
EXTENSION OF LINMAP MODEL TO MINKOWSKI DISTANCE METRIC OF
ORDER 3 FOR THE OPTIMAL ESTIMATION OF INDIVIDUAL UTILITY

FUNCTION

E. O. EFFANGA, V. I. OKPARA

Dpartment of Statistics, University of Calabar, Nigeria

Abstract. This paper extends the conventional LINMAP model to the Minkowski distance metric of order 3

for the simultaneous determination of the ideal points and weights for the optimal estimation of utility functions

by Decision Makers. The algorithm for solution of the extended LINMAP model is developed, and numerical

examples are presented to demonstrate the applicability of the extended model. The result shows that Minkowski

distance metric gives a more accurate and distinctive ranking of alternatives than the Euclidean distance metric.
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1. Introduction

Decision making is part of our daily lives and optimal estimation of utility functions involves

the use of certain multiple criteria. Multi-Criteria Decision Making (MCDM) problems accord-

ing to (Zeinab et al., 2010) citing Hwang et al. (1981) are categorized into Multi-Attribute

Decision Making (MADM) and Multi-Objective Decision Making (MODM). In the optimiza-

tion problems of the MODM, several objective functions should be satisfied and the decision
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space is continuous while MADM associates itself with the problems in which the set of deci-

sion alternatives have been predetermined ( i.e. concentrates on problems with discrete decision

spaces (Vazifedost et al.,2011)). This invariably involves making preference decisions such as

evaluation, prioritization and selection over available finite number of alternatives that are char-

acterized by multiple, and usually, conflicting attributes (Yoon et al., 1995). Therefore, MADM

is one of the widely used decision methodology for most real world decision making problems

(Tuli et al., 2011).

MADM problems can be divided into different categories depending on the criteria defined.

The DM can be divided into different categories depending on the criteria defined. The DM can

be consulted or the final decision can be made solely based on some existing data. (Trianta-

phyllou, 2000) opined that the availability of a wide selection of methods for solving MADM

problems generates the paradox that the selection of a MADM method for a given problem can

be lead to another MADM problem itself which according to (Yeh, 2003) is caused by incon-

sistent ranking problem. (Jahanshaloo et al., 2011) stated that the choice of a specific method

in general influences the ranking outcome.

Mathematical programming models have been used in a number of ways to obtain optimal

estimate of utility functions of decision makers (DM). Several existing methods have been used

to deal with these kind of problems, these include TOPSIS (Technique for Order Preference

by Similarity to Ideal Solution) developed by (Hwang and Yoon, 1981), the Multi-Dimensional

Scaling method (MDS) with ideal point (Kruskaal, 1964a, 1964b), the Total Sum (TS), the

Weighted Product Model (WPM), the Outranking approaches Elimination and Choice Transla-

tion Reality, ELECTRE (Benayoun et al., 1966) and PROMETHEE (Brans and Vincke, 1985),

LINear programming technique for Multidimensional Analysis of Preferences, (LINMAP) (S-

rinivasan and Shocker, 1973a), interactive Simple Additive Weighting (SAW) method (Hwang

and Yoon, 1981), artificial neural network method (Malakooti and Zhou, 1994), non-linear pro-

gramming method based on fuzzy preference relation (Fan et al., 2002), interval numbers based

optimization approach (Xu, 2004).
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Some applications in practice are prevented because of the complexities of most of these

methods as perceived by real DMs. TOPSIS and LINMAP are two well-known MADM meth-

ods though they require different types of information (Deng-Feng, 2008). In the TOPSIS

method, the decision matrix, V, and the weight vector, w, are given as crisp values a priori. A

Positive Ideal Solution (PIS) and a Negative Ideal Solution (NIS) are generated from V directly.

The best compromise alternative is then defined as the one that has the shortest distance to the

PIS and the farthest from the NIS. TOPSIS still suffers from ranking abnormalities caused by

the weighting algorithm used to weigh different criteria, (Lahby et al., 2012a, 2012b).

However, in the LINMAP method, the weight vector, w, and the PIS are unknown a priori. It

is based on pair-wise comparisons of alternatives given by the DM and generates the best com-

promise alternatives as the solution that has the shortest distance to the PIS (Xia et al., 2006).

(Xia et al.,2006) extended the conventional LINMAP to solve group MADM problems with

fuzzy information using triangular fuzzy numbers to assess alternatives with respect to qualita-

tive attributes in their fuzzy linear programming model. A fuzzy LINMAP method to handle

group decision making problems involving linguistic variables and incomplete preference infor-

mation was developed by (Li and Xia, 2007) to capture the uncertainty in the DM’s preferences

and to calculate the distances between the alternatives and the ideal point. Another LINMAP

method in group decision making environment was proposed by (Li, 2008) by transforming the

problem as a possibility programming with multiple objectives.

The LINMAP, as proposed by (Srinivasan and Shocker, 1973b) for the optimal estimation of

utility functions of DM, dealt extensively with the preference to those stimuli which are closer

to DM’s ideal point in terms of a weighted Euclidean distance measure by proposing a linear

programming model for external analysis (which is the estimation of the coordinates of his ideal

point and the weights) pre specified by their coordinate locations in the multidimensional space.

2. Statement of the problem

A Linear Programming (LP) model for the estimation of individual utility function (i.e. es-

timation of the coordinates of ideal point and weights) using the Euclidean distance measure

formulated by (Srinivasan and Shocker, 1973b) was extended to general Minkowski metric with
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the assumption that the ideal point locations are already known and thereby only estimating the

weights. The methodology was equally extended to the city block metric for joint determination

of weights and ideal points; they could not extend the methodology to the general Minkowski

metric for the simultaneous determination of the ideal points and the weights. This problem

remains unsolved till date.

This paper shows how LINMAP model can be extended to the general Minkowski metric of

order 3 for the simultaneous determination of the ideal point and weights, and how it can be

used in solving MADM problems in real life.

3. Methodology

3.1 Steps for solving MADM problems

There are three steps involved in utilizing any decision making technique involving numerical

analysis of alternatives. They are:

i. Determining the relevant criteria and alternatives;

ii. Attaching numerical measures to the relevant importance of the criteria and to the impacts of

the alternatives on these criteria;

iii. Processing the numerical values to determine the ranking of each alternative.

3.2 The Decision Matrix

The decision matrix, V (or the performance table), is an array presenting on one axis a list of

alternatives that are evaluated regarding on the other axis, a list of criteria, which are weighted

dependently of their respective importance in the final decision to be taken. It has as its ele-

ments (Vi j). These are values allocated to the ith alternative of jth criteria. Suppose the DM

has to choose one or rank m possible alternatives, Ai (i = 1,2,...,m) based on n attributes, C j

( j = 1,2, ...,n). Each row (line) of the matrix expresses the performances of alternatives i rela-

tive to the n attributes considered. Each column j expresses the evaluations of all the alternatives

adopted by the DM relative to the alternatives. To represent the importance of the attributes, a

weight w j for each criterion can be given resulting in a vector, W = (w1,w2, ...,wn). In some
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cases the weights sum to one (i.e ∑
n
j=1 w j = 1) implying that each weight can be interpret-

ed as the percentage of importance of the corresponding attributes and w j ≥ 0( j = 1,2, ...,n).

Hence, a multi-attribute decision making problem can be concisely expressed in matrix format

as follows:

3.3 Linear programming technique for multi dimensional analysis of preference (LIN-

MAP):

Considering a set of feasible m alternatives A = {A1,A2, ...,Am} consisting of a collection

of n attributes or criteria C = {C1,C2, ...,Cn} with which the performance of the alternatives

are measured or on which the DM makes his preferences judgments. To carry out the analysis

for each DM separately, since the analysis does not involve any comparisons across DMs, the

DMs’ ideal points and weights based on their preference judgments on a set of alternatives

whose locations are pre-specified in a multidimensional space are determined. Let the ideal

point Y = yp, p ∈ P. This ideal point yp could be positive, negative or zero. Once the ideal

point is identified, the alternative with the shortest distance from the ideal point is then selected

as the ”most preferred” (Shadi-Nezhad and Akhtari, 2008).

3.4 The Euclidean metric distance

Let Vi denote the values allocated to ith attribute in the t-dimensional space such that Vi =

{vip} p ∈ P. The un-weighted Euclidean metric distance, du
i , of the preferred alternative from

the ideal point is given by

(1) du
i = [∑

p∈P
(vip− yp)

2]
1
2 .

Let Ω = {( j,k)} denote the set of ordered pairs ( j,k) where j represents the preferred alter-

native on a forced choice basis (the DM chooses each alternative from among the remaining

alternatives without restoration) resulting from a pair-wise comparison involving j and k. Ω

normally, but not necessarily, hasm(m−1)
2 elements and for every ordered pair ( j,k) ∈Ω, the al-

ternative Ak is closer to the positive ideal solution than the alternative A j if du
k ≥ du

j or du
j ≤ dU

k .

Let W = {wp}, p ∈ P denote the weights associated with the t-dimensions, then to represent

the importance of each attribute, a relative weight wp of the ith criteria can be given which are

considered in order to change the present measure into the same measures. Hence, the weighted
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Euclidean metric distance, di, of the alternatives from the ideal point is given by

(2) di = [∑
p∈P

Wp(Vip−Yp)
2]

1
2 .

Therefore, the squared weighted distance si = d2
i is given by

(3) si = ∑
p∈P

Wp(Vip−Yp)
2

The performance ratings and the attribute weights are cardinal values that represent the DM’s

absolute preference (Yeh, 2003). In many cases the weights sum up to one i.e. ∑p∈P = 1

for every p ∈ P, so that each weight can be interpreted as the percentage of importance of

corresponding attribute. This weighted distance implies that the closer the alternative is to the

ideal point, the more that alternative is preferred. From this implication, if the deviation from

the ideal point is much, then sk is increased. For this property to apply, it is assumed that

the attribute weight is constrained to be non-negative, i.e. Wp ≥ 0 for p ∈ P. The following

constrained optimization can, therefore, be solved to obtain (wp,yp):

(4) MinH = ∑
( j,k)∈Ω

Z jk

s.t. (sk − s j) + z jk ≥ 0,( j,k) ∈ Ω ∑( j,k)∈Ω(sk − s j) = g, Z jk ≥ 0,( j,k) ∈ Ω. Using suitable

transformations, (20) therefore, reduces to the LP formulation thus,

(5) Min ∑
( j,k)∈Ω

Z jk = Z

Subject to:

∑Wpa jkp +∑qpb jkp +Z jk ≥ 0

∑WpAp +∑qpDp = g

Wp ≥ 0

qp urs

Z jk ≥ 0 for ( j,k) ∈Ω, p ∈ P.

4. Extension of LINMAP to Minkowski metric of order 3
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To simultaneously determine the ideal points locations {yp} and the weights {wp} when the

pre-specified locations of the ith attribute in the t-dimensional space V = {vip}, p ∈ P are given,

the weighted Minkowski metric distance, di, of the ith attribute from the ideal point is given by

(6) di = [∑
p∈P

Wp|vip− yp| f ]
1
f , f ≥ 1,∀i ∈Ω.

For computational convenience we define di as follows

(7) di = [∑
p∈P

Wp(vip− yp)
f ]

1
f ,∀i ∈Ω.

For f = 3, we have

(8) di = [∑
p∈P

Wp(vip− yp)
3]

1
3 ,∀i ∈Ω,

(9) d3
i = ∑

p∈P
Wp(vip− yp)

3,

(10) d3
i = ∑

p∈P
Wp(v3

ip−3ypv2
ip +3y2

pvip− y3
p),

d3
i = ∑p∈PWpV 3

ip−3∑p∈PWpYpv2
ip +3∑p∈PWpY 2

p Vip−∑p∈PWpY 3
p . Defining, si = d3

i , then

(11) si = ∑
p∈P

WpV 3
ip−3 ∑

p∈P
WpYpV 2

ip +3 ∑
p∈P

WpY 2
p Vip− ∑

p∈P
WpY 3

p .

It is important to note that si may not be nonnegative, however, it still follows if Si < 0, since

the model merely states that j will be preferred to k if Sk > S j and does not require Si to be

positive. Hence, the attribute weight could be constrained to be non-negative i.e. Wp ≥ 0 for

p ∈ P. Therefore for the pair ( j,k) ∈ Ω, s j = ∑p∈P wpv3
jp−3∑p∈P wpypv2

jp +∑p∈P wpy2
pv jp−

∑p∈P wpy3
p, sk = ∑p∈P wpv3

kp−3∑p∈P wpypv2
kp +3∑p∈P wpy2

pvkp−∑p∈P wpy3
p,

(12) sk− s j = ∑
p∈P

wp(v3
kp− v3

jp−3 ∑
p∈P

wpyp(v2
kp− v j p2)+ ∑

p∈P
wpy2

p(vkp− v jp).

Let qp =wpyp and rp =wpy2
p. Then rp =wp

q2
p

w2
p
=

q2
p

wp
. For wp > 0 and qp, that is, qp =

√wprp≤
wp+rp

2 . This implies that 2qp−wp−rp≤ 0, for all wp≥ 0; p∈P, sk−s j =∑p∈P wp(v3
kp−v3

jp)−

3∑p∈P wp(v2
kp−v2

jp)+3∑p∈P rp(vkp−v jp) for all real values v jp, vkp; wp ≥ 0; qp unrestricted;

sk− s j ≥ 0, ( j,k) ∈Ω and p ∈ P. Defining

(13) a jkp = (v3
kp− v3

jp),
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(14) b jkp =−3(v2
kp− v2

jp),

(15) c jkp = 3(vkp− v jp),

for ( j,k) ∈Ω and p ∈ P. We have

(16) sk− s j = ∑
p∈P

wpa jkp + ∑
p∈P

qpb jkp + ∑
p∈P

γpc jkp).

Then g = ∑( j,k)∈Ω(sk− s j) can be written as

(17) g = ∑
p∈P

(∑
p∈P

wpa jkp + ∑
p∈P

qpb jkp + ∑
p∈P

γpc jkp).

Let

(18) Ap = ∑
p∈P

a jkp,

(19) Bp = ∑
p∈P

b jkp,

(20) Cp = ∑
p∈P

c jkp.

Equation (17) becomes

(21) g = ∑
p∈P

wpAp + ∑
p∈P

qpBp + ∑
p∈P

γpCp = 1.

The model formulation now becomes

(22) MinZ = ∑
( j,k)∈Ω

Z jk

subject to:

∑p∈P wpa jkp +∑p∈P qpb jkp +∑p∈P γpc jkp + z jk ≥ 0

∑p∈P wpAp +∑p∈P qpBp +∑p∈P γpCp = 1

2qp−wp− γp ≤ 0; p ∈ P

z jk ≥ 0; ( j,k) ∈Ω

wp ≥ 0; p ∈ P

γp ≥ 0; p ∈ P

qp unrestricted in sign; p ∈ P
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5. The E-linmap algorithm

To estimate the weights {w∗p} and the ideal point {y∗p}.

Step 1. Let P denote the set of n attributes {1,2, ...,n} and J denote the given set of m

alternatives {1,2, ...,m}. Let V = {vip} denote the given attribute values for the alternative (vip

is the value of the ith alternative on the pth attribute). Let Ω = {( j,k)} denote the given set

of ordered pairs ( j,k) such that k is preferred to j on a forced choice basis in the comparison

involving j and k.

Step 2. Compute a jkp and b jkp for each pair ( j,k)∈Ω and for every attribute p∈P. Compute

Ap and BP and Cp.

Step 3. Solve the E - LINMAP model.

Step 4. Compute the index of fit C∗ = H ∗/1+H∗.

Step 5. Compute the distance measures and rank the alternatives.

Note that, for p ∈ P

a. if w∗p > 0 then y∗p = q∗p/w∗p,

b. if w∗p = 0 and q∗p = 0 define y∗p = o,

c. if w∗p = 0 and q∗p = 0 define y∗p > o then y∗p =+∞,

d. w∗p = 0 and q∗p < 0 define y∗p > o then y∗p =−∞.

6. Numerical applications

6.1. Using Euclidean distance metrics

The data consist of five stimuli (n = 5) in a two dimensional space (t = 2) with coordinates

V1 =(0,5), V2 =(5,4), V3 =(0,2), V4 =(1,3), 5 =(4,1) The forced choice ordered paired com-

parison judgments are: Ω = {(1,2),(3,1),(4,1),(5,1),(2,3),(2,4),(2,5),(4,3),(3,5),(4,5)}

The linear program formulation to obtain the ’best’ weights and ideal point, is given below:

(23) MinZ = Z12 +Z31 +Z41 +Z51 +Z23 +Z24 +Z25 +Z43 +Z35 +Z45

subject to

25−9w2−10q1+2q2+ z12 ≥ 0, 0+21w2−6q2+ z31 ≥ 0, −w1+16w2+2q1−4q2+ z41 ≥ 0,
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−16w1 +24w2 +8q1−8q2 + z51 ≥ 0, −25w1−12w2 +10q1 +4q2 + z23 ≥ 0, −24w1−7w2 +

8q1 + 2q2 + z24 ≥ 0, −9w1− 15w2 + 2q1 + 6q2 + z25 ≥ 0, −w1− 5w2 + 2q1 + 2q2 + z43 ≥ 0,

16w1−3w2−8q1+2q2+Z35≥ 0, 15w1−8w2−6q1+4q2≥ z45,−20w1+2w2+8q1+4q2 = 1,

w1,w2,z12,z31,z41,z51,z23,z24,z25,z43,z35,z45 ≥ 0, q1,q2 are unrestricted in sign.

Using Microsoft Excel Solver software in HP-G56 with processor: Pentium (R) Dual-Core

CPU T4500 @ 2.30GHZ of 4.00GB memory size to solve the LP (61) the optimal solution is

found to be: w1 = 0.0278, w2 = 0.0556, q1 = 0.0833, q2 = 0.1944 z12 = 0.25, z31 = z41 =

z51 = z23 = z24 = z25 = z43 = z35 = z45 = 0, z = 0.25 From Equation, qp = wpyp, for p ∈ P

it follows that the ideal points yp is calculated as y1 = 3 and y2 = 3.5 Using Y = 3,3.5 and

W ′ = 0.0278,0.0556, the distance measures are s1 = 0.375, s2 = 0.125, s3 = 0.375, s4 = 0.125,

s5 = 0.375 s1 = s3 = s5 > s2 = s4.

6.2. Numerical applications using the Minkoski metric of order 3

Using the same values as in Example (1) above The data consist of five stimuli (n = 5) in

a two dimensional space (t = 2) with coordinates V1 = (0,5), V2 = (5,4), V3 = (0,2), V4 =

(1,3), V5 = (4,1) The forced choice ordered paired comparison judgments by the DM are:

Ω = {(1,2),(3,1),(4,1),(5,1),(2,3),(2,4),(2,5),(4,3),(3,5),(4,5)} The LP formulation is

MaxZ = Z12+Z31+Z41+Z51+Z23+Z24+Z25+Z43+Z35+Z45, subject to: 125w1−61w2−

75q1+27q2+15r1−3r2+ z12 ≥ 0, 117w2−63q2+9r2+ z31 ≥ 0, −w1+98w2+3q1−48q2−

3r1 + 6r2 + z41 ≥ 0, 64w1− 7w2− 48q1 + 9q2 + 12r1− 3r2 + z35 ≥ 0, 63w1− 26w2− 45q1 +

24q2−9r1−6r2 + z45 ≥ 0, −124w1 +70w2 +60q1−6q2−12r1−6r2 = 1, w1−2q1 + r1 ≥ 0,

w2− 2q2 + r2 ≥ 0, w1,w2,r1,r2,z12,z31,z41,z51,z23,z24,z25,z43,z35,z45 ≥ 0, q1,q2 unrestricted

in sign.

Using Microsoft Excel Solver software in HP-G56 with processor: Pentium (R) Dual-Core

CPU T4500 @ 2.30GHZ of 4.00GB memory size to solve the LP (62), the optimal solu-

tion is found to be w1 = 0.013158, w2 = 0.022281, q1 = 0.022036, q2 = 0.041429, r1 = 0,

r2 = 0.000349 z12 = 0.25, z31 = z41 = z51 = z23 = z24 = z25 = z43 = z35 = z45 = 0, z= 0.25 Con-

sequently, the Index of Fit C∗=H∗/1+H∗= 0.25/1+0.25= 0.2 Therefore, the LP has a finite

optimum solution since z12 = 0.25 > 0. With this finite optimum, the ideal point locations are
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given as y1 =
q1
w1

= 0.022036
0.013155 = 1.68, y2 =

q2
w2

= 0.041429
0.022281 = 1.86. Computing the distances with the

optimal values of the LP yields (0,5) =V1 : S1 = 0.013155(0−1.68)3+0.022281(5−1.86)3 =

0.6274,

(5,4) =V2 : S2 = 0.013155(5−1.68)3 +0.022281(4−1.86)3 = 0.6998,

(0,2) =V3 : S3 = 0.013155(0−1.68)3 +0.022281(2−1.86)3 =−0.062,

(1,3) =V4 : S4 = 0.013155(1−1.68)3 +0.022281(3−1.86)3 = 0.0289,

(4,1) =V5 : S5 = 0.013155(4−1.68)3 +0.022281(1−1.86)3 = 0.1501.

Thus the ranking of the alternatives based on the Minkoski distance metric of order 3 is S2 >

S1 > S5 > S4 > S3.

7. Conclusion

Using the Minkowski distance metric of order 3, strict ordering of preference is obtained. It

shows that, in our example, the third item is the most preferred, followed by the fourth, fifth,

first and second. While the Euclidean distance metric lead to ties in choice preference. The

most preferred in this case being either the second or the fourth item followed by either the

first or third or fifth item. Thus, Minkowski metric of order 3 and in fact higher order has the

potential to provide a more accurate estimate of the utility function than the Euclidean metric.
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