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Abstract: The first aim of this work is to give necessary and sufficient conditions on the existence of a 

Markov moment problem in the first quadrant in terms of quadratic forms. This allows establishing the 

constraints for the related optimization problems. The second part of the paper contains evaluations 

related to the p - root of a positive selfadjoint operator, , 1.p R p   The basic tools for this part are 

the contraction principle and a variant of Newton’s method for convex operators. Some related bounds 

involving norms of operators are deduced. 
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1. Introduction 

The first aim of this paper is to give a characterization for the existence of the  

solution of a classical multidimensional Markov moment problem in terms of 

(computable) quadratic forms. As it is well known, in several variables there are 

positive polynomials on the first quadrant that are not writable by means of sums of 
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squares of some other polynomials. We show that 1L   approximation results by 

sums of tensor products of positive polynomials in each separate variable on the 

positive semiaxes holds. For such polynomials, one knows the representation by 

means of sums of squares [1]. These results allow establishing the constraints in the 

associated optimization problem. A similar result on approximation applied to the 

complex moment problem appears in [18]. Application of extension results of linear 

operators and approximation to the moment problem appear in [1], [6], [9], [10], [16] 

– [19], [21], [23], [24], [28]. An introduction to optimization aspects of the moment 

problem is considered in [8] and [14]. For some other optimization problems see [12]. 

Other related interesting aspects on positive polynomials and their connection to the 

moment problem appear in [4] - [10], [18], [19], [21], [23] – [25], [28]. Uniqueness of 

the solution is considered in [1], [7], [13], [15], [29]. The background of this work is 

contained in [1], [8], [11], [14], [21], [26], [27].  

The second part of this work contains approximation of 1/ , 1, ,pU p p R   

where U  is a selfadjoint operator having the spectrum   [1, ).U     

To this end, one uses the successive approximations method from the 

contraction principle and from Newton’s method for convex operators [3], [22]. For 

local results concerning Newton’s method for analytic operators, see [2]. The paper is 

organized as follows. Section 2 contains polynomial approximation results on 

unbounded subsets. The first part of Section 3 is devoted to establishing conditions for 

constrained optimization problem related to the moment problem. Upper and lower 

bounds are also considered. Secondly, one establishes bounds for 1/ , 1,pA A p A   

being a positive selfadjoint operator.  

 

2. Preliminaries 

We recall the following approximation results on unbounded subsets of  

.nR  
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Lemma 2.1. ([19], Lemma 1.3. (d)) If  0 [0, )x C   is a nonnegative continuous 

function with compact support, then there exists a sequence  m m
p  of positive 

polynomials on [0, ),  such that 

    0, ,m mp t x t t m Z p x       

uniformly on compact subsets of [0, )  and in  1 [0, ) ,L   for any M-determinate [1], 

[15] positive regular Borel measure [26] ,  with finite moments of all natural 

orders. 

The next result is a generalization to several dimensions of approximation 

lemma 1.3 [19], point (a). Contrary to the preceding theorem, now the supports of the 

involved measures are not compact subsets. 

Lemma 2.2. The subset of sums tensor products 
1 2p p  of positive polynomials in 

separate variables 
1 2,t t  is dense in   1 2[0, ) ,L


  for any measure 1 2 ,     where 

, 1,2j j   are positive regular M-determinate Borel measures on ,R
 with finite 

moments of all natural orders. 

Proof. Let       20, 0, , [0, ) , 0nK n n C 


      outside .nK  Due to Luzin and 

Weierstrass-Bernstein theorems,   can be uniformly approximated on 
nK  by a 

sums of tensor products    1, 2, ,, 0, , 1,2.n n j n C n j  


    Extend each function ,j n  

to [0, )  such that the new functions vanish outside  0, .n  Approximate these new 

functions using Luzin’s theorem, this time for functions of one variable. During this 

operation, the values of ,j n  on  0, , 1,2,n j   do not change. Thus, one obtains 

approximations with sums of tensor products of continuous nonnegative functions 

, , 1,2, ,j n j n    with compact support in separate variables. By Lemma 2.1 (see also 

lemmas 1.2, 1.3 [19]), there are positive polynomials 
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 , , , , , , ,

, , ,

, 1,2, , ,

, , 1,2, .

j m n j m n j j m n j n

j m n j n

p p t j p m n

p m j n





    

   
 

The convergence is uniform on compact subsets of R
 and in  1 .

j
L R   Then one can 

write: 

 ,

, , , ,

0

, ,

k m n

l m n l m n

l

p p m


    

 

in the norm of the space  1 2L R   and uniformly on .nK  Since this reasoning holds 

for any positive continuous function of compact support for a suitable ,n  and 

  2

cC R


 is dense in   1 2 ,L R 


 it follows that the cone generated by tensor 

products of positive polynomials in separate variables is dense in   1 2 .L R 


 The 

space generated by these tensor products is dense in  1 2 .L R   This concludes the 

proof.   □ 

Positive Borel measures appear as representing positive linear functionals on the 

subspace of continuous functions of compact support, via Riesz representation 

theorem. For such measures, Luzin’s theorem and approximation results by 

continuous functions with compact support work [26]. The assumption of being M – 

determinate means that a measure is uniquely determinate by its moments [1], [7], 

[15], [29]. For such measures, polynomial approximation from above holds for 

nonnegative continuous functions with compact support from  1 , nL A A R   being a 

closed and unbounded subset [19]. 

 

3. Main results 

Theorem 3.1. (see [19], [23]) Let 1 2     be as in Lemma 2.2. Assume that 1 2,   

are    finite. Let 
  

  2,
,

j k
j k

y


 be a sequence of real numbers. The following 
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statements are equivalent: 

(a) there is a unique function 

 

         
2

2 2

1 2 1 2 1 2 ,
, 0 , 1 . ., , , , ;j k

j k

R

h L R h t t a e t t h t t d y j k 





       

 

(b) for any finite subsets 
1 2,J J    and all 

 

   
21

, ,j m m Jj J
a R b R


   

one has: 

 

 

 

2
1 1

2 2

2
1 1

2 2

1

2

1 2,
, , , ,
, ,

1

1 21,
, , , ,
, ,

1 2, 1
, ,
,

0

0

0

i j m n

i j m n i j m ni j m n
i j J i j J R
m n J m n J

i j m n

i j m n i j m ni j m n
i j J i j J R
m n J m n J

i j m

i j m n i j m ni j m n
i j J
m n J

a a b b y a a b b t t d

a a b b y a a b b t t d

a a b b y a a b b t t









 

 
 
 

  

  
 
 

 

  



 

 

 

  

  



 

2
1

2

2
1 1

2 2

1

, ,
,

1 1

1 21, 1
, , , ,
, ,

0 .

n

i j J R
m n J

i j m n

i j m n i j m ni j m n
i j J i j J R
m n J m n J

d

a a b b y a a b b t t d














   

   
 
 

 

 

  

 

Proof. The implication  ( )a b  is almost obvious. In order to prove the converse, 

one uses the density of sums of tensor products of positive polynomials in each one 

separate variable in the positive cone of  1 2L R   (Lemma 2.2). Using also the analytic 

expression of positive polynomials on the positive demiaxes [1], one observes that 

 b  says that the linear form verifying the moment conditions is positive and 

dominated by   on the cone generated by tensor products of positive polynomials in 

separate variables. In particular, this linear form has a positive extension ,F  to the 

space of all integrable functions dominated in absolute value by a polynomial (see [11, 

p. 160]). The density proved in Lemma 2.1, leads to the continuity of this extension 

on the positive cone of the subspace of continuous functions of compact support. If   

is a nonegative continuous function with compact support, let 
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 

 ,1, ,2, ,

0

, 0, 0, 1,2.

k m

l m l m k m k k

l

p p p t t k



      

The convergence in the above formula is in the 1L   norm. The preceding relations 

and Fatou’s lemma, as well as the hypothesis (b) yield: 

 

   
 

 
 

2 2

, ,1 , ,2

0

, ,1 , ,2

0

liminf

lim , 0.

k m

m l m l m

l

k m

m l m l m

l R R

F F p p

p p d d



   

 





  

  



 

 

 

For an arbitrary continuous function with compact support , , one obtains: 

 

     
2

1

R

F F F d     



      

Hence, F  is linear positive form, of norm at most one, on a dense subspace of 

 1 2 .L R   There is an extension preserving these qualities and a  representing function 

 2 .h L R



  It verifies the inequalities mentioned at point  a  because of measure 

theory arguments. This concludes the proof.   □ 

 

Corollary 3.1. Under the hypothesis from above,  
  2, ,j k j k

y


 is a sequence of 

moments verifying (a) of Theorem 3.1 if and only if all the 4  forms  

 

 

,

, 0 , 0

, ,

, 0 , 0

1,

, 0 , 0

1, 1,

, 0 , 0

0,

0,

0

0,

q q

i j m n i j m n

i j m n

q q

i j m n i j m n i j m n

i j m n

q q

i j m n i j m n

i j m n

q q

i j m n i j m n i j m n

i j m n

y a a b b

c y a a b b

y a a b b

c y a a b b

 

 

   

 

  

 

     

 

 
  

 

 
  

 

 
 

 

 
  

 

 

 

 

 

          (3.1) 
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 

 

, 1

, 0 , 0

, 1 , 1

, 0 , 0

1, 1

, 0 , 0

1, 1 1, 1

, 0 , 0

0,

0,

0,

0, ,

q q

i j m n i j m n

i j m n

q q

i j m n i j m n i j m n

i j m n

q q

i j m n i j m n

i j m n

q q

i j m n i j m n i j m n

i j m n

y a a b b

c y a a b b

y a a b b

c y a a b b q

  

 

     

 

   

 

       

 

 
 

 

 
  

 

 
 

 

 
   

 

 

 

 

 

 

are semi positive definite for all     00
, ,

q q

j k kj
a a b b


   where 

 
2

2

, 1 2: , , .j k

j k

R

c t t d j k



   

 

The preceding result is important in itself and give the natural constraints for some 

optimization problems. 

Optimization Problem 1 (O. P. 1). If  

 

   
2

2

1 2 , 1 2 ,

, 0

, , , , ,
q

j k

j k j k

j k

P t t c t t c R j k N q


     

 

is a given polynomial such that (a) of Theorem 3.1 is verified, then 

 

     

   

2

2

1 2 1 2 , , ,

2
2

, , , , ,

, 0

max(min) , , ; ,

max(min) , , , , , . . 3.1 .

j k j k j k

R

q

j k j k j k j k j k

j k

P t t h t t d m y M j k

c y m y M j k j k q s t







 
     
 
 

 
     

 





 

 

Hence, we have a linear constrained programming problem. The maximum and 

minimum points are extreme points of the set defined by the restrictions (3.1) and by 

  2

, , , , , .j k j k j km y M j k                  (3.2) 

 

Optimization problem 2 (O. P. 2): 
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       

   

2

2 2
2 2

1 1 1 2 2 2 1 2

0 0

2 2

,

, 0 , 0

, max min

max min . . (3.1), 3.2 , .

q q
j m

j m

j m R

q q

i j m n i j m n

i j m n

p t a t p t b t p p hd

a a b b y s t j k q




 

 

 

 
     
 
 

  
   

  

  

 

 

 

This is also a constrained optimization problem with linear objective function. 

Lower and upper bounds (L - U. B.). Assume that we have solved (O. P. 1). Let 

 / , , \ 0k l k l    be a given positive not integer rational number, with even 

numerator. An application of Jensen’s inequality leads to: 

 

   

 

   

 

2 2

2 2

1/
/

1 2 1 2 1 2 1 2

1 2 1 2

, , , ,

, ,

l
k l k

R R

R R

P t t h t t d P t t h t t d

h t t d h t t d

 

 

 

 

 
 
 
 
 
 

 

 
 

 

Under the constraints (3.1), (3.2), the right hand size member can be majorized 

applying (O. P. 1). Thus, one obtains an upper bound for a nonlinear objective 

function, with a domain defined by suitable semi positive matrix. If 1   and P  is 

a convex positive polynomial on the convex hull of the feasible set corresponding to 

,P  one can find an upper bound for 

 
2

1 2max , . . (3.1), (3.2), 1,

R

P t t d s t  



  

 

To this end, one applies the maximum principle for the composed convex functional 

on this convex compact subset. If   is as above, but  0,1 ,   for an upper bound 

one applies either Jensen’s inequality, or Hölder’s inequality. For a lower bound, if the 

polynomial is concave and positive, one uses the minimum principle for the concave 

continuous function on the convex hull of the set defined by means of (3.1), (3.2). 

 

The next results concern approximations and bounds related to 1/ , , 1,pA p R p   
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where A  is a selfadjoint operator on an arbitrary Hilbert space ,H  and the spectrum 

 A  is contained in  0, .  Firstly, we consider the p   root of A  as the solution 

of the equation 

  0.pP U U A    

 

One can prove that P  is convex and increasing on the convex cone of selfadjoint 

positive operators. Hence the associated variant of Newton’s method [3], [22] works. 

Namely, the following statements hold true, under some hypothesis. 

 

Let X be a    complete vector lattice, endowed with a solid  x y x y    

and o  continuous norm  0 .n in order nx x x x     Let Y  be a normed vector 

space, endowed with an order relation defined by a closed convex cone. For 

, , ,a b X a b   we denote    , , .a b x X a x b     Let   1 , , .P C a b Y  In most of our 

applications, we have .X Y  

 

Theorem 3.2. (see [3], [22]). Assume additionally that for each 

 

     
1

, , ,x a b P x L Y X



      

and that 

     .a x b P a P x P b        

If    0, 0,P a P b   then there exists a unique solution x  of the equation   0,P x   

where 

   
1

0 1: inf lim , : , , .k k k k k kx x x x b x x P x P x k N



                (3.3) 

 

Moreover, we have 
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   
1

, 0.k ka x b x x P a P x
                      (3.4) 

 

Let H  be a Hilbert space, A  a selfadjoint operator acting on ,H  with the spectrum 

   ]0, [, , ( )S A B H Y Y B     

the associated commutative algebra according to (3.5) from below: 

 

        1 1 1 1; , ; , .Y Y B T H BT TB Y Y B T Y TU UT U Y               (3.5) 

 

The space Y  is a commutative algebra, which is also an order complete Banach 

lattice, with solid norm (see [11], [17]). We denote 

 

1 1
inf , , sup ,A Ah h

Ah h Ah h
 

        

 

Theorem 3.3. (see Theorem 2.1 [3]). Let A  be as above,  , 1, .A Sp I p p R    

There exists a unique operator 1/ 1/] , [p p

p A AU I I   such that 

 

0,p

pU A   

 

and this solution verifies the relations 

 

 

1/

1 /

1
.p

A p Ap p

A

I U I A
p


      

 

Remark 3.1. If in the recurrence relation of Newton’s method: 

 

        
1

1 , :k kx x x x P x P x 



       
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the mapping   is a contraction, the rate of convergence of the sequence  k k
x  is 

given by contraction principle. Next, we recall that this is the case of the operator 

  ,pP U U A   which leads to the positive solution 1/ .p

pU A  The next result 

establish the connection between Newton’s method and the successive approximation 

method of the contraction principle. Iterations given by (3.3) become (3.6) in this 

particular case. Relation (3.7) is a consequence of the corresponding evaluation from 

the contraction principle. It is not equivalent to an application of (3.4).  

 

Theorem 3.4. (see Theorem 3.1 [3]). Let , ,p A X  be as above. Then the Newton 

recurrence for the equation  

  0pP U U A    

 

is 

 1/ 1

0 1

1 1
, , .p p

A k k k k

p
U I U U U U A k N

p p
  




                (3.6) 

 

The convergence rate for 1/ p

kU A  is given by 

 

1/ 1/ 11
, .

k

p p

k A A

p
U A I A k N

p

 
     

 
              (3.7) 

 

Relation (3.7) gives the convergence rate of 1/ 0,p

kU A k    as being smaller or 

equal to 
1

.

k

p
O

p

  
     

 The equalities (3.6) are exactly (3.3), written for our operator 

P  and initial value 
0U  from the statement of Theorem 3.4. 
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Corollary 3.2. If    [1, ), ,A A Sp I     then we have: 

 

 

1/

1 /

1
, 1.p p

p p

A

A A A A p
p


      

 

Proof. The hypothesis on the spectrum of A  leads to 1/ , 1.pA A p   Thus, A  

stands for the initial approximation 
0x b  from (3.3). Choosing 

 

1/ 1/ , ,p p

Aa I A A I     

 

the statement follows by an application of (3.4) to   .pP A A A   This concludes the 

proof.   □ 

 

Secondly, in the next results we obtain upper bounds for some norms of 

operators involving 1/ ,pA  directly from the contraction principle. Namely, we prove 

the following theorem, stated for operators in the commutative Banach algebra  Y B  

defined by (3.5). 

 

Theorem 3.5. Let     ; [1, )C U Y B U     and .A C  Then for all , 1,k k   

we have: 

  1 1/ 1/1 , 1.
kk p pp p A I A A p                 (3.8) 

 

Consequently, the following relations hold 

 

   
  

1 1/ 1/

1/

1 limsup ,

limsup 1 , .

kk p p

k

p

p

p p A I A A

p A I A I A C

   

     
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Proof. For U C  and 1/1, pp U  have sense given by the analytic functional calculus. 

We define : ,Q C C  

  1/ , .pQ U U U C   

 

The operator Q  is a concave operator, applying C  into itself. Namely, if 

  [1, ),U    we have 

    
1/1/ [1, ).

ppU U     

 

The operator Q  is from C  onto .C  Next we show that Q  is a contraction from 

C  onto ,C  the contraction constant being  1/ 1.p   For , ,U V C  we have: 

 

  

  

1
1

1
1 1/ 1

1 1
; 1 0

(0,1].

p

pp

Q U V U V
p p

U U 



 

    

 
  

 
 

 

 

From the last relation we infer that 

 

1/ 1

1 1
1 1

, 1 , , , 1 , .p

p p

U
U h h Ih h h H h U I U C

 

               

 

Using the fact that the product of two positive commuting operators is positive, the 

preceding relations lead to 

 

   
1

1
1/ 1 1 1

0 , , .p pI U V Q U V U V V U V C
p p


           
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On the other hand, the following evaluations hold: 

 

   
1

1

1 2 1 2 1 2 1 2

1 1
sup , , .p

U CQ U Q U U U U U U U U C
p p



        

 

Hence Q  is a contraction from the complete metric space C  onto ,C  which has a 

unique fixed “point”. This fixed point is the identity operator .I  From the well 

known evaluation given by contraction theorem, we have: 

 

  
 

 
1/

, .
1 1/

kp
Q Q U I U Q U k

p
   


 

 

for any initial approximation U C  of .I  The composition of Q  with itself occurs 

k  times in the above relation. We rewrite the above relation as 

 

 
1/ 1/

1

1
, , .

1

kp p

k
U I U U U C k

p p
    


          (3.9) 

 

This proves (3.8). The other assertions of the statement follow. This concludes the 

proof.   □ 

 

Corollary 3.3. For all U C  and all 1,p   we denote: 

 

2 2 2
1/2

2
1/ 1/ 1/

2 1/ 1/1/
, 4 .

p p p

p pp

U I U I U I
E p U

U U U UU U

  
    

    
   

   

 

 

Then the following relations hold: 

    , 2, limsup , 2, , .pp E p U p E p U U C U I        
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Proof. We write (3.9) for the case 2.k   One obtains: 

 

   
2

2 2

1/ 1/

1/ 2 1/ 1/

1 , 1, \

0.

p p

p p p

p p U I U U p U C I

U I p U I p U U

        

       
 

 

The signature of the two-degree polynomial with two real roots of opposite signatures 

in the variable p  and the fact that 1p   lead to the following relations 

2 2 2

2

2 2 2

1/2
2

1/ 1/ 1/ 1/

1/

1/

1/2
2

1/ 1/ 1/ 1/

4

2

2 .

4

p p p p

p

p

p p p p

U I U I U I U U

p
U I

U U

U I U I U U U I

 
        

 
 

 



  
         

  

 

 

Now the conclusion follows by dividing the numerator and the denominator of the last 

fraction by the same factor 1/ .pU U  This concludes the proof.   □ 

Corollary 3.4. If    [1, ), , 1, , 1,A A Sp I p k k        then we have:  

 
 

1 1/ 1/

1 /

1
1 .

kk p p p

p p

A

p p A I A A A A
p




       

 

Proof. The relation (3.8) gives the first inequality, while the second one follows from 

the Corollary 3.2. This concludes the proof.   □ 
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