. In this paper, we investigate the zero point problem of the sum of two accretive operators based on a splitting methods. A weak convergence theorem is obtained in a Banach space. The results improve and extend the corresponding results announced recently. In order to obtain the main results of this paper, we need the following tools.

**Lemma 1.1.** [14] Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the following inequality holds:

$$||x+y||^2 \le ||x||^2 + 2\langle y, J(x+y)\rangle$$

and

$$||x+y||^2 \le ||x||^2 + 2\langle y, J(x)\rangle + 2||Ky||^2, \quad \forall x, y \in E.$$

**Lemma 1.2.** Let E be a real Banach space and let C be a nonempty closed and convex subset of E. Let  $A: C \to E$  be a single valued operator and let  $B: E \to 2^E$  be an m-accretive operator. Then

$$F(J_a^B(I-aA)) = (A+B)^{-1}(0),$$

where  $J_a^B$  is the resolvent of B for a > 0.

**Lemma 1.3.** [14] Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if and only if there exists a continuous strictly increasing convex function  $\varphi: [0, \infty) \to [0, \infty)$  with  $\varphi(0) = 0$  such that

$$||ax + (1-a)y||^p \le a||x||^p + (1-a)||y||^p - (a^p(1-a) + (1-a)^p a)\varphi(||x-y||),$$

for all  $x, y \in B_r(0) := \{x \in E : ||x|| \le r\}$  and  $a \in [0, 1]$ .

**Lemma 1.4.** [15] Let E be a real uniformly convex Banach space and let C be a nonempty closed convex and bounded subset of E. Then there is a strictly increasing and continuous convex function  $\psi: [0,\infty) \to [0,\infty)$  with  $\varphi(0) = 0$  such that, for every Lipschitzian continuous mapping  $T: C \to C$  and, for all  $x, y \in C$  and  $t \in [0,1]$ , the following inequality holds:

$$||T(tx+(1-t)y)-(tTx+(1-t)Ty)|| \le L\psi^{-1}(||x-y||-L^{-1}||Tx-Ty||),$$

where  $L \ge 1$  is the Lipschitz constant of T.

**Lemma 1.5.** [16] Let E be a real uniformly convex Banach space such that its dual  $E^*$  has the Kadec-Klee property. Suppose that  $\{x_n\}$  is a bounded sequence such that  $\lim_{n\to\infty} \|ax_n + (1-a)p_1 - p_2\|$  exists for all  $a \in [0,1]$  and  $p_1, p_2 \in \omega_w(x_n)$ , where  $\omega_w(x_n) : \{x : \exists x_{n_i} \to x\}$  denotes the weak  $\omega$ -limit set of  $\{x_n\}$  Then  $\omega_w(x_n)$  is a singleton.

**Lemma 1.6.** [17] Let E be a real uniformly convex Banach space, C a nonempty closed, and convex subset of E and  $T: C \to C$  a nonexpansive mapping. Then I-T is demiclosed at zero.

# 2. Main results

**Theorem 2.1.** Let E be a real uniformly convex and 2-uniformly smooth Banach space with the best smooth constant E and let E be a closed convex subset of E. Let E be an E-inverse strongly accretive operator and let E: DomE convex E be an E-accretive operator such that DomE convex E be a sequence generated in the following manner: E and

$$x_{n+1} = (1 - \alpha_n)(I + r_n B)^{-1}(x_n - r_n A x_n) + \alpha_n x_n, \quad \forall n \ge 0,$$

where  $\{\alpha_n\}$  and  $\{r_n\}$  are real sequences satisfying the following restrictions:  $0 \le \alpha_n \le \alpha < 1$  and  $0 < r \le r_n \le r' < \frac{\alpha}{K^2}$ . Then  $\{x_n\}$  converges weakly to some zero of A + B.

**Proof.** From Lemma 1.1, one has

$$||(I - r_n A)x - (I - r_n A)y||^2$$

$$\leq ||x - y||^2 - 2r_n \langle Ax - Ay, J(x - y) \rangle + 2K^2 r_n^2 ||Ax - Ay||^2$$

$$\leq ||x - y||^2 - 2r_n \alpha ||Ax - Ay||^q + 2K^2 r_n^2 ||Ax - Ay||^2$$

$$= ||x - y||^2 - 2r_n (\alpha - K^2 r_n ||Ax - Ay||^2.$$
(3.1)

From the restriction on  $\{r_n\}$ , one sees that

$$||(I - r_n A)x - (I - r_n A)y|| \le ||x - y||.$$
 (3.2)

Fixing  $p \in (A+B)^{-1}(0)$ , one has

$$||x_n - p|| \ge \alpha_n ||x_n - p|| + (1 - \alpha_n) ||(x_n - r_n A x_n) - (p - r_n A) p||$$

$$\ge \alpha_n ||x_n - p|| + (1 - \alpha_n) ||J_{r_n}(x_n - r_n A x_n) - p||$$

$$\ge ||x_{n+1} - p||.$$

This shows that  $\lim_{n\to\infty} ||x_n - p||$  exists, in particular,  $\{x_n\}$  is bounded. Putting  $y_n = J_{r_n}(x_n - r_n A x_n)$ , we find from Lemma 1.3 that

$$\|(I - r_{n}A)x_{n} - (I - r_{n}A)p\|^{2} - \frac{1}{4}\varphi(\|(y_{n} - p) - ((I - r_{n}A)x_{n} - (I - r_{n}A)p)\|)$$

$$\geq \frac{1}{2}\|y_{n} - p\|^{2} + \frac{1}{2}\|(I - r_{n}A)x_{n} - (I - r_{n}A)p\|^{2}$$

$$- \frac{1}{4}\varphi(\|(y_{n} - p) - ((I - r_{n}A)x_{n} - (I - r_{n}A)p)\|)$$

$$\geq \|\frac{1}{2}(y_{n} - p) + \frac{1}{2}((I - r_{n}A)x_{n} - (I - r_{n}A)p)\|^{2}.$$
(3.3)

Substituting (3.1) into (3.3), one finds that

$$\left\| \frac{1}{2} (y_{n} - p) + \frac{1}{2} ((I - r_{n}A)x_{n} - (I - r_{n}A)p) \right\|^{2}$$

$$\leq \|x_{n} - p\|^{2} - 2r_{n}(\alpha - K^{2}r_{n}\|Ax - Ay\|^{2}$$

$$- \frac{1}{4} \varphi \Big( \|(y_{n} - p) - ((I - r_{n}A)x_{n} - (I - r_{n}A)p) \| \Big).$$
(3.4)

In view of the acctiveness of B, we find that

$$\left\| \frac{1}{2} \left( (I - r_n A) x_n - (I - r_n A) p \right) + \frac{1}{2} (y_n - p) \right\|$$

$$= \left\| \frac{r_n}{2} \left( \frac{x_n - r_n A x_n - y_n}{r_n} - \frac{(I - r_n A) p - p}{r_n} \right) + y_n - p \right\|$$

$$\geq \|y_n - p\|$$
(3.5)

Combining (3.4) with (3.5), we see that

$$||x_{n} - p||^{2} - 2r_{n}(\alpha - K^{2}r_{n}||Ax - Ay||^{2}$$

$$-\frac{1}{4}\varphi(||(y_{n} - p) - ((I - r_{n}A)x_{n} - (I - r_{n}A)p)||)$$

$$\geq ||y_{n} - p||^{2}$$
(3.6)

It follows that

$$||x_{n} - p||^{2} - 2r_{n}(\alpha - K^{2}r_{n}||Ax - Ay||^{2}$$

$$- (1 - \alpha_{n})\frac{1}{4}\varphi(||(y_{n} - p) - ((I - r_{n}A)x_{n} - (I - r_{n}A)p)||)$$

$$\geq \alpha_{n}||x_{n} - p||^{2} + (1 - \alpha_{n})||y_{n} - p||^{2}$$

$$\geq ||x_{n+1} - p||^{2}.$$

Hence, we have

$$||x_n - p||^2 - 2r_n(\alpha - K^2 r_n ||Ax - Ay||^2 - ||x_{n+1} - p||^2)$$

$$\geq (1 - \alpha_n) \frac{1}{4} \varphi \Big( ||(y_n - p) - ((I - r_n A)x_n - (I - r_n A)p)|| \Big)$$

and

$$||x_n - p||^2 - ||x_{n+1} - p||^2 - (1 - \alpha_n) \frac{1}{4} \varphi \Big( ||(y_n - p) - ((I - r_n A)x_n - (I - r_n A)p \Big)|| \Big)$$

$$\geq 2r_n (\alpha - K^2 r_n ||Ax - Ay||^2.$$

In view of  $0 \le \alpha_n \le \alpha < 1$  and  $0 < r \le r_n \le r' < \frac{\alpha}{K^2}$ , one sees that

$$\lim_{n \to \infty} ||Ax_n - Ap|| = 0 \tag{3.7}$$

and

$$\lim_{n \to \infty} ||y_n - x_n + r_n A x_n - r_n A p|| = 0.$$
 (3.8)

Since  $||y_n - x_n|| \le ||y_n - x_n + r_n A x_n - r_n A p|| + r_n ||A x_n - A p||$ , we find that

$$\lim_{n \to \infty} ||J_{r_n}(x_n - r_n A x_n) - x_n|| = 0.$$
(3.9)

Notice that

$$0 \leq \left\langle \frac{x_n - J_r(I - rA)x_n}{r} - \frac{x_n - J_{r_n}(I - r_nA)x_n}{r_n}, J\left(J_r(I - rA)x_n - J_{r_n}(I - r_nA)x_n\right) \right\rangle.$$

Hence, we find that

$$||x_{n} - J_{r_{n}}(I - r_{n}A)x_{n}|| ||J_{r}(I - rA)x_{n} - J_{r_{n}}(I - r_{n}A)x_{n}||$$

$$\geq \frac{r_{n} - r}{r_{n}} \langle x_{n} - J_{r_{n}}(I - r_{n}A)x_{n}, J(J_{r}(I - rA)x_{n} - J_{r_{n}}(I - r_{n}A)x_{n}) \rangle$$

$$\geq ||J_{r}(I - rA)x_{n} - J_{r_{n}}(I - r_{n}A)x_{n}||^{2}.$$

This implies that  $||x_n - J_{r_n}(I - r_n A)x_n|| \ge ||J_r(I - r A)x_n - J_{r_n}(I - r_n A)y_n||$ . It follows that

$$||J_r(I - rA)x_n - x_n|| \le ||J_r(I - rA)x_n - J_{r_n}(I - r_nA)x_n||$$

$$+ ||J_{r_n}(I - r_nA)x_n - x_n||$$

$$\le 2||J_{r_n}(I - r_nA)x_n - x_n||.$$

From (3.9), we arrive at

$$\lim_{n \to \infty} ||J_r(x_n - rAx_n) - x_n|| = 0.$$
(3.10)

Define mappings  $T_n: C \to C$  by

$$T_n x := \alpha_n x + (1 - \alpha_n) J_{r_n}((I - r_n A)x), \quad \forall x \in C.$$

Set

$$T_{n+m-1}T_{n+m-2}\cdots T_n=S_{n,m}, \quad \forall n,m\geq 1.$$

Then  $S_{n,m}x_n = x_{n+m}$  and  $S_{n,m}$  is nonexpansive. For all  $t \in [0,1]$  and  $n,m \ge 1$ , put

$$a_n(t) = ||tx_n + (1-t)p_1 - p_2||,$$

and

$$b_{n,m} = ||S_{n,m}(tx_n + (1-t)p_1) - (tx_{n+m} + (1-t)p_1)||,$$

where  $p_1$  and  $p_2$  are zeros of A + B. Using Lemma 1.4, we find that

$$b_{n,m} \leq \psi^{-1} (\|x_n - p_1\| - \|S_{n,m}x_n - S_{n,m}p_1\|)$$

$$= \psi^{-1} (\|x_n - p_1\| - \|x_{n+m} - p_1 + p_1 - S_{n,m}p_1\|)$$

$$\leq \psi^{-1} (\|x_n - p_1\| - (\|x_{n+m} - p_1\| - \|p_1 - S_{n,m}p_1\|))$$

$$\leq \psi^{-1} (\|x_n - p_1\| - \|x_{n+m} - p_1\|).$$

It follows that  $\{b_{n,m}\}$  converges uniformly to zero as  $n \to \infty$  for all  $m \ge 1$ . Hence,

$$a_{n+m}(t) \le b_{n,m} + \|S_{n,m}(tx_n + (1-t)p_1) - p_2\|$$

$$\le b_{n,m} + \|S_{n,m}(tx_n + (1-t)p_1) - S_{n,m}p_2\| + \|S_{n,m}p_2 - p_2\|$$

$$\le b_{n,m} + a_n(t) + \|S_{n,m}p_2 - p_2\|$$

$$< b_{n,m} + a_n(t).$$

Taking  $\limsup as m \to \infty$  and then the  $\liminf as n \to \infty$ , we find that  $\lim_{n\to\infty} a_n(t)$  for any  $t \in [0,1]$ . In view of Lemma 1.5, we see that  $\omega_w(x_n) \subset (A+B)^{-1}(0)$ . This implies from Lemma 1.6 that  $\omega_w(x_n)$  is just one point. This proves the proof.

From Theorem 3.1, we immediately have the following results.

**Corollary 2.2.** Let H be a real Hilbert space and let C be a closed convex subset of H. Let  $A: C \to E$  be an  $\alpha$ -inverse strongly monotone operator and let  $B: Dom(B) \subset H \to 2^H$  be an

*m*-accretive operator such that  $Dom(B) \subset C$ . Assume  $(A+B)^{-1}(0) \neq \emptyset$ . Let  $\{x_n\}$  be a sequence generated in the following manner:  $x_0 \in C$  and

$$x_{n+1} = (1 - \alpha_n)(I + r_n B)^{-1}(x_n - r_n A x_n) + \alpha_n x_n, \quad \forall n \ge 0,$$

where  $\{\alpha_n\}$  and  $\{r_n\}$  are real sequences satisfying the following restrictions:  $0 \le \alpha_n \le \alpha < 1$  and  $0 < r \le r_n \le r' < 2\alpha$ . Then  $\{x_n\}$  converges weakly to some zero of A + B.

**Corollary 2.3.** Let H be a real Hilbert space and let C be a closed convex subset of H. Let  $A:C\to E$  be an  $\alpha$ -inverse strongly monotone operator and let  $Proj_C$  be the metric projection from H onto C. Assume  $VI(C,A)\neq\emptyset$ . Let  $\{x_n\}$  be a sequence generated in the following manner:  $x_0\in C$  and

$$x_{n+1} = (1 - \alpha_n) Proj_C(x_n - r_n A x_n) + \alpha_n x_n, \quad \forall n > 0,$$

where  $\{\alpha_n\}$  and  $\{r_n\}$  are real sequences satisfying the following restrictions:  $0 \le \alpha_n \le \alpha < 1$  and  $0 < r \le r_n \le r' < 2\alpha$ . Then  $\{x_n\}$  converges weakly to some zero of VI(C,A).

### Acknowledgements

The author was grateful to the reviewers for useful suggestions which improve the contents of this paper.

#### REFERENCES

- [1] T. Kato, t Nonlinear semigroups and evolution equations, J. Math. Sco. Japan. 19 (1967), 508–520.
- [2] B.A. Bin Dehaish, X. Qin, A. Latif, H. Bakodah, Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal. 16 (2015), 1321–1336.
- [3] L. Yang, On pertubations of accretive operators in Banach spaces, Nonlinear Funct. Anal. Appl. 6 (2001), 125-133.
- [4] S.Y. Cho, S.M. Kang, On iterative solutions of a common element problem, J. Nonlinear Funct. Anal. 2014 (2014), Article ID 3.
- [5] H.Y. Lan,  $(A, \eta)$ -Accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces, Appl. Math. Lett. 20 (2007), 571-577.
- [6] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415-424.

- [7] H. Zhou, Remarks on the approximation methods for nonlinear operator equations of the m-accretive type, Nonlinear Anal. 42 (2000), 63-69.
- [8] H. Zhou, A characteristic condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl. 271 (2002), 1-6.
- [9] S. Yang, Zero theorems of accretive operators in reflexive Banach spaces, J. Nonlinear Funct. Anal. 2013 (2013), Article ID 2.
- [10] X. Qin, S.Y. Cho, L. Wang, Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl. 2013 (2013), Article ID 148.
- [11] X. Qin, S.Y. Cho, L. Wang, Convergence of splitting algorithms for the sum of two accretive operators with applications, Fixed Point Theory Appl. 2014 (2014), Article ID 166.
- [12] N.D. Nguyen, N. Buong, An iterative method for zeros of accretive mappings in Banach spaces, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 15.
- [13] N. Buong, Generalized discrepancy principle an dill-posed equations involving accretive operators, Nonlinear Funct. Anal. Appl. 9 (2004), 57-72.
- [14] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.
- [15] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), 107-116.
- [16] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad Sci. 54 (1965), 1041–1044.
- [17] J.G. Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal 43 (2007), 377-401.