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SPLITTING ALGORITHMS FOR COMMON SOLUTIONS OF NONLINEAR
PROBLEMS

QING YUAN

Department of Mathematics, Linyi University, Linyi, China

Abstract. The aim of this paper is to study common solution problems of two nonlinear problems. A weak

convergence theorem is obtained in a Banach space. The results improve and extend the corresponding results

announced recently.
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1. Introduction-Preliminaries

Let E be a real Banach space with the dual E∗. Recall the following generalized duality map

Jq(x) : E→ 2E∗ , where q > 1, defined as

Jq(x) := {x∗ ∈ E∗ : 〈x∗,x〉= ‖x‖q,‖x∗‖= ‖x‖q−1}, ∀x ∈ E.

Recall that the normalized duality mapping J from E to 2E∗ is defined by

Jx = { f ∗ ∈ E∗ : ‖x‖2 = 〈x, f ∗〉= ‖ f ∗‖2}.

Let UE = {x ∈ E : ‖x‖ = 1}. Recall that a Banach space E is said to be strictly convex if and

only if ‖x+ y‖< 2 for all x,y ∈UE with x 6= y. E is said to be uniformly convex if and only if

limn→∞ ‖un− vn‖= 0, where {un} and {vn} in UE and limn→∞ ‖un + vn‖= 2.

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E by

ρE(t) = sup{‖x+ y‖−‖x− y‖
2

−1 : x ∈UE ,‖y‖ ≤ t}.
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A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t→ 0. Let q > 1. E is said to

be q-uniformly smooth if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq. It is known

that E is uniformly smooth if and only if the norm of E is uniformly Fréchet differentiable. If

E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth, and hence the norm of E is

uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable.

Let T be a mapping on E. The fixed point set of T is denoted by F(T ). Recall that T is said

to be nonexpansive iff

‖T x−Ty‖ ≤ ‖x,y‖, ∀x,y ∈C.

Let I denote the identity operator on E. An operator A⊂ E×E with domain D(A) = {z ∈ E :

Az 6= /0} and range R(A) = ∪{Az : z ∈D(A)} is said to be accretive if, for t > 0 and x,y ∈D(A),

‖x− y‖ ≤ ‖x− y+ t(u− v)‖, ∀u ∈ Ax,v ∈ Ay.

It follows from Kato [1] that A is accretive if and only if, for x,y∈D(A), there exists j(x1−x2)∈

J(x1− x2) such that

〈u− v, j(x− y)〉 ≥ 0.

An accretive operator A is said to be m-accretive if R(I+ rA) = E for all r > 0. In a real Hilbert

space, an operator A is m-accretive if and only if A is maximal monotone. For an accretive

operator A, we can define a nonexpansive single valued mapping JA
r : R(I + rA)→ D(A) by

JA
r = (I + rA)−1 for each r > 0, which is called the resolvent of A.

Recall that a single valued operator A : E → E is said to be α-inverse strongly accretive if

there exists a constant α > 0 and some j(x− y) ∈ J(x− y) such that

〈Ax−Ay,J(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈ E.

Recently, zero point problems of accretive operators have been extensively investigated via

fixed point methods; see [2-13] and the references therein. In this paper, we investigate the

zero point problem of the sum of two accretive operators based on a splitting methods. A

weak convergence theorem is obtained in a Banach space. The results improve and extend the

corresponding results announced recently. In order to obtain the main results of this paper, we

need the following tools.



SPLITTING ALGORITHMS FOR COMMON SOLUTIONS OF NONLINEAR PROBLEMS 3

Lemma 1.1. [14] Let E be a real 2-uniformly smooth Banach space with the best smooth

constant K. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,J(x+ y)〉

and

‖x+ y‖2 ≤ ‖x‖2 +2〈y,J(x)〉+2‖Ky‖2, ∀x,y ∈ E.

Lemma 1.2. Let E be a real Banach space and let C be a nonempty closed and convex subset

of E. Let A : C→ E be a single valued operator and let B : E→ 2E be an m-accretive operator.

Then

F(JB
a (I−aA)) = (A+B)−1(0),

where JB
a is the resolvent of B for a > 0.

Lemma 1.3. [14] Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E

is uniformly convex if and only if there exists a continuous strictly increasing convex function

ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖ax+(1−a)y‖p ≤ a‖x‖p +(1−a)‖y‖p−
(
ap(1−a)+(1−a)pa

)
ϕ(‖x− y‖),

for all x,y ∈ Br(0) := {x ∈ E : ‖x‖ ≤ r} and a ∈ [0,1].

Lemma 1.4. [15] Let E be a real uniformly convex Banach space and let C be a nonempty

closed convex and bounded subset of E. Then there is a strictly increasing and continuous

convex function ψ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that, for every Lipschitzian continuous

mapping T : C→C and, for all x,y ∈C and t ∈ [0,1], the following inequality holds:

‖T (tx+(1− t)y)− (tT x+(1− t)Ty)‖ ≤ Lψ
−1(‖x− y‖−L−1‖T x−Ty‖

)
,

where L≥ 1 is the Lipschitz constant of T.

Lemma 1.5. [16] Let E be a real uniformly convex Banach space such that its dual E∗ has the

Kadec-Klee property. Suppose that {xn} is a bounded sequence such that limn→∞ ‖axn +(1−

a)p1− p2‖ exists for all a ∈ [0,1] and p1, p2 ∈ ωw(xn), where ωw(xn) : {x : ∃xni ⇀ x} denotes

the weak ω-limit set of {xn} Then ωw(xn) is a singleton.



4 QING YUAN

Lemma 1.6. [17] Let E be a real uniformly convex Banach space, C a nonempty closed, and

convex subset of E and T : C→C a nonexpansive mapping. Then I−T is demiclosed at zero.

2. Main results

Theorem 2.1. Let E be a real uniformly convex and 2-uniformly smooth Banach space with the

best smooth constant K and let C be a closed convex subset of E. Let A : C→ E be an α-inverse

strongly accretive operator and let B : Dom(B)⊂ E→ 2E be an m-accretive operator such that

Dom(B) ⊂ C. Assume (A+B)−1(0) 6= /0. Let {xn} be a sequence generated in the following

manner: x0 ∈C and

xn+1 = (1−αn)(I + rnB)−1(xn− rnAxn)+αnxn, ∀n≥ 0,

where {αn} and {rn} are real sequences satisfying the following restrictions: 0 ≤ αn ≤ α < 1

and 0 < r ≤ rn ≤ r′ < α

K2 . Then {xn} converges weakly to some zero of A+B.

Proof. From Lemma 1.1, one has

‖(I− rnA)x− (I− rnA)y‖2

≤ ‖x− y‖2−2rn〈Ax−Ay,J(x− y)〉+2K2r2
n‖Ax−Ay‖2

≤ ‖x− y‖2−2rnα‖Ax−Ay‖q +2K2r2
n‖Ax−Ay‖2

= ‖x− y‖2−2rn(α−K2rn‖Ax−Ay‖2.

(3.1)

From the restriction on {rn}, one sees that

‖(I− rnA)x− (I− rnA)y‖ ≤ ‖x− y‖. (3.2)

Fixing p ∈ (A+B)−1(0), one has

‖xn− p‖ ≥ αn‖xn− p‖+(1−αn)‖(xn− rnAxn)− (p− rnA)p‖

≥ αn‖xn− p‖+(1−αn)‖Jrn(xn− rnAxn)− p‖

≥ ‖xn+1− p‖.
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This shows that limn→∞ ‖xn− p‖ exists, in particular, {xn} is bounded. Putting yn = Jrn(xn−

rnAxn), we find from Lemma 1.3 that

‖(I− rnA)xn− (I− rnA)p‖2− 1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≥ 1
2
‖yn− p‖2 +

1
2
‖(I− rnA)xn− (I− rnA)p‖2

− 1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≥
∥∥1

2
(yn− p)+

1
2
(
(I− rnA)xn− (I− rnA)p

)∥∥2
.

(3.3)

Substituting (3.1) into (3.3), one finds that∥∥1
2
(yn− p)+

1
2
(
(I− rnA)xn− (I− rnA)p

)∥∥2

≤ ‖xn− p‖2−2rn(α−K2rn‖Ax−Ay‖2

− 1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)
.

(3.4)

In view of the acctiveness of B, we find that∥∥1
2
(
(I− rnA)xn− (I− rnA)p

)
+

1
2
(yn− p)

∥∥
=
∥∥∥rn

2

(xn− rnAxn− yn

rn
− (I− rnA)p− p

rn

)
+ yn− p

∥∥∥
≥ ‖yn− p‖

(3.5)

Combining (3.4) with (3.5), we see that

‖xn− p‖2−2rn(α−K2rn‖Ax−Ay‖2

− 1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≥ ‖yn− p‖2

(3.6)

It follows that

‖xn− p‖2−2rn(α−K2rn‖Ax−Ay‖2

− (1−αn)
1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≥ αn‖xn− p‖2 +(1−αn)‖yn− p‖2

≥ ‖xn+1− p‖2.
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Hence, we have

‖xn− p‖2−2rn(α−K2rn‖Ax−Ay‖2−‖xn+1− p‖2

≥ (1−αn)
1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

and

‖xn− p‖2−‖xn+1− p‖2− (1−αn)
1
4

ϕ

(
‖(yn− p)−

(
(I− rnA)xn− (I− rnA)p

)
‖
)

≥ 2rn(α−K2rn‖Ax−Ay‖2.

In view of 0≤ αn ≤ α < 1 and 0 < r ≤ rn ≤ r′ < α

K2 , one sees that

lim
n→∞
‖Axn−Ap‖= 0 (3.7)

and

lim
n→∞
‖yn− xn + rnAxn− rnAp‖= 0. (3.8)

Since ‖yn− xn‖ ≤ ‖yn− xn + rnAxn− rnAp‖+ rn‖Axn−Ap‖, we find that

lim
n→∞
‖Jrn(xn− rnAxn)− xn‖= 0. (3.9)

Notice that

0≤
〈xn− Jr(I− rA)xn

r
− xn− Jrn(I− rnA)xn

rn
,J
(
Jr(I− rA)xn− Jrn(I− rnA)xn

)〉
.

Hence, we find that

‖xn− Jrn(I− rnA)xn‖‖Jr(I− rA)xn− Jrn(I− rnA)xn‖

≥ rn− r
rn
〈xn− Jrn(I− rnA)xn,J

(
Jr(I− rA)xn− Jrn(I− rnA)xn

)
〉

≥ ‖Jr(I− rA)xn− Jrn(I− rnA)xn‖2.

This implies that ‖xn− Jrn(I− rnA)xn‖ ≥ ‖Jr(I− rA)xn− Jrn(I− rnA)yn‖. It follows that

‖Jr(I− rA)xn− xn‖ ≤ ‖Jr(I− rA)xn− Jrn(I− rnA)xn‖

+‖Jrn(I− rnA)xn− xn‖

≤ 2‖Jrn(I− rnA)xn− xn‖.

From (3.9), we arrive at

lim
n→∞
‖Jr(xn− rAxn)− xn‖= 0. (3.10)
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Define mappings Tn : C→C by

Tnx := αnx+(1−αn)Jrn((I− rnA)x), ∀x ∈C.

Set

Tn+m−1Tn+m−2 · · ·Tn = Sn,m, ∀n,m≥ 1.

Then Sn,mxn = xn+m and Sn,m is nonexpansive. For all t ∈ [0,1] and n,m≥ 1, put

an(t) = ‖txn +(1− t)p1− p2‖,

and

bn,m = ‖Sn,m(txn +(1− t)p1)− (txn+m +(1− t)p1)‖,

where p1 and p2 are zeros of A+B. Using Lemma 1.4, we find that

bn,m ≤ ψ
−1(‖xn− p1‖−‖Sn,mxn−Sn,m p1‖

)
= ψ

−1(‖xn− p1‖−‖xn+m− p1 + p1−Sn,m p1‖
)

≤ ψ
−1(‖xn− p1‖− (‖xn+m− p1‖−‖p1−Sn,m p1‖)

)
≤ ψ

−1(‖xn− p1‖−‖xn+m− p1‖
)
.

It follows that {bn,m} converges uniformly to zero as n→ ∞ for all m≥ 1. Hence,

an+m(t)≤ bn,m +‖Sn,m(txn +(1− t)p1)− p2‖

≤ bn,m +‖Sn,m(txn +(1− t)p1)−Sn,m p2‖+‖Sn,m p2− p2‖

≤ bn,m +an(t)+‖Sn,m p2− p2‖

≤ bn,m +an(t).

Taking limsup as m→ ∞ and then the liminf as n→ ∞, we find that limn→∞ an(t) for any

t ∈ [0,1]. In view of Lemma 1.5, we see that ωw(xn)⊂ (A+B)−1(0). This implies from Lemma

1.6 that ωw(xn) is just one point. This proves the proof.

From Theorem 3.1, we immediately have the following results.

Corollary 2.2. Let H be a real Hilbert space and let C be a closed convex subset of H. Let

A : C→ E be an α-inverse strongly monotone operator and let B : Dom(B) ⊂ H → 2H be an
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m-accretive operator such that Dom(B)⊂C. Assume (A+B)−1(0) 6= /0. Let {xn} be a sequence

generated in the following manner: x0 ∈C and

xn+1 = (1−αn)(I + rnB)−1(xn− rnAxn)+αnxn, ∀n≥ 0,

where {αn} and {rn} are real sequences satisfying the following restrictions: 0 ≤ αn ≤ α < 1

and 0 < r ≤ rn ≤ r′ < 2α . Then {xn} converges weakly to some zero of A+B.

Corollary 2.3. Let H be a real Hilbert space and let C be a closed convex subset of H. Let

A : C→ E be an α-inverse strongly monotone operator and let Pro jC be the metric projection

from H onto C. Assume V I(C,A) 6= /0. Let {xn} be a sequence generated in the following

manner: x0 ∈C and

xn+1 = (1−αn)Pro jC(xn− rnAxn)+αnxn, ∀n≥ 0,

where {αn} and {rn} are real sequences satisfying the following restrictions: 0 ≤ αn ≤ α < 1

and 0 < r ≤ rn ≤ r′ < 2α . Then {xn} converges weakly to some zero of V I(C,A).
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